An in Silico Molecular Docking and in Vitro Investigation of the Bioactivity of Amoxicillin Derivatives Against Staphylococcus Aureus and Escherichia Coli
DOI:
https://doi.org/10.22401/Keywords:
Amoxicillin , Bioactivity , Staphylococcus aureus, Escherichia coli , Molecular dockingAbstract
Antimicrobial resistance happens when germs like bacteria and fungi develop the ability to defeat the drugs designed to kill them. We developed an amoxicillin drug via modification with different aldehyde compounds. Evaluation of the bioactivity of synthesized derivatives against Staphylococcus aureus and Escherichia coli. The derivatives A1 – A4 exhibited more excellent biological activity than the parent drug, and derivative A2 had the most significant biological activity by higher zone inhibition. Derivative 2 tested as against prostate cancer PC3, and the IC50 rates of derivative A2 give (5.75– 100) at 24 hours and (2.45 – 100) at 48 hours. The ligand showed multiple interactions with the enzyme's active site amino acids with residues (ASP49, HIS116, and PHE104), where a hydrophobic interaction was observed with residues (ALA53 and ILE78) and other amino acids in the target's pocket forms.
References
[1] Imran, M.; Ahmed, S.; Abdullah, A. Z.; Hakami, J.; Chaudhary, A. A.; "Nanostructured material‐based optical and electrochemical detection of amoxicillin antibiotic". Lum. j., 38 (7), 1064-1086, 2023.
[2] Lima, L. M.; da Silva, B. N. M.; Barbosa, G.; Barreiro, E. J.; "β-lactam antibiotics: An overview from a medicinal chemistry perspective". Eur. j. med. chem., 208, 112829, 2020.
[3] Huttner, A.; Bielicki, J.; Clements, M. N.; Frimodt-Møller, N.; "Oral amoxicillin and amoxicillin–clavulanic acid: properties, indications and usage". Clin. Micr. Infe. j., 26 (7), 871-879, 2020.
[4] Ali, D. N.; Hussein, K.A.,; Faeq, M.; Imran, Y.; Ahmed, W. A.; Molecular Docking, Synthesis of New Schiff base Derivatives, and Study of their Biological Activity, Al-Nahrain J. Sci. 27(5): 25-35, 2024.
[5] Elshamy, A. A.; Aboshanab, K. M.; "A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options". Futu. sci. j., 6 (3), FSO438, 2020.
[6] Lagadinou, M.; Onisor, M. O.; Rigas, A.; Musetescu, D.-V.; Gkentzi, D.; Assimakopoulos, S. F.; "Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance". Anti. j., 9 (3), 107, 2020.
[7] Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L.; "Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans". Biosaf. Heal., 3 (1), 32-38, 2021.
[8] Morrison, L.; Zembower, T. R.; "Antimicrobial resistance". Gas. Endo. Cli., 30 (4), 619-635, 2020.
[9] Tang, K. W. K.; Millar, B. C.; Moore, J. E.; "Antimicrobial resistance (AMR)". Br. j. Biomed. Sci., 80, 11387, 2023.
[10] Ahmed, S. K.; Hussein, S.; Qurbani, K.; Ibrahim, R. H.; Fareeq, A.; "Antimicrobial resistance: impacts, challenges, and future prospects". j. Med., Surgery, and Public Health, 2 (12), 100081, 2024.
[11] Mighani, H.; "Schiff Base polymers: synthesis and characterization". j. Poly. Rese., 27 (21), 1-18, 2020
[12] Ali, Z. M.; Al-Shemary, R. K. R.; "Synthesis, description and bacteriological valuation of metal complexes including an amoxicillin− based Schiff base". chem. med. j., 45 (8), 2414, 2023.
[13] Lemnaru, G.-M.; Truşcă, R. D.; Ilie, C.-I.; Țiplea, R. E.; Ficai, D.; "Antibacterial activity of bacterial cellulose loaded with bacitracin and amoxicillin: In vitro studies". Mol. j., 25 (18), 4069, 2020.
[14] Sulaiman, A. T.; Sarsam, S. W. Synthesis, characterization and antibacterial activity evaluation of new indole-based derivatives". Iran. j. Pharm. Sci., 29 (1), 207-215, 2015.
[15] Hassan, S. S.; Hassan, N. M.; "Biological evaluation and theoretical study of bi-dentate ligand for amoxicillin derivative with some metal ions". Baghdad. Sci. j., 18 (4), 1269-1269, 2021.
[16] Sathya, T.; Mehta, V.; Senthil, D.; Navaneethakrishnan, K.; "Cytotoxicity evaluation of CELNORM, a nutritional health supplement, on MCF7 breast cancer cells". India. J. Sci. Tech., 13 (6), 3070-3075, 2020.
[17] Hathout, R. M.; Abdelhamid, S. G.; El-Housseiny, G. S.; "Comparing cefotaxime and ceftriaxone in combating meningitis through nose-to-brain delivery using bio/chemoinformatics tools". Sci. Rep. j., 10 (1), 21250, 2020.
[18] Stanzione, F.; Giangreco, I.; "Use of molecular docking computational tools in drug discovery". Prog. Med. Chem., 60 (41), 273-343, 2021.
[19] Philip, J.; Uzairu, A.; Shallangwa, G.; "Virtual screening of novel pyridine derivatives as effective inhibitors of DNA gyrase (GyrA) of salmonella typhi". Curr. Chem. Lett. j., 12 (1), 1-16, 2023.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Marwa Mohssen Khudair

This work is licensed under a Creative Commons Attribution 4.0 International License.