Chemical Structure Modification of Polystyrene (PS): A Short Review

Authors

  • Suror A. Mahdi Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
  • Rasha Saad Jwad Department of Medical Physics, College of Science, Al-Nahrain University, P. O. Box: 64021, Baghdad, Iraq
  • Amer Adnan Hasan Department of Applied Pathological Analysis, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Mohamed B. Khudhair Department of Religious Education and Islamic Studies, Sunni Endowment Office
  • Sohad A. Alshareef Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
  • Sanjay Ghosh Senior Process Technologist -R&D, Grasim Industries Limited |Pulp & Fibre Business, India
  • Mohammed H. Al-Mashhadani Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq

DOI:

https://doi.org/10.22401/09v5rg75

Keywords:

Polystyrene, Chemical modification, Copolymerization; Grafting, Functionalization, Properties enhancement

Abstract

Polystyrene (PS) is a polymer that finds extensive usage in several applications such as electronics, packaging, and healthcare. Its chemical structure may be changed to alter its features and capabilities. This leads to improve the performance of the material to be suitable for specific applications. We discuss the recent PS chemical structure modification in this short review. The review focuses on methods of modification such as functionalization, grafting, and copolymerization. It also investigates the impact of various modification options such as PS's mechanical strength, photo-stability, and surface features. It also looks at the wide range of approaches in which modified PS materials are used. We talk about the field's prospects and problems going forward. This is including as improvements in modification methods, incorporating sustainable practices and investigation of new applications. Moreover, it is tackling important scalability, regulatory compliance, and end-of-life issues. By focusing on innovation and resolving future issues, we hope to shed light on the adaptability and potential of modified PS materials through this review. 

References

Ho B.T.; Roberts T.K. and Lucas S.; “An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach”, Crit. Rev. Biotechnol., 38(2): 308-320, 2018.

Xu Z.; Xing W.; Hou Y.; Zou B.; Han L.; Hu W. and Hu Y.; “The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite”, Combust. Flame, 226: 108-116, 2021.

Han M.; Li J.; Muhammad Y.; Hou D.; Zhang F.; Yin Y. and Duan S.; “Effect of polystyrene grafted graphene nanoplatelets on the physical and chemical properties of asphalt binder”, Constr. Build. Mater., 174: 108-119, 2018.

Bhat S.I.; Ahmadi Y. and Ahmad S.; “Recent advances in structural modifications of hyperbranched polymers and their applications”, Ind. Eng. Chem., 57(32): 10754-10785, 2018.

Shahzad F.; Yu S.; Kumar P.; Lee J.W.; Kim Y.H.; Hong S.M. and Koo C.M.; “Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding”, Compos. Struct., 133: 1267-1275, 2015.

Kong F.; Chang C.; Ma Y.; Zhang C.; Ren C. and Shao T.; “Surface modifications of polystyrene and their stability: A comparison of DBD plasma deposition and direct fluorination”, Appl. Surf. Sci., 459: 300-308, 2018.

Chen Y.; Wang Y.; Zhang H.B.; Li X.; Gui C.X. and Yu Z.Z.; “Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles”, Carbon, 82: 67-76, 2015.

Wang C.; Lin C.C. and Tseng L.C.; “Miscibility, crystallization and morphologies of syndiotactic polystyrene blends with isotactic polystyrene and with atactic polystyrene”, Polymer, 47(1): 390-402, 2006.

Karasz F.E.; Bair H.E. and O'reilly J.M.; “Thermal properties of atactic and isotactic polystyrene”. J. Phys. Chem., 69(8): 2657-2667, 1965.

Si J.Y.; Tawiah B.; Sun W.L.; Lin B.; Wang C.; Yuen A.C.Y.; Yu B.; Li A.; Yang W.; Lu H.D. and Chan Q.N.; “Functionalization of MXene nanosheets for polystyrene towards high thermal stability and flame retardant properties”, Polymers, 11(6): 976, 2019.

Nemani S.K.; Annavarapu R.K.; Mohammadian B.; Raiyan A.; Heil J.; Haque M.A.; Abdelaal A. and Sojoudi H.; “Surface modification of polymers: methods and applications”, Adv. Mater. Interfaces, 5(24): 1801247, 2018.

Ghanem A.F.; Youssef A.M. and Abdel Rehim M.H.; “Hydrophobically modified graphene oxide as a barrier and antibacterial agent for polystyrene packaging”, J. Mater. Sci., 55: 4685-4700, 2020.

Raza Z.A.; Riaz S. and Banat I.M.; “Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization”, Biotechnol. Prog., 34(1): 29-41, 2018.

Zhai S.; Hu E.J.; Zhi Y.Y. and Shen Q.; “Fabrication of highly ordered porous superhydrophobic polystyrene films by electric breath figure and surface chemical modification. Colloids Surf. A: Physicochem. Eng. Asp., 469: 294-299, 2015.

Ma Y.; Dai J.; Wu L.; Fang G. and Guo Z.; “Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin”, Polymer, 114: 113-121, 2017.

Wang J.; Wang L.; Yu H.; Chen Y.; Chen Q.; Zhou W.; Zhang H. and Chen X.; “Recent progress on synthesis, property and application of modified chitosan: an overview”, Int. J. Biol. Macromol., 88, pp.333-344, 2016.

Wackerly J.W. and Dunne J.F.; “Synthesis of polystyrene and molecular weight determination by 1H NMR end-group analysis”, J. Chem. Educ., 94(11): 1790-1793, 2017.

Kaseem M.; Hamad K. and Ko Y.G.; “Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review”, Eur. Polym. J., 79: 36-62, 2016.

Yang J.; Muhammad Y.; Yang C.; Liu Y.; Su Z.; Wei Y. and Li J.; “Preparation of TiO2/PS-rGO incorporated SBS modified asphalt with enhanced resistance against ultraviolet aging”, Constr. Build. Mater., 276: 121461, 2021.

Wu G.; Wang Y.; Wang K. and Feng A.; “The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites”, RSC Adv., 6(104): 102542-102548, 2016.

Peng G.; Yaoqin W.; Congcong D.; Changmei S.; Rongjun Q.; Chunnuan J.; Ying Z. and Ying W.; “Allyl and benzyl modified aramid nanofibers as an enhancement in polystyrene-based composites” fchem, 8: 586763, 2020.

Sonnier R.; Taguet A. and Rouif S.; “Modification of polymer blends by E-beam and gamma irradiation”, Funct. Polym. Blends Synth. Prop. Perform, 261-304, 2012.

Srinate N.; Thongyai S. and Praserthdam P.; “Synthesis and characterization of graft copolymers of syndiotactic polystyrene with polybutadiene and 4‐methylstyrene”, J. Appl. Polym. Sci., 112(1): 335-344, 2009.

Huan S.; Bai L.; Liu G.; Cheng W. and Han G.; “Electrospun nanofibrous composites of polystyrene and cellulose nanocrystals: manufacture and characterization”, RSC Adv., 5(63): 50756-50766, 2015.

Hatamzadeh M. and Jaymand M.; “Synthesis and characterization of polystyrene-graft-polythiophene via a combination of atom transfer radical polymerization and Grignard reaction”, RSC Adv., 4(32): 16792-16802, 2014.

Yoshida E.; “Graft copolymerization of methyl methacrylate on polystyrene backbone through nitroxide-mediated photo-living radical polymerization”, Colloid Polym. Sci., 289: 837-841, 2011.

Bansal S.A.; Singh A.P. and Kumar S.; “Synergistic effect of graphene and carbon nanotubes on mechanical and thermal performance of polystyrene”, Mater. Res. Express, 5(7): 075602, 2018.

Keinänen O.; Dayts E.J.; Rodriguez C.; Sarrett S.M.; Brennan J.M.; Sarparanta M. and Zeglis B.M.; “Harnessing PET to track micro-and nanoplastics in vivo” Sci. Rep., 11(1): 11463, 2021.

Hu W.; Yu B.; Jiang S.D.; Song L.; Hu Y. and Wang B.; “Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene”, J. Hazard. Mater., 300: 58-66, 2015.

Yoshida E.; “Graft copolymerization of methyl methacrylate on polystyrene backbone through nitroxide-mediated photo-living radical polymerization” Colloid Polym. Sci., 289: 837-841, 2011.

Aziz T.; Fan H.; Khan F.U.; Haroon M. and Cheng L.; “Modified silicone oil types, mechanical properties and applications”, Polym. Bull., 76: 2129-2145, 2019.

Wang L.; Hasanzadeh Kafshgari M. and Meunier M.; “Optical properties and applications of plasmonic‐metal nanoparticles”, Adv. Funct. Mater., 30(51): 2005400, 2020.

Slepicka P.; Kasalkova N.S.; Siegel J.; Kolska Z.; Bacakova L. and Svorcik V.; “Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action”, Biotechnol. Adv., 33(6): 1120-1129, 2015.

Poinard B.; Kamaluddin S.; Tan A.Q.Q.; Neoh K.G. and Kah J.C.Y.; “Polydopamine coating enhances mucopenetration and cell uptake of nanoparticles”, ACS Appl. Mater. Interfaces., 11(5): 4777-4789, 2019.

Chuah W.H.; Zhang W.L.; Choi H.J. and Seo Y.; “Magnetorheology of core–shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability”, Macromolecules, 48(19): 7311-7319, 2015.

Lock E.H.; Petrovykh D.Y.; Mack P.; Carney T.; White R.G.; Walton S.G. and Fernsler R.F.; “Surface composition, chemistry, and structure of polystyrene modified by electron-beam-generated plasma”, Langmuir, 26(11): 8857-8868, 2010.

Chen W.; Ouyang Z.Y.; Qian C. and Yu H.Q.; “Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight”, Environ. Pollut., 233: 1-7, 2018.

Al-Taie Z.A.; Shihab M.S. and Allami S.; “Blend modified polymers (polyethersulfone, expandable polystyrene, polyvenylidinefluride) as a membrane for microbial fuel cell”, ANJS, 24(2): 9-13, 2021.

Li J.; Han M.; Muhammad Y.; Liu Y.; Yang S.; Duan S.; Huang W. and Zhao Z.; “Comparative analysis, road performance and mechanism of modification of polystyrene graphene nanoplatelets (PS-GNPs) and octadecyl amine graphene nanoplatelets (ODA-GNPs) modified SBS incorporated asphalt binders”, Constr. Build. Mater., 193: 501-517, 2018.

Kausar A.; “Technical viewpoint on polystyrene/graphene nanocomposite”, J. Thermoplast. Compos. Mater., 35(10): 1757-1771, 2022.

Uttaravalli A.N.; Dinda S. and Gidla B.R.; “Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: a review”, PSEP, 137: 140-148, 2020.

Zhang W.; Slaný M.; Zhang J.; Liu Y.; Zang Y.; Li Y. and Chen G.; “Acetylation modification of waste polystyrene and its use as a crude oil flow improver”. Polymers, 13(15): 2505, 2021.

Downloads

Published

2024-12-15

How to Cite

(1)
Chemical Structure Modification of Polystyrene (PS): A Short Review. ANJS 2024, 27 (5), 58-69. https://doi.org/10.22401/09v5rg75.

Most read articles by the same author(s)