Chemistry of Triazene-Liquid Crystals: A Review

Authors

  • Zahraa M. Abdulhameed Department of Chemistry, College of science, Al-Nahrain University, Jadiriya, Baghdad, Iraq
  • Dr. Nasreen R. Jber Department of Chemistry, College of science, Al-Nahrain University, Jadiriya, Baghdad, Iraq

DOI:

https://doi.org/10.22401/

Keywords:

Star-shaped Liquid crystals , Heterocyclic Triazene

Abstract

This review focuses on star-shaped liquid crystals that possess a highly organized and elongated molecular design, which enables them to exhibit favorable ferroelectric and ionic conductivity functions due to the electron delocalization resulting from π-π stacking conjugation and the electrostatic attraction of ions. The motivation for creating an ionic liquid crystal with a nematic phase is due to its potential engineering uses. The nematic phase is recognized for having the highest fluidity among all liquid crystalline phases. This makes it possible to position the nematic phase by applying an external electric or magnetic field widely utilized in electro-optical electronics. The chemistry of liquid crystals, specifically the state chemistry of matter, involves compounds of chemicals containing features of liquid crystals. Biological sensors made from liquid crystal materials enable monitoring biological phenomena without labels. Liquid crystalline polymers are employed to replicate color-generating structures. Liquid crystal compounds are commonly known as a distinct state; however, their impact on contemporary procedures has been significant. Derived from cholesterol, liquid crystals are molecules often studied and handled by biologists and biomedical engineers.

References

[1] Ingo, D.; Shakhawan, Z.; ”Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials”. Nanomaterials, 7: 305, 2017.

[2] Blanke, M.; Leona, P.; Isabelle, C.; Francesco, D.; Marcus, H.; Jochen, S.; Ronald, Y. D.; Carl, A. M.; Michael, G.; “Manipulation of Liquid Crystalline Properties by Dynamic Covalent Chemistry─ En Route to Adaptive Materials”. ACS Appl. Mater. Interfaces, 14(14): 16755-16763, 2022.

[3] Al-Mulla A.; "A review: biological importance of heterocyclic compounds". Der Pharma Chemica, 9(13): 141-7, 2017.

[4] Lai, L.L.; Lee, C. H.; Wang, L. Y.; Cheng, K. L.; Hsu, H. F.; “Star-shaped mesogens of triazine-based dendrons and dendrimers as unconventional columnar liquid crystals”. J. Org. Chem., 73 (2): 485-490, 2008.

[5] Nadia, K.; Alyna, L.; Max, E.; Marco, A.; Christian, H.; Sebastian, M.; Anna, Z.; Andreas, T.; Frank, G.; Sabine, L.; “Current Topics in Ionic Liquid Crystals”. Chem. Plus. Chem., 87: 1-38, 2022.

[6] Riccobono, A.; Lazzara, G.; Rogers, S. E.; Pibiri, I.; Pace,A.; Slattery, J. M.; Bruce, D. W.; “Shaping 1,2,4-Triazolium Fluorinated Ionic Liquid Crystals”. J. Mol. Liq., 321: 114758, 2021.

[7] Alshubramy, M.; Alamry, K.; Hussein, M.; "An overview of the synthetic strategies of C 3-symmetric polymeric materials containing benzene and triazine cores and their biomedical applications". RSC adva. j. 13(21): 14317, 2023.

[8] Guo, L.; Wang, M.; Sun, Y.; Zhang, X.; Lin, B. P.; "Luminescent liquid crystals bearing an aggregation-induced emission active tetraphenylthiophene fluorophore". J. Mate. Chem., 7(16): 4828-4837, 2019.‏

[9] Hadeer, M. D., Mostafa, E. S.; Ismail, A. A.; Ahmed, H. M.; “Synthesis of novel star-shaped molecules based ona 1,3,5-triazine core linked to different heterocyclic systems as novel hybrid molecules”. RSC Adv., 10: 44066, 2020.

[10] Zeng, C.; Hu, P.; Wang, B.; Fang, W.; Zhao, K.; Donnio, B.; Bertrand, D.; “Star-shaped Triphenylene-triazine Multi-stimuli Responsive Discotic Liquid Crystals: Synthesis, Properties and Applications”. Acta Chimica Sinica., 81: 469-479, 2023.

[11] Zhang. Y.; Hong, X.; Cao, X.; Huang, X.; Hu, B.; Ding, S.; Lin, H.; "Functional porous organic polymers with conjugated triaryl triazine as the core for superfast adsorption removal of organic dyes". ACS Appl. Mate. Inter. 13(5): 6359-66, 2021.

[12] Ritobrata, D.; Sushil, S.; Sanchita, S.;Santanu, K.; “Discs to a ‘Bright’ Future: Exploring Discotic Liquid Crystals in Organic Light Emitting Diodes in the Era of New‐Age Smart Materials”. Chem. Rec., 22: 1 – 25, 2022.

[13] Debashis, B.; Geethanjali, A.; Subba, R.; Mintu, P.; “A Novel Class of Functionally Tuneable Star-Shaped Molecules for Interaction with Multiple Proteins”. Organics,4(2): 219-231, 2023.

[14] Bao-Yan, Z.; Dan-Shu, Y.; Fan-Bao, M.; Yuan-Hao, L.; “Structure and properties of novel three-armed star-shaped liquid crystals”. J. Mol. Struc., 741: 135–140, 2005.

[15] Aljamali, N.; "Survey on methods of preparation and cyclization of heterocycles". International j. Chem. Mole. Engi.g, 6(2): 19-36, 2020.

[16] Poppe, M.; Chen, C.; Poppe, S.; Liu, F.; Tschierske C.; "A periodic dodecagonal supertiling by self-assembly of star-shaped molecules in the liquid crystalline state". Commu. Chem., 3(1): 70, 2020.

[17] Seifer G.; "Cyanuric acid and cyanurates". Russ. j. Coor. Chem. 28(1): 301, 2022.

[18] Maliszewski, D.; Drozdowska, D.; "Recent advances in the biological activity of s-triazine core compounds". Pharm. J., 15(2): 221, 2022.

[19] Shemchuk, O.; Grepioni, F.; "Braga, D.; Mechanochemical Preparation and Solid-State Characterization of 1: 1 and 2: 1 Ionic Cocrystals of Cyanuric Acid with Alkali Halides". Crys. Grow. Desi., 20(11), 7230-7237., 2020.

[20] Wei, Y.; Yang, Y.; Chen, B.; Yang, B.; "Green detection of trace cyanuric acid and free chlorine together via ion chromatography". Chemo. j., 292(1): 133378, 2022.

[21] Fang, Y.; Hillman, A.; Fox, J.; "Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1, 2, 4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes". Topi. Curr. Chem., 382(2): 1-63,‏ 2024.

[22] Chongyang, Z.; Ping H.; Biqin, W.; Wenyan, F.; Keqing, Z.; "Star-shaped triphenylene-triazine multi-stimuli responsive discotic liquid crystals: synthesis, properties and applications". Acta Chimi. Sin. 81(5): 469, 2023.

[23] Verma, C.; Thakur, A.; Ganjoo, R.; Sharma, S.; Assad, H.; "Coordination bonding and corrosion inhibition potential of nitrogen-rich heterocycles: Azoles and triazines as specific examples". Coor. Chem. Revi., 488: 215177,‏ 2023.

[24] Cook, A.; Huetter, R.; "s-Triazines as nitrogen sources for bacteria". j. Agri. Chem. 29(6): 1135, 1981.

[25] Zhang, F.; Chen, Z.; Tang, X.; Ma, J.; "Triazines: syntheses and inverse electron-demand Diels–Alder reactions". Chem. Revi. 121(23): 1455, 2021.

[26] Wang, Z.; Zou, X.; Lv, M.; Zhang, B.; "Covalent triazine frameworks (CTFs) drive innovative advances in rechargeable metal-ion batteries: a review". Ener. Mate. J., 4(6), 134.‏ 2024.

[27] Talbert, R.; Fletchall, O.; "The adsorption of some s-triazines in soils". Weeds. 13(1): 46-52, 2020.

[28] Wojtowicz, JA. "Cyanuric acid technology". j. Swim. Spa Indu. 4(2): 9-16, 2021.

[29] Pickens S.; "Cyanuric acid requirement versus free chlorine in Pool water". J. Swi. Spa Ind. 6(1), 6-13, 2023.

[30] Guo, F.; McAuliffe, J.; Bongiorni, C.; Latone, J.; Pepsin, M.; Chow, M.; "A procedure for removal of cyanuric acid in swimming pools using a cell-free thermostable cyanuric acid hydrolase". j. Indu. Micr. Biotechn. 49(2): 84, 2022.

[31] Kumar, R.; Kumar, N.; Roy, R.; Singh, A.; "Triazines—A comprehensive review of their synthesis and diverse biological importance". Curr. Med. Drug Res. 1(1): 173, 2017.

[32] Case, F.; "The preparation of hydrazidines and as-triazines related to substituted 2-cyanopyridines1". j. Orga. Chem. 30(3): 931, 1965.

[33] Ali Z.; Hussein and Nasreen R.; "Supramolecular discotic mesophases containing melamine-core induced by hydrogen-bonding: synthesis and characterization". Eura Cheml Comm. j. 4(1), 419, 2022.

[34] Ali Z.; Hussein and Nasreen R.; " A Review on Synthesis, Properties, of Liquid Crystal Dendrimers". ANJS, 24 (4): 15-25, 2021.

[35] Woltman, S. J.; Jay, G. D.; Crawford, G. P.; “Liquid-crystal materials find a new order in biomedical applications”. Natu. mate., 6(12): 929-38, 2007.

[36] Mulder, D. J.; Schenning, A. P.; Bastiaansen, C. W.; “Chiral-nematic liquid crystals as one dimensionalphotonic materials in optical sensors”. J. Mater. Chem. C, 2: 6695, 2014.

[37] Miskovic V.; Malafronte E.; Minetti C.; Machrafi H.; Varon C.; Iorio C.; "Thermotropic liquid crystals for temperature mapping". Fron. Bioengin. Biotechn. 10 (3), 806362, 2021.

[38] Draude, A.; Dierking I.; "Thermotropic liquid crystals with low-dimensional carbon allotropes". Nano Express. 2(1): 012002, 2021.

[39] Alizadeh, S.; Ebrahimzadeh, M.; "Pyrazolotriazines: Biological activities, synthetic strategies and recent developments". Euro. J. Medi. Chem., 22(3), 113537.‏ 2021.

[40] Tayler S. H.; Bruce E.; Kirkpatrick, K. S.; Anseth, Ch. N.; Bowman, T. J.; “Surface-Enforced Alignment of Reprogrammable Liquid Crystalline Elastomers” . Adva. Sci., 9 (29): 2204003, 2022.

[41] She, W.; Hai, W.; Chanxiao, L.; Chijie, Z.; Rong, Z.; “Improving thermal stability of LiNbO3 based electro‐optical electric field sensor by depositing a TiO2 film”. High Voltage, 7(5): 840–846, 2022.

[42] Zhuang, C.; “Flexible noncontact approach for fault location of transmission lines using electro‐optic field sensors”. IEEE Trans. Electromagn C. 63(6): 2151–2158, 2021.

[43] Moghaddas, F.; Poursamad, J. B.; Sahrai, M.; “Enhancement in electrical response of liquid crystals with carbon nanotubes doping”. Liq. Crys., 51(2): 233-242, 2024.

Downloads

Published

2025-03-15

Issue

Section

Articles

How to Cite

(1)
Chemistry of Triazene-Liquid Crystals: A Review. ANJS 2025, 28 (1), 56-71. https://doi.org/10.22401/.