Implementations of Plant Tissue Culture Technique in Producing Hybrid Plants: (Article Review)
DOI:
https://doi.org/10.22401/Keywords:
Plant tissue culture , hybrid plants , crop improvement , haploid plant , embryo rescue , synthetic seedsAbstract
Plant tissue culture methods have greatly improved the process of producing hybrid plants. These techniques, which include callus culture, somatic embryogenesis, Anther and Pollen Culture to Production of Haploid Plants, somatic hybridization by protoplast fusion and Fertilization conducted in a test tube, hairy roots provide reliable means of creating a large number of consistent, superior hybrids. With the use of micropropagation, hybrid plants can be quickly multiplied from a small tissue sample, guaranteeing excellent yield and genetic consistency. The Somatic embryogenesis process aids in the formation of embryos from somatic cells, making the manufacturing of hybrid plantlets scalable and effective. Embryo rescue gets around obstacles to hybridization by promoting the development of embryos from crossings that might not otherwise mature. In order to produce hybrids with desired features, callus culture aids in the regeneration of plants from undifferentiated cell masses. When combined, these methods improve hybrid plant production's efficiency, homogeneity, and viability while removing historical barriers and raising the bar for creative crop breeding and conservation. This abstract emphasizes the main techniques and advantages of using plant tissue culture to produce hybrid plants, highlighting the significance of this practice for contemporary horticulture and agriculture.
References
[1] Smith, R. H.; "Plant Tissue Culture: Techniques and Experiments"; Academic Press. Amsterdam, pp. 1-254, 2021.
[2] Singh, S. K.; and Sharma, R. K.; "Hybrid plant production using tissue culture techniques". J. Plant Breed. Crop Sci. 10(4): 1-12, 2018.
[3] Hussain, M. K.;and Davis, J. R.; "Advances in plant tissue culture for hybrid seed production". PCTOC, 120(1): 33-45, 2015.
[4] Méndez-Hernández, H.A.; Ledezma-Rodríguez, M.; Avilez-Montalvo, R.N.; Juárez-Gómez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-la-Peña, C.; and Loyola-Vargas ,V.M.; "Signaling Overview of Plant Somatic Embryogenesis". Front Plant Sci. 7(10):77, 2019.
[5] Zhang, Y.; and Wang, Y.; "Recent Advances in Plant Tissue Culture Techniques: Applications in Crop Improvement". Front. Plant Sci. 12: 12-34, 2021.
[6] Acquaah, G.; "Principles of Plant Genetics and Breeding". 2nd Edition, Wiley-Blackwell, John Wiley & Sons, Chichester, 17 -740, 2022.
[7] Singh, S. S. P. P.; "Plant Breeding: Principles and Prospects". Science Publishers, UK, 2020.
[8] Phillips, R. L.; and Kumar, G. K.; "Plant Cell and Tissue Culture - A Tool in Biotechnology". Springer-Verlag, Berlin Heidelberg, pp.1-341,2014.
[9] Murashige, T.;and Skoog, F.; "A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures". Physiol. Plant., 15(3): 473-497, 1962.
[10] Stewart Jr., C. N.; "Plant Biotechnology and Genetics: Principles, Techniques, and Applications". John Wiley & Sons, Inc., Hoboken, New Jersey, pp.1-30,2013.
[11] Miller, A. L. K.; and Smith, T. J.; "Haploid plant production in crop plants: A review". J. Plant Res., 130(4): 665-683, 2017.
[12] Abdollahi, M.R.; Eshaghi, Z.C.; and Seguí-Simarro, J.M.; "Haploid Plant Production in Borage (Borago officinalis L.) by Anther Culture. Methods". Mol Biol., 2289:237-248, 2021.
[13] Khan, M. A. ;and Lee, L. J.; "Anther culture: Techniques and applications". J Plant Biotechnol, 30(2): 101-115, 2018.
[14] Kumar, S.;and Singh, A.; "Anther culture: A tool for haploid production in crop improvement". J PLANT BIOCHEM BIOT, 27(1): 1-12, 2018.
[15] Zhou, Q.; and Zhang, Y.; "CRISPR/Cas9 technology in plant breeding: A review". Front. Plant Sci., 11: 1-12, 2020.
[16] Zhang, D.; Hu, Y.;"Microspore culture in Brassica: A review." PCTOC, 98(1): 1-12, 2009.
[17] González, M. A.;and Gutiérrez, A.; "Somatic embryogenesis and plant regeneration from leaf explants of the haploid plant of the banana." Plant Cell Rep., 24(5): 307-313, 2005.
[18] Zargar, M.; Zavarykina, T.; Voronov, S.; Pronina, I.; and Bayat, M.; "The Recent Development in Technologies for Attaining Doubled Haploid Plants In Vivo". Agriculture, 12:1595,2022.
[19] Conner, J.A.; Mookkan, M.; Huo, H.; Chae, K.; and Ozias-Akins, P. A.; "Parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant". Proc Natl Acad Sci U S A. 8;112(36):11205-10,2015.
[20] Zhang, Y.; and Zhang, Q.; "Advances in anther culture and its application in crop improvement". PCTOC, 142(1): 1-15, 2020.
[21] Kasha, K. J.; and Ng, K.; "Haploids in plant breeding: A review". Euphytica, 204(1): 1-12, 2015.
[22] Liu, H.; and Wang, Y.; "Challenges and prospects of haploid induction in crop improvement". Plant Cell Rep., 40(4): 617-628, 2021.
[23] Wang, L. T. ; and Chen, R. Y.; "Haploid production in plants: Methods and applications". Plant Biotechnol. J., 16(6): 1223-1237, 2018.
[24] Komal, P. K.; and Sarosha, K.; "Androgenesis in Hot Pepper by Chilli Anther Culture" IJFMR 6(3):1-11, 2024.
[25] Tanaka, T. S.; and Zhou, H. M; "Pollen culture for haploid plant production: Methods and applications". Plant Cell Rep., 38(11): 1235-1248, 2019.
[26] Zhao, Y. ; Wang, Y.; "Pollen culture: Techniques and applications in plant breeding:. J. Plant Breed. Crop Sci., 13(2): 45-56, 2021.
[27] Heslop-Harrison, J. ; and Heslop-Harrison, Y. ; "Pollen culture: A tool for haploid plant production". Plant Rep., 31(1): 1-12, 2018.
[28] Bhatia, R. ; and Sharma, S.; "In vitro culture of ovaries and ovules: A review". PCTOC, 138(1): 1-14, 2019.
[29] Kumar, S. ; and Gupta, S.; "Advancements in ovule culture for haploid plant production." J Plant Biotechnol, 47(3): 215-225, 2020.
[30] Bhat, J. A. ; and Bhat, R. A.; "Ovary and ovule culture: Techniques and applications in plant breeding". Plant Breed. Rev., 45(1): 1-30, 2022.
[31] Debergh, M. R. ; and Zimmerman, R. H. (Eds.); "In Vitro Fertilization in Plants: Protocols and Applications". Springer, 2020.
[32] Reddy, J. K. ;and Singh, S. P.; "In vitro fertilization and embryo culture for plant improvement". J Plant Bio.Biotechnol, 12(1): 15-25, 2019.
[33] Wang, R. M. ; and Zhao, L. Y.; "Plant in vitro fertilization techniques: Advances and applications". Plant Cell Rep., 37(7): 931-945, 2018.
[34] Jansen, L. E.; and Kaur, T. K.;" Controlled pollination and in vitro fertilization techniques in plant breeding". Plant Breed. Rev., 45(4): 302-320, 2021.
[35] Kumar, A.; and Singh, R.; "Endosperm Culture: A Tool for Plant Breeding and Biotechnology." J Plant Biotechnol., 46(2): 123-135, 2019.
[36] Mishra, A. ; and Gupta, S.; "In Vitro Culture of Endosperm: Techniques and Applications". BAPTC&B, 31(1): 1-15, 2021.
[37] Baker, C.; "Exploring the Role of Endosperm in Plant Development". Annu. Rev. Plant Biol., 74: 123-145, 2023.
[38] Larkin, P. J. ;and Scowcroft, W. R.; "Somaclonal variation—A novel source of variability from cell cultures for plant improvement". Theor. Appl. Genet., 60(4): 197-214,1981.
[39] Kornyeyev, D. ; and Tsvetkov, I.; "Somaclonal variation in plant tissue culture." PCTOC, 117(3): 331-346, 2014.
[40] Sairam, R. K. ;and Tyagi, A.; "Somaclonal variation: A tool for improving crops". Curr. Sci., 87(2), 146-157, 2004.
[41] Vasil, I. K. ; and Vasil, V.; "Synthetic seeds: a new approach for plant propagation". Plant Cell Reports, 19(1): 1-6, 2000.
[42] Bapat, S. S. ; and Rao, A. R;. "Advances in synthetic seed technology: challenges and opportunities". CRC Crit. Rev. Plant Sci., 20(5): 451-468, 2001.
[43] Hossain, M. S. ; and Hoque, S. M. S.; "Synthetic seeds: a review of the state of the art and future perspectives". Biotechnol. Adv., 28(4): 459-470,2010.
[44] Keller, M. G. ;and Smith, T. P.; "Biopolymer encapsulation of plant embryos: a key to synthetic seed development". J. Exp. Bot., 58(10): 2591-2603, 2007.
[45] McDonald, J. D. ; and Allen, K. P.; "Application of synthetic seeds in forestry and horticulture". Forestry Sci., 58(2): 162-170, 2012.
[46] Kundu, B. B. ; Das, S.; Dayaramani, R. ; Das, S.; Paul, D. ; and Debnath, B. A.; "Review on in-vitroTechniques for Increase the Production of Secondary Metabolites in Plants". Tuijin Jishu/J. Propuls. Technol. 45(2): 109-129 2024.
[47] Chattopadhyay, S.; Farkya, S; Srivastava, A. K.; and Bisaria, V. S.; "Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures". BIOTECHNOL BIOPROC E, 7: 138-149,2002.
[48] Mutasher, H.H. ; and Attiya, H.J.; "Induced callus from seedlings of Peganum harmala L. and studying harmine compound concentration in vitro and in vivo by GC analysis". IJS, 60(7): 1442-1451, 2019.
[49] Jasim, H. Y. ; and Habeeb, H.M.; "Effect of biotic and abiotic elicitors on Salvadora persica callus in vitro". Baghdad Sci. J., 21(9): 2829-2829, 2024.
[50] Abed, A. S.; and Jassim, E. H.; "Enhancement of the Production of Tropane Alkaloids in the Hyoscyamus Niger L. Callus Using Different Biotic Elicitors". IJS, 65(9): 4993-5004, 2024.
[51] Alwash, B. M. J.; Salman Z. O. ;and Hamad, S. F.; "Qualitative and Quantitative Evaluation of Active Constituents in Callus of Lavandula angustifolia plant in Vitro". Baghdad Sci. J., 17(2(SI): 0591, 2020.
[52] Salih, M.I.,; and Dabagh, F. M. K. A.l; "Comparative analysis of some phenolic acids of in vitro and in vivo grown plant leaves of salvia hispanica". Iraqi J. Agric. Sci., 52 (1): 189-195, 2021.
[53] Hasan, N.; Laskar, R. A.;Farooqui, S. A.; Naaz, N.; Sharma, N.; Budakoti, M. ;and Bhinda, M. S.; "Genetic Improvement of Medicinal and Aromatic Plant Species". Breeding Techniques, Conservative Practices and Future Prospects'. Crop Design, 3(4):100080, 2024.
[54] Baskaran, K.; Srinivas, K.V.N.S.;and Kulkarni R.N.; "Two induced macro-mutants of periwinkle with enhanced contents of leaf and root alkaloids and their inheritance". Ind. Crop. Prod., 43: 701-703, 2013.
[55] Agrawal, L.;and Kumar,M.; "Improvement in ornamental, medicinal, and aromatic plants through induced mutation". J. Appl. Biol. Biotechnol., 9 (4): 162-169, 2021.
[56] Davey, M.; Anthony, P.; Patel, D.; and Power, J.; "Plant Protoplasts: Isolation, Culture and Plant Regeneration". In Plant cell culture: essential methods; Davey, M. and Anthony, P.; John Wiley & Sons, New York, 153–173, 2010.
[57] Darwin, S. C.; "Taxonomy of tomatoes in the Galapagos Island: native and introduced species of Solanum Lycopersicon (Solanaceae)". Syst. Biodivers., 1: 48-53, 2003.
[58] Jogdand, S. N., "Protoplast technology, Gene Biotechnology".3rd ed.; Himalaya Publishing house. Mumbai, Pp: 171- 186, 2001.
[59] Withers, L. A.; and Cocking, E. C.; "The isolation and culture of protoplasts". J. Cell. Sci., 11: 59-75,1972.
[60] Jansky, S.; Austin-Phillips, S.; and McCarthy, C.; "A general method for the high- yielding isolation of mesophyll protoplasts from deciduous tree species". Hort Science, 7: 914-922, 1999.
[61] Gosal, S. S.; Wani, S. H.; and Kang, M. S.; "Biotechnology and Crop Improvement". J. Crop Improv, 24(2): 153–217,2010.
[62] Thilip, C.; Soundar Raju, C.; Varutharaju, K.; Aslam,A. ;and Shajahan,A..; "Improved Agrobacterium rhizogenes-mediated hairy root culture system of Withania somnifera (L.) Dunal using sonication and heat treatment". Biotech 5: 949–956, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rasha K. Mohammed, Emad Hamdi Jassim, Maha I. Salih

This work is licensed under a Creative Commons Attribution 4.0 International License.