Advancements in Hydrogel-Based Adsorbents for Heavy Metal Removal: An Overview
DOI:
https://doi.org/10.22401/rvmwpd66Keywords:
Heavy metals , Adsorption, Hydrogel , Swelling capacity , Recovery processAbstract
The environment and public health face a significant risk from increasing levels of heavy metals in wastewater resulting from industrial activities. Researchers are exploring new techniques for eliminating these pollutants by the production of potential hydrogel materials that can provide a comprehensive analysis of recent advancements in the utilization of these hydrogels for the adsorption of heavy metals from aqueous solutions. Heavy metal pollution poses a significant threat to ecosystems and human health, necessitating effective remediation strategies. Hydrogels, with their unique physicochemical properties, have emerged as promising materials for heavy metal adsorption due to their high-water retention capacity, tunable porosity, and the active functional groups. This review discusses the significance of hydrogels as effective adsorbents for removing heavy metals and the impact of reaction conditions on their adsorption efficiency. Furthermore, it explores the principles of adsorption mechanisms involved, such as ion exchange, chelation, and electrostatic interactions, which are critically evaluated in terms of adsorption capacity, selectivity, and recovery.
References
He, Z.L.; Yang, X.E.; Stoffella, P.J.; “Trace elements in agroecosystems and impacts on the environment,” J Trace Elem Med Biol. 19(2–3):125–140, 2005.
Kapahi, M.; Sachdeva, S.;“Bioremediation Options for Heavy Metal Pollution.” J. Health Pollut. 9, (24): 191203, 2019.
Briffa, J.; Sinagra, E.; Blundell, R.; “Heavy metal pollution in the environment and their toxicological effects on humans,” Heliyon, 6(9): 04691, 2020.
Fashola, M. O.; Ngole-Jeme, V. M.; Babalola, O. O.; “Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance,” Int. J. Environ. Res. Public. Health. 13(11): 1047, 2016.
Ozay, O.; Ekici, S.; Baran, Y.; Kubilay, S.; Aktas, N.; Sahiner, N.; “Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments,” Desalination. 260(1–3): 57–64, 2010.
Zhou, Y.T.; Nie, H.-L.; Branford-White, C.; He, Z.Y.; Zhu, L.M.;“Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid,” J. Colloid Interface Sci. 330(1): 29–37, 2009.
Abdel Salam, O. E.; Reiad, N. A.; ElShafei, M. M.; “A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents,” J. Adv. Res. 2(4): 297–303, 2011.
Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y.;“Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism,” Sci. Rep. 10(1): 6067, 2020.
Gebretsadik, H.; Gebrekidan, A.; Demlie, L.; “Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis: An alternate low-cost adsorbent,” Cogent Chem. 6(1): 1720892, 2020.
Zhou, D.; Zhang, L.; Zhou, J.; Guo, S.; “Cellulose/chitin beads for adsorption of heavy metals in aqueous solution,” Water Res. 38(11):2643–2650, 2004.
Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J.; “Adsorption of heavy metal onto biomass-derived activated carbon: review,” RSC Adv.13(7): 4275–4302, 2023.
Deng, S.; Bai, R.; “Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms”. Water Res. 38(9): 2424–2432, 2004.
Zhu, H.; Chen, S.; Luo, Y.; “Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review”. J. Agric. Food Res. 12: 100552, 2023.
Tian, R.; Liu, Q.; Zhang, W.; Zhang, Y.; “Preparation of Lignin-Based Hydrogel and Its Adsorption on Cu2+ Ions and Co2+ Ions in Wastewaters,” J. Inorg. Organomet.. Mater. 28(6):2545–2553, Nov. 2018.
Li, F.; Wang, X.; Yuan, T.; Sun, R.; “A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb (II) removal,” J. Mater. Chem. A. 4(30):11888–11896, Jul. 2016.
Chen, Z.; Zhao, Y.; Fan, L.; Xing, L.;Yang, Y. ; “Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils,” Bull. Environ. Contam. Toxicol. 95(6): 784–789, Dec. 2015.
Ayangbenro, A.; Babalola, O.; “A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents,” Int. J. Environ. Res. Public. Health, 14(1): 94, 2017.
Jamil Emon,,F.; “Bioaccumulation and Bioremediation of Heavy Metals in Fishes—A Review,” Toxics, 11(6): 510, 2023.
Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J.; “Heavy Metal Toxicity and the Environment,” EXS. 101: 133–164A, 2012.
Ahmad, Z.; “Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications,” Gels. 8 (3): 167, 2022.
Mahinroosta, M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z.; “Hydrogels as intelligent materials: A brief review of synthesis, properties and applications,” Mater. Today, Chem. 8(42–55): 24685194, 2018.
Ullah, F.H.; Othman, M. B.; Javed, F.; Ahmad, Z.; Akil, H. Md.; “Classification, processing and application of hydrogels: A review,” Mater. Sci. Eng. 57:(414–433(,2015.
Lee, K. Y.; Rowley, J. A.; Eiselt, P.E.; Moy, M.; Bouhadir, K. H.; Mooney, D. J.; “Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density”. Macromolecules, 33(11: 4291–4294, 2000.
Ali, S. W.; Zaidi, S. A. R.; “Synthesis of copolymeric acrylamide/potassium acrylate hydrogels blended with poly (vinyl alcohol): Effect of crosslinking and the amount of poly (vinyl alcohol) on swelling behavior,” J. Appl. Polym. Sci. 98(5): 1927–1931, 2005.
Gibas, I.; Janik, H.; “Review: Synthetic Polymer Hydrogels for Biomedical Applications,” Chem. Chem. Technol. 4(4): 297–304, 2010.
Halah, A. E.; López-Carrasquero, F.; Contreras, J.; “Applications of hydrogels in the adsorption of metallic ions”. 39(1): 2018.
Wahlström, N.; Steinhagen, S.; Toth, G.; Pavia, H.; Edlund, U.; “Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution”. Carbohydr. Polym. 249: 116841, 2020.
Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X.; “A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings,” J. Adv. Res. 8(3): 217–233, 2017.
Chowdhury, N.; Solaiman Roy, C. K.; Firoz, S. H.; Foyez, T.; Imran, A. B.; “Role of Ionic Moieties in Hydrogel Networks to Remove Heavy Metal Ions from Water,” ACS Omega, 6(1): 836–844, 2020.
Mishra, A.; Nath, A.; Pande, P. P.; Shankar, R.; “Treatment of gray wastewater and heavy metal removal from aqueous medium using hydrogels based on novel crosslinkers,” J. Appl. Polym. Sci. 138(16): 50242, 2021.
Ozay, O.; Ekici, S.; Baran, Y.; Aktas N.; Sahiner, N.; “Removal of toxic metal ions with magnetic hydrogels,” Water Res. 43(17):4403–4411, 2009.
Wang, Y. M.; Shang, D. J.; Niu, Z.; W.; “Removal of Heavy Metals by Poly (Vinyl Pyrrolidone)/Laponite Nanocomposite Hydrogels,” Adv. Mater. Res. 631–632: 291–297, 2013.
El-Hag Ali, A.; Shawky, H. A.; Abd El Rehim, H. A.; Hegazy, E. A.; “Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution,” Eur. Polym. J. 39(12): 2337–2344, 2003.
Zhang, W.; “Efficient heavy metal removal from water by alginate-based porous nanocomposite hydrogels: The enhanced removal mechanism and influencing factor insight,” J. Hazard. Mater. 418: 126358, 2021.
Sanyang, M. L.; Ghani, W. A. W. A. K.; Idris, A; Ahmad, M. B.; “Hydrogel biochar composite for arsenic removal from wastewater,” Desalination Water Treat. 57(8): 3674–3688, 2016.
Choi, H.; Kim, T.; Kim, S. Y.; “Poly (Amidehydrazide) Hydrogel Particles for Removal of Cu2+ and Cd2+ Ions from Water”. Gels, 7(3): 121, 2021.
Tang, S. C. N.; Wang, P.; Yin, K.; Lo, I. M. C.; “Synthesis and application of magnetic hydrogel for Cr (VI) removal from contaminated water”. Environ. Eng. Sci. 27(11): 947–954, 2010.
Jamnongkan, T.; Wattanakornsiri, A.; Wachirawongsakorn, P.; Kaewpirom, S.; “Effects of crosslinking degree of poly (vinyl alcohol) hydrogel in aqueous solution: kinetics and mechanism of copper (II) adsorption,” Polym. Bull. 71(5): 1081–1100, 2014.
Rehman, T. U.; Shah, L. A.; Khattak, N. S.; Khan, A.; Rehman, N.; Alam, S; ''Superabsorbent hydrogels for heavy metal removal. In Trace Metals in the Environment-New Approaches and Recent Advances''. IntechOpen, (2019).
Abdel Maksoud, I. K.; Bassioni, G.; Nady, N.; Younis, S. A.; Ghobashy, M. M.; Abdel-Mottaleb, M. S. A.; “Radiation synthesis and chemical modifications of p(AAm-co-AAc) hydrogel for improving their adsorptive removal of metal ions from polluted water,” Sci. Rep. 13(1): 21879, 2023.
Jiang, C.; Wang, X.; Wang, G.; Hao, C.; Li, X.; Li, T.; “Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions,” Compos. Part B Eng. 169: 45–54, 2019.
Sun, J.; “Application of Ionic Liquid Crosslinked Hydrogel for Removing Heavy Metal Ions from Water: Different Concentration Ranges with Different Adsorption Mechanisms,” Polymers, 15(13): 2784, 2023.
Ullah, F.; Othman, M. B. H.; Javed F.; Ahmad, Z.; Akil, H. Md.; “Classification, processing and application of hydrogels: A review”. Mater. Sci. Eng. 57: 414–433, 2015.
Darban, Z.; Shahabuddin, S.; Gaur, R.; Ahmad, I.; Sridewi, N.; “Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review”. Gels, 8(5):263, 2022.
Lv, Q.; Hu, X.; Zhang, X.; Huang, L.; Liu, Z.; Sun, G.; “Highly efficient removal of trace metal ions by using poly (acrylic acid) hydrogel adsorbent”. Mater. Des. 181: 107934, 2019.
Ali, F.; Khan, I.; Chen, J.; Akhtar, K.; Bakhsh, E. M.; Khan, S. B.; “Emerging Fabrication Strategies of Hydrogels and Its Applications”. Gels, 8(4), 2022.
Lai, J.-Y.; Luo, L.-J. and Ma, D. H.-K.; “Effect of Cross-Linking Density on the Structures and Properties of Carbodiimide-Treated Gelatin Matrices as Limbal Stem Cell Niches,” Int. J. Mol. Sci. 19(11):3294, 2018.
Song, M.; Wang, J.; He, J.; Kan, D.; Chen, K.; Lu, J.; “Synthesis of Hydrogels and Their Progress in Environmental Remediation and Antimicrobial Application”. Gels, 9(1):16, 2023.
Bezemer, J. M.; Radersma, R.; Grijpma, D. W.; Dijkstra, P. J.; Feijen, J.; van Blitterswijk, C. A.; “Zero-order release of lysozyme from poly (ethylene glycol)/poly (butylene terephthalate) matrices,” J. Controlled Release, 64(1): 179–192, Feb. 2000.
Mushtaq, F.; “Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors,” Int. J. Biol. Macromol. 218:601–633, 2022.
Maitra, J.; Shukla, V.; “Cross-linking in hydrogels - a review,” Am J Polym Sci. 4: 25–31, 2014.
Zhu, H.; Chen, S.; Luo, Y.; “Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review,” J. Agric. Food Res. 12: 100552, 2023.
Badsha, M. A. H.; Khan, M.; Wu, B.; Kumar, A.; Lo, I. M. C.; “Role of surface functional groups of hydrogels in metal adsorption: From performance to mechanism,” J. Hazard. Mater. 408:124463, 2021.
Sánchez, J.; Dax, D.; Tapiero, Y.; Xu, C.; Willför, S.; “Bio-Based Hydrogels with Ion Exchange Properties Applied to Remove Cu (II), Cr (VI), and as(V) Ions from Water”. Front. Bioeng. Biotechnol. 9 :656472, 2021.
Wang, X.; Li, X.; Han, T.; Hao, C.; Han, S.; Fan, X.; “Synthesis of sodium lignosulfonate-guar gum composite hydrogel for the removal of Cu2+ and Co2+”. Int. J. Biol. Macromol. 175:459–472, 2021.
Godiya, C. B.; Sayed, S. M.; Xiao, Y.; Lu, X.; “Highly porous egg white/polyethyleneimine hydrogel for rapid removal of heavy metal ions and catalysis in wastewater,” React. Funct. Polym. 149 :104509, 2020.
Dong, L.; “Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels”. Int. J. Environ. Res. Public. Health, 19(17):11123, 2022.
Perumal, S.; Atchudan, R.; Edison, T. N. J. I.; Babu, R. S.; Karpagavinayagam, P.; Vedhi, C.; “A Short Review on Recent Advances of Hydrogel-Based Adsorbents for Heavy Metal Ions”. Metals, 11(6): 864, May 2021.
Hasanpour, M.; and Hatami, M.; “Application of three-dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study,” Adv. Colloid Interface Sci. 284:102247, 2020.
Zhan, W.; Gao, L.; Fu, X.; Siyal, S. H.; Sui, G.; Yang, X.; “Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal”. Appl. Surf. Sci. 467–468, :1122–1133, 2019.
Sahraei, R.; Ghaemy, M.; “Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity”. Carbohydr. Polym. 157: 823–833, 2017,
Kabiri, S.; Tran, D. N. H.; Azari, S.; Losic, D.; “Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water”. ACS Appl. Mater. Interfaces, 7(22): 11815–11823, 2015.
Zhang, N.; Qiu, H.; Si, Y.; Wang, W.;Gao, J.; “Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions”. Carbon, 49(3):827–837, 2011.
Faghihian, H.; Nourmoradi, H.; Shokouhi, M.; “Performance of silica aerogels modified with amino functional groups in PB(II) and CD(II) removal from aqueous solutions”. Pol. J. Chem. Technol. 14(1): 50–56, 2012.
Fu, D.; He, Z.; Su, S.; Xu, B.; Liu, Y.; Zhao, Y.; “Fabrication of α-FeOOH decorated graphene oxide-carbon nanotubes aerogel and its application in adsorption of arsenic species”. J. Colloid Interface Sci. 505:105–114, 2017.
Panic, V.; Madzarevic, Z.; Volkov Husovic, T.; Velickovic, S.; “Poly (Methacrylic Acid) Based Hydrogels as Sorbents for Removal of Cationic Dye Basic Yellow 28: Kinetics, Equilibrium Study and Image Analysis”. Chem. Eng. J. 217:192-204, 2013.
Akkaya, R.; Ulusoy, U.; “Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+”. J. Hazard. Mater. 151(2–3):380–388, 2008.
Liu, D.; Li, Z.; Zhu, Y.; Li, Z.; Kumar, R.; “Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: Adsorption and desorption performance”. Carbohydr. Polym. 111:469–476, 2014.
He, X.; Cheng, L.; Wang, Y.; Zhao, J.; Zhang, W.; Lu, C.; “Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr (VI) from water”. Carbohydr. Polym. 111: 683–687, 2014.
Ahmed, D.; Saeed, M.; “Temperature Effect on Swelling Properties of Commercial Polyacrylic Acid Hydrogel Beads”. Int. J. Adv. Biol. Biomed. Res. 1(12):1614–1627, 2013.
Özkahraman, B.; Yıldırım, E.; Emik, S.; Acar, I.; “The removal of Cu (II) and Pb (II) ions from aqueous solutions by temperature-sensitive hydrogels based on N-isopropylacrylamide and itaconic acid”. Main Group Chem. 20(3): 389–407, 2021.
Zendehdel, M.; Barati, A.;Alikhani, H.;“Removal of heavy metals from aqueous solution by poly(acrylamide-co-acrylic acid) modified with porous materials”. Polym. Bull. 67(2):343–360, 2011.
Zhang, W.; Hu, L.; Hu, S.; Liu, Y.; “Optimized synthesis of novel hydrogel for the adsorption of copper and cobalt ions in wastewater”. RSC Adv. 9(28):16058–16068, 2019.
Jiang, C.; Wang, X.; Wang, G.; Hao, C.; Li, X.; Li, T.; “Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions”. Compos. Part B Eng. 169: 45–54, 2019.
Wu, J.; “Synthesis and properties of sodium alginate/poly (acrylic acid) double-network superabsorbent”. E-Polym., 15(4):271–278, 2015.
Tirtom, V. N.; Dinçer, A.; “Effective removal of heavy metals from an aqueous solution with poly(N-vinylimidazole-acrylamide) hydrogels”. Sep. Sci. Technol. 56(5):912–924, 2021.
Peng, X.W.; Zhong, L.X.; Ren, J.L.; Sun, R.C.; “Highly Effective Adsorption of Heavy Metal Ions from Aqueous Solutions by Macroporous Xylan-Rich Hemicelluloses-Based Hydrogel”. J. Agric. Food Chem. 60(15):3909–3916, 2012.
Paulino, A. T.; Belfiore, L. A.; Kubota, L. T.; Muniz, E. C.; Almeida, V. C.; Tambourgi, E. B.; “Effect of magnetite on the adsorption behavior of Pb (II), Cd (II), and Cu (II) in chitosan-based hydrogels”. Desalination, 275(1–3):187–196, 2011.
Arshad, F.; Selvaraj, M.; Zain, J., Banat, F.; Haija, M. A.; “Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions”. Sep. Purif. Technol. 209:870–880, 2019.
Pouretedal, H.; Kazemi, M.; “Characterization of modified silica aerogel using sodium silicate precursor and its application as adsorbent of Cu2+, Cd2+, and Pb2+ ions”. Int. J. Ind. Chem. 3(1):20, 2012.
Fan, Q.; Yang, Y.; Hao, Y.; Zhao, X.; Feng, Y.; “Preparation of three-dimensional PANI/GO for the separation of Hg (II) from aqueous solution”. J. Mol. Liq. 212:557–562, 2015.
Maziad, N.A.; Mohsen, M.; Gomaa, E.; Mohammed, R.; “Radiation Copolymerization of Hydrogels Based in Polyacrylic Acid/Polyvinyl Alcohol Applied in Water Treatment Processes”. J. Mater. Sci. Eng. A. 5(12),2015.
Pavithra, S.; “Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr (VI) and Cu (II) ions from synthetic wastewater”. Chemosphere, 271:129415, 2021.
Zhang, M.; “Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions”. J. Mater. Chem. A. 5(7):3434–3446, 2017.
Chen, J.; Jiang, X.; Yin, D.; Zhang, W.; “Preparation of a Hydrogel-Based Adsorbent for Metal Ions through High Internal Phase Emulsion Polymerization”. ACS Omega, 5(32):19920–19927, 2020.
Shah, L. A.; “Superabsorbent polymer hydrogels with good thermal and mechanical properties for removal of selected heavy metal ions”. J. Clean. Prod. 201: 78–87, 2018.
Mohammadi, Z.; Shangbin, S.; Berkland, C.; Liang, J.; “Chelator-mimetic multi-functionalized hydrogel: Highly efficient and reusable sorbent for Cd, Pb, and as removal from waste water”. Chem. Eng. J. 307:496–502, 2017.
Zhang, K.; Luo, X.; Yang, L.; Chang, Z.; Luo, S.; “Progress toward Hydrogels in Removing Heavy Metals from Water: Problems and Solutions—A Review”. ACS EST Water, 1(5):1098–1116, 2021.
Tang, S. C. N.; Yan, D. Y. S.; Lo, I. M. C.; “Sustainable Wastewater Treatment Using Microsized Magnetic Hydrogel with Magnetic Separation Technology”. Ind. Eng. Chem. Res, 53(40):15718–15724, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hadeel S. Neama, Atheel H. Alwash, Mutaz Ali, Fatemeh Gholami, Zahra Gholami
This work is licensed under a Creative Commons Attribution 4.0 International License.