Chalcone Derivatives: Synthesis and Cytotoxicity Assays

Authors

  • Ahmed Ahmed Department of Chemistry, College of Science, Al-Nahrain University, Jadriah, Baghdad, Iraq
  • Asraa H. Ahmed Department of Chemistry, College of Science, Al-Nahrain University, Jadriah, Baghdad, Iraq
  • Haikel Jelassi Laboratory on Energy and Matter for Nuclear Sciences Development, Tunisia. National Center for Nuclear Sciences and Technologies, Sidi Thabet Technopark 2020, Ariana, Tunisia

Keywords:

Derivatives , Chalcone , Claisen-Schmidt , Synthesis , Cytotoxicity

Abstract

The research included the formation of chalcone derivatives, which are organic materials with biological importance, on which this research is based. The Chalcone derivatives were synthesised from the Claisen-Schmidt condensation reaction. Compounds I-III were synthesised by reacting p-aminoacetophenone with (4-methylbenzaldehyde, 2,3-dimethylbenzaldehyde, and cinnamaldehyde), respectively, in an ethanolic solution of KOH (30%). Chalcones were characterised by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR). The cytotoxicity effect was demonstrated in human melanoma cells A-375 and HdFn normal cells, and the MTT results showed that the cytotoxicity of Chalcone derivatives was greater than HdFn cells. The ability to use Chalcone derivatives as sunscreen showed a promising result. 

References

Teodora, C.; Claudiu, N. L.; “Anticancer activity of natural and synthetic chalcones”. Int. J. Mol. Sci., 22(21): 1–33, 2021.

Borge, V.V.; Patil, R.M.; “Comparative Study on Synthesis and Biological, Pharmaceutical Applications of Aromatic Substituted Chalcones” .Mini. Rev. Org. Chem., 20(3): 260–269, 2023.

luoise, S.P.; Sarah, L.P.; “Packing Preferences of Chalcones: A Model Conjugated Pharmaceutical Scaffold,” Cryst. Growth Des., 22(3): 1801–1816, 2022.

Hanan, A.; Zeki, A.N.A; Suha K.A; “Microwave Assisted Synthesis Characterization and Study of Some Novel Chalcones Compounds Derived from Mefenamic Acid”. J. Phys. Conf. Ser., 1294(5): 50–57, 2019.

Jusafina, H.; Cristina, W.; Alejandra, M.; Mark, J.; Carlos, H.P.; Stanislav, G.; Felicitas, D.T.P.; Natalia C.; Mariel, M.; “Chalcone derivatives: synthesis, in vitro and in vivo evaluation of their anti-anxiety, anti-depression and analgesic effects”. Heliyon, 5 (3): e01376, 2019.

Nayara, A.A.; Marilia, F.M.; Thacyana, T.C.; Telma,S.S.; Mariana, M.B.; Jessica, A.C.; Anelise, F.; Amanda, M.D.; Tiago, H.Z.; Victor, F.; Camila, R.F.; Maiara, P.; Sandra, S.M.; Doumit, C.N.; Rubia, C.; Waldiceu, A.V.; “Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO2 in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation”.Molecules, 28(2): 872, 2023.

Rui, P.; Artur, M.S.S.; Daniela, R.; Vera, L.M.S.; and Eduarda, F.; “Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects”. Eur. J. Med. Chem., 252: 115280, 2023.

Asima, H.; Sara, M.; Aamir, H.; Ejaz, A.; Ahsan, S.; Muhammad, I.A.; “Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent”. J. Comput. Aided. Mol. Des., 33(7): 677–688, 2019.

Qing, Z.; Xumemei, T.; Shuai, C.; Wenliang, Z.; Die, H.; Ran, Z.; Nan, S.; Yongjun, W.; Wei, X.; “Design, synthesis, and antifungal activity of novel chalcone derivatives containing a piperazine fragment,” J. Agric. Food Chem., 70(4): 1029–1036, 2022.

Bathelemy, N.; Kamdoum, C.; Armelle, T.M.; Musa, E.; Ingrid, S.; Victor, K.; Arif, D.; “Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives,” Bioorg. Med. Chem. Lett., 35: p. 127827, 2021.

Lucia, W.W.; Respati, T.S.; Wonkoo, L.; Jumina, J.; “Synthesis and evaluation of chalcone derivatives as novel sunscreen agent,” Molecules, 26(9): 2698, 2021.

Areej, M.H.; Ahmed, A.; Bashar, M.A.; Emad, Y.; “synthesis, characterization and study the antioxidant”. 1(5): 1–10, 2017.

Aluru, R.; Julakanti, S.R.; Gundala, S.; Chittluri, N.R.; Grigory, V.Z.; “Chalcone synthesis, properties and medicinal applications: a review”. Environ. Chem. Lett., 18(2): 433–458, 2020.

Zahraa, T.G.; Ahmed, A.A.; Nuhad, I.T.; “Synthesis and Identification of Phenyl Azochalcone & bis- azo – Chalcone Derivatives Derived from P-amino Acetophenone”. Kirkuk Univ. Journal-Scientific Stud., 13(2): 307–322, 2018.

Muhannad, A.M; “Preparing and Characterization of Some Heterocyclic Compounds with Studying Their Biological Activity”. J. Al-Nahrain Univ. Sci., 17(3): 9–14, 2014.

Caroline, W.; Jessika, N.C.; Anderson, B.C.A.; Andrea, R.C.; Indianara, C.O.; Boniek, G.V.; Caridad, N.P.; Christian, G.A.; “Activated carbons for chalcone production: Claisen-Schmidt condensation reaction”. Chem. Eng. J., 303: 604–610, 2016.

UMesh, P.G.; Ganapati, D.Y.; “Synergism of muicat-1 and microwave irradiation in claisen-schmidt condensation of benzaldehyde with acetophenone to chalcone,” Catal. Green Chem. Eng., 5(1), 2022.

Siva, S.R.L; Rajkumar, T.; Lakshmi, M.G.; Siva, R.R.Y.; “Synthesis, characterization, anti-oxidant and anti-inflammatory activity evaluation of chalcones and pyrazoline derivatives,” Orient. J. Chem, 31: 189–199, 2015.

Al-Ardhi; Ghadeer, H.A.; Adil, M.A.; Ali, M; “Estimation of vitamin d levels in women with carpal tunnel syndrome (With and without diabetes)”. Medico-Legal Updat. 20(3): 821–825, 2020.

Hadi, A.M.; Mohammed A.S.H.; Al-Khafaji, Z.A.; “The evaluation of γ 1 34.5-ICP34. 5 herpes simplex virus 1 immunogenic as anti-cancer therapy in vitro and in vivo”. Drug Invent. Today, 13(5): 2020.

Juyoung, K.; Youngae, K.; Hyejeong, Y.; Hyemin, P.; Sun, Y.K.; Kwang, G.L.; Sang, M.H.; Yunhi, C.; “Royal jelly enhances migration of human dermal fibroblasts and alters the levels of cholesterol and sphinganine in an in vitro wound healing model”. Nutr. Res. Pract., 4(5): 362–368, 2010.

Jean, M.S.; “The use of the MTT assay to study drug resistance in fresh tumour samples”. Chemosensitivity Test. Oncol., 13–25, 2003.

Hari, O.S.; Uzma, F.; Kumar, J.K.; Suaib, L.; Darokar, M.P.; Karuna, S.; Chandan, S.C.; Gupta, M.M.; Arvind, S.N.; “Synthesis of chalcone derivatives on steroidal framework and their anticancer activities”. Steroids, 72(13): 892–900, 2007.

Juan, C.S.; Richard, W.H.; Lucas, L.C.; Alfonso, B.C.; “Tetrazolium salts and formazan products in Cell Biology:viability assessment, fluroescence imaging, and labeling perspectives” Acta Histochem., 120,(April): 159–167, 2018.

Denis, G.; Nicole, T.; “Use of MTT colorimetric assay to measure cell activation”.J. Immunol. Methods, 94(1–2): 57–63, 1986.

Michael, V.B.; An, S.T.; “Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction”. Arch. Biochem. Biophys., 303(2); 474–482, 1993.

Downloads

Published

2024-12-15

How to Cite

(1)
Chalcone Derivatives: Synthesis and Cytotoxicity Assays. ANJS 2024, 27 (5), 10-18.

Most read articles by the same author(s)