Chalcone Derivatives: Synthesis and Cytotoxicity Assays
Keywords:
Derivatives , Chalcone , Claisen-Schmidt , Synthesis , CytotoxicityAbstract
The research included the formation of chalcone derivatives, which are organic materials with biological importance, on which this research is based. The Chalcone derivatives were synthesised from the Claisen-Schmidt condensation reaction. Compounds I-III were synthesised by reacting p-aminoacetophenone with (4-methylbenzaldehyde, 2,3-dimethylbenzaldehyde, and cinnamaldehyde), respectively, in an ethanolic solution of KOH (30%). Chalcones were characterised by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR). The cytotoxicity effect was demonstrated in human melanoma cells A-375 and HdFn normal cells, and the MTT results showed that the cytotoxicity of Chalcone derivatives was greater than HdFn cells. The ability to use Chalcone derivatives as sunscreen showed a promising result.
References
Teodora, C.; Claudiu, N. L.; “Anticancer activity of natural and synthetic chalcones”. Int. J. Mol. Sci., 22(21): 1–33, 2021.
Borge, V.V.; Patil, R.M.; “Comparative Study on Synthesis and Biological, Pharmaceutical Applications of Aromatic Substituted Chalcones” .Mini. Rev. Org. Chem., 20(3): 260–269, 2023.
luoise, S.P.; Sarah, L.P.; “Packing Preferences of Chalcones: A Model Conjugated Pharmaceutical Scaffold,” Cryst. Growth Des., 22(3): 1801–1816, 2022.
Hanan, A.; Zeki, A.N.A; Suha K.A; “Microwave Assisted Synthesis Characterization and Study of Some Novel Chalcones Compounds Derived from Mefenamic Acid”. J. Phys. Conf. Ser., 1294(5): 50–57, 2019.
Jusafina, H.; Cristina, W.; Alejandra, M.; Mark, J.; Carlos, H.P.; Stanislav, G.; Felicitas, D.T.P.; Natalia C.; Mariel, M.; “Chalcone derivatives: synthesis, in vitro and in vivo evaluation of their anti-anxiety, anti-depression and analgesic effects”. Heliyon, 5 (3): e01376, 2019.
Nayara, A.A.; Marilia, F.M.; Thacyana, T.C.; Telma,S.S.; Mariana, M.B.; Jessica, A.C.; Anelise, F.; Amanda, M.D.; Tiago, H.Z.; Victor, F.; Camila, R.F.; Maiara, P.; Sandra, S.M.; Doumit, C.N.; Rubia, C.; Waldiceu, A.V.; “Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO2 in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation”.Molecules, 28(2): 872, 2023.
Rui, P.; Artur, M.S.S.; Daniela, R.; Vera, L.M.S.; and Eduarda, F.; “Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects”. Eur. J. Med. Chem., 252: 115280, 2023.
Asima, H.; Sara, M.; Aamir, H.; Ejaz, A.; Ahsan, S.; Muhammad, I.A.; “Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent”. J. Comput. Aided. Mol. Des., 33(7): 677–688, 2019.
Qing, Z.; Xumemei, T.; Shuai, C.; Wenliang, Z.; Die, H.; Ran, Z.; Nan, S.; Yongjun, W.; Wei, X.; “Design, synthesis, and antifungal activity of novel chalcone derivatives containing a piperazine fragment,” J. Agric. Food Chem., 70(4): 1029–1036, 2022.
Bathelemy, N.; Kamdoum, C.; Armelle, T.M.; Musa, E.; Ingrid, S.; Victor, K.; Arif, D.; “Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives,” Bioorg. Med. Chem. Lett., 35: p. 127827, 2021.
Lucia, W.W.; Respati, T.S.; Wonkoo, L.; Jumina, J.; “Synthesis and evaluation of chalcone derivatives as novel sunscreen agent,” Molecules, 26(9): 2698, 2021.
Areej, M.H.; Ahmed, A.; Bashar, M.A.; Emad, Y.; “synthesis, characterization and study the antioxidant”. 1(5): 1–10, 2017.
Aluru, R.; Julakanti, S.R.; Gundala, S.; Chittluri, N.R.; Grigory, V.Z.; “Chalcone synthesis, properties and medicinal applications: a review”. Environ. Chem. Lett., 18(2): 433–458, 2020.
Zahraa, T.G.; Ahmed, A.A.; Nuhad, I.T.; “Synthesis and Identification of Phenyl Azochalcone & bis- azo – Chalcone Derivatives Derived from P-amino Acetophenone”. Kirkuk Univ. Journal-Scientific Stud., 13(2): 307–322, 2018.
Muhannad, A.M; “Preparing and Characterization of Some Heterocyclic Compounds with Studying Their Biological Activity”. J. Al-Nahrain Univ. Sci., 17(3): 9–14, 2014.
Caroline, W.; Jessika, N.C.; Anderson, B.C.A.; Andrea, R.C.; Indianara, C.O.; Boniek, G.V.; Caridad, N.P.; Christian, G.A.; “Activated carbons for chalcone production: Claisen-Schmidt condensation reaction”. Chem. Eng. J., 303: 604–610, 2016.
UMesh, P.G.; Ganapati, D.Y.; “Synergism of muicat-1 and microwave irradiation in claisen-schmidt condensation of benzaldehyde with acetophenone to chalcone,” Catal. Green Chem. Eng., 5(1), 2022.
Siva, S.R.L; Rajkumar, T.; Lakshmi, M.G.; Siva, R.R.Y.; “Synthesis, characterization, anti-oxidant and anti-inflammatory activity evaluation of chalcones and pyrazoline derivatives,” Orient. J. Chem, 31: 189–199, 2015.
Al-Ardhi; Ghadeer, H.A.; Adil, M.A.; Ali, M; “Estimation of vitamin d levels in women with carpal tunnel syndrome (With and without diabetes)”. Medico-Legal Updat. 20(3): 821–825, 2020.
Hadi, A.M.; Mohammed A.S.H.; Al-Khafaji, Z.A.; “The evaluation of γ 1 34.5-ICP34. 5 herpes simplex virus 1 immunogenic as anti-cancer therapy in vitro and in vivo”. Drug Invent. Today, 13(5): 2020.
Juyoung, K.; Youngae, K.; Hyejeong, Y.; Hyemin, P.; Sun, Y.K.; Kwang, G.L.; Sang, M.H.; Yunhi, C.; “Royal jelly enhances migration of human dermal fibroblasts and alters the levels of cholesterol and sphinganine in an in vitro wound healing model”. Nutr. Res. Pract., 4(5): 362–368, 2010.
Jean, M.S.; “The use of the MTT assay to study drug resistance in fresh tumour samples”. Chemosensitivity Test. Oncol., 13–25, 2003.
Hari, O.S.; Uzma, F.; Kumar, J.K.; Suaib, L.; Darokar, M.P.; Karuna, S.; Chandan, S.C.; Gupta, M.M.; Arvind, S.N.; “Synthesis of chalcone derivatives on steroidal framework and their anticancer activities”. Steroids, 72(13): 892–900, 2007.
Juan, C.S.; Richard, W.H.; Lucas, L.C.; Alfonso, B.C.; “Tetrazolium salts and formazan products in Cell Biology:viability assessment, fluroescence imaging, and labeling perspectives” Acta Histochem., 120,(April): 159–167, 2018.
Denis, G.; Nicole, T.; “Use of MTT colorimetric assay to measure cell activation”.J. Immunol. Methods, 94(1–2): 57–63, 1986.
Michael, V.B.; An, S.T.; “Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction”. Arch. Biochem. Biophys., 303(2); 474–482, 1993.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ahmed Ahmed, Asraa H. Ahmed, Haikel Jelassi
This work is licensed under a Creative Commons Attribution 4.0 International License.