Study of Octupole States in 150Sm and 158Gd Nuclei Within Sdf-Interacting Boson Model (Sdf-IBM-1) Framework
DOI:
https://doi.org/10.22401/Keywords:
IBM-1, octupole states, energy levels, B(E2), (E1)Abstract
The collective octupole states found in 150,152Sm and 148,150Gd isotopes are explained inside the structure of the sdf-interacting boson model-1 (sdf-IBM1). The specifications of the IBM Hamiltonian are fitted with the experimental energy levels. By diagonalizing the IBM Hamiltonian, For positive as well as negative parity states, excitation energies and electric transition rates can be obtained. We then compare these resulting spectroscopic features with the currently available experimental data. Furthermore, the framework of excited 0+ states is investigated along with its relationship to double octupole phonons. The sdf-IBM-1 model demonstrates a high level of accuracy in portraying the observed trends in low-energy quadrupole states.
References
[1] Butler, P. A.; Nazarewicz, W.; "Intrinsic reflection asymmetry in atomic nuclei". Rev. Mod. Phys. 68: 349-356, 1996.
[2] Butler, P. A.; Nazarewicz, W.; “Intrinsic dipole moments in reflection-asymmetric nuclei". Nucl. Phys. A(533): 249-260, 1991.
[3] Gaffney, L. P.; Butler, P. A.; Scheck, M.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; B¨onig, S.; et al.; “Nature (London) "Studies of pear-shaped nuclei using accelerated radioactive beams". 497: 199-207, 2013.
[4] Urban, W.; Lieder, R.; Gast, W.; Hebbinghaus, G.; Krmer-Flecken, A.; Blume, K.; Hbel, H.; "Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay". Phys. Lett. B185: 331-342, 1987.
[5] Urban, W.; Lieder, R.; Bacelar, J.; Singh, P.; Alber, D.; Balabanski, D.; Gast, W.; Grawe, H.; Hebbinghaus, G.; Jongman, J.; et al.; " Study of excited levels in 147Pm". Phys. Lett. B258: 293-301, 1991.
[6] Garrett, P. E.; Kulp, W. D.; Wood, J. L.; Bandyopadhyay, D.; Choudry, S.; Dashdorj, D.; Lesher, S. R.; McEllistrem, M. T.; Mynk, M.; Orce, J. N.; et al.; “New Features of Shape Coexistence in 152Sm". Phys. Rev. Lett. 103: 63501-63510, 2009.
[7] Casten, R. F.; Zamfir, N. V.; “Empirical Realization of a Critical Point Description in Atomic Nuclei". Phys. Rev. Lett. 87: 52503-52517, 2001.
[8] Iachello, F.; “Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition". Phys. Rev. Lett. 87: 52502-52522, 2001.
[9] Lesher, S. R.; Aprahamian, A.; Trache, L.; OrosPeusquens, A.; Deyliz, S.; Gollwitzer, A.; Hertenberger, R.; Valnion, B. D.; Graw, G.; "Structure of Sm nuclei". Phys. Rev. C 66: 51305-51320, 2002.
[10] Zamfir, N. V.; Zhang, J.-y.; Casten, R. F.; "The evolution of nuclear structure: the NPNn scheme and related correlations". Phys. Rev. C 66: 7101-7122, 2022.
[11] Marcos, S.; Flocard, H.; Heenen, P. H.; "Influence of left-right asymmetry degrees of freedom in self-consistent calculations of 20Ne”. Nucl. Phys. A 410: 125-133, 1983.
[12] Robledo, L. M.; Butler, P. A.; "Quadrupole-octupole coupling in the light actinides". Phys. Rev. C101: 4120-4128, 2023.
[13] Scholten, O.; Iachello, F.; Arima, A.; “Interacting boson model of collective nuclear states III. The transition from SU(5) to SU(3)”. Ann. Phys. (NY)115: 325-333, 1978.
[14] Cottle, P. D.; Zamfir, N. V.; "Octupole states in deformed actinide nuclei with the interacting boson approximation", Phys. Rev. C 58: 1500-1531, 2023.
[15] Bizzeti, P. G.; Bizzeti-Sona, A. M.; "Description of nuclear octupole and quadrupole deformation close to the axial symmetry and phase transitions in the octupole mode". Phys. Rev. C 70: 64319-64328, 2022.
[16] Bizzeti, P. G.; Bizzeti-Sona, A. M.; “Description of nuclear octupole and quadrupole deformation close to the axial symmetry: Critical-point behavior of 224Ra and 224Th“. Phys. Rev. C 88: 11305-11320, 2019.
[17] Iachello, F.; Jackson, A. D.; "A phenomenological approach to α-clustering in heavy nuclei" Phys. Lett. B 108: 151-155, 1982.
[18] Shneidman, T. M.; Adamian, G.G.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; “Cluster interpretation of properties of alternating parity bands in heavy nuclei". Phys. Lett. B 526: 322-330, 2002.
[19] Zhang, W. ; Li, Z. P.; Zhang, S. Q.; Meng, J.; “Octupole degree of freedom for the critical-point candidate nucleus 152Sm in a reflection-asymmetric relativistic mean-field approach”. Phys. Rev. C 81: 34302-34315, 2010.
[20] Lu, B.-N.; Zhao, E.-G. ; Zhou, S.-G.; "Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus". Phys. Rev. C 85: 11301-11310, 2012.
[21] Lu, B.-N.; Zhao, J.; Zhao, E.-G.; Zhou, S.-G.; "Multidimensionally-constrained relativistic mean-field models and potential-energy surfaces of actinide nuclei". Phys. Rev. C 89: 14323-14333, 2014.
[22] Nomura, K.; Otsuka, T.; Shimizu, N.; Guo, L.; “Interacting boson model with energy density functionals”. Phys. Rev. C 83: 41302-41312, 2011.
[23] Nomura, K.; Rodrıguez-Guzm´an, R.; Robledo, L. M.; Shimizu, N.; “Description of neutron-rich odd-mass krypton isotopes within the interacting boson-fermion model based on the Gogny energy density functional”. Phys. Rev. C 86: 34322-34335, 2012.
[24] Nomura, K. ; Vretenar, D. ; Lu, B.-N.; "Microscopic analysis of the octupole phase transition in Th isotopes". Phys. Rev. C 88: 21303-2315, 2013.
[25] Nomura, K.; "Signatures of octupole shape phase transitions in radioactive nuclei". J.Phys. Conf. Ser. 1643: 1-20, 2020.
[26] Nomura, K.; Vretenar, D.; Niksic, T.; Lu, B.-N.; "Signatures of octupole shape phase transitions in radioactive nuclei". Phys. Rev. C 89: 24312-24319, 2014.
[27] Otsuka, T.; Arima, A.; Iachello, F.; "Shell model description of interacting bosons". Nucl. Phys. A 309; 1-21, 1978.
[28] Sugita, M.; Otsuka, T.; von Brentano, P.; “E1 transitions in rare earth nuclei and the SPDF boson model”. Phys. Lett. B 389: 642-655, 1996.
[29] Nomura, K.; Vretenar, D.; Niksic, T. ; Lu, B.-N.; "Nuclear shape phase transitions". Phys. Rev. C 89: 24312-24325, 2017.
[30] Bizzeti, P. G.; Bizzeti-Sona, A. M.; “Description of nuclear octupole and quadrupole deformation close to the axial symmetry and phase transitions in the octupole mode”. Phys. Rev. C 81: 34320-34329, 2020.
[31] Engel, J.; Iachello, F.; “Interacting boson model of collective octupole states: (I). The rotational limit”. Nucl. Phys. A 472: 61-70, 1987.
[32] Nomura, K.; Shimizu, N.; Otsuka, T.; "Robust regularity in soft nuclei and its microscopic realization". Phys. Rev. Lett. 101: 142501-142513, 2008.
[33] Basu, S. K.; Sonzogni, A. A.; Nucl. Data Sheets 114: 469-478, 2013.
[34] Helmer, R. G.; Nucl. Data Sheets 101: 337-346, 2004.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tuqa A. Hashim, Saad N. Abood

This work is licensed under a Creative Commons Attribution 4.0 International License.