Comparison Between the Simulated Prediction Methods of the Markov and Mixed Models
DOI:
https://doi.org/10.22401/fw29aw06Keywords:
Iraqi dinar , US dollar , Markov model , Mixed modelAbstract
The aim of this study is to make a comparison between the Markov model and the mixed model to predict future values, based on monthly data of the exchange rates of the US dollar against the Iraqi dinar for the period from January 2017 to December 2022. By comparing the two models using MAD, RMSE, and MAPE prediction accuracy measures to find the most appropriate model for analyzing the data of interest, the study concluded that the mixed model (ARIMA) (0,2,1) with the lowest values of the prediction accuracy measures is the most suitable and appropriate model for analyzing the study data, in order to predict the future exchange rates of the US dollar against the Iraqi dinar compared to the Markov model. Based on this model, the exchange rates of the US dollar against the Iraqi dinar were predicted until the end of June 2023 AD, and the predictive values were consistent with the original values of the series, which indicates the efficiency of the model. Two statistical models were used: the Markov model, the autoregressive model, and ARIMA. The two models were applied to the data under study in order to compare them with the exchange rates of the dollar against the Iraqi dinar the importance of studying.
References
Song, L.J.; Meng, F.R; Yuan, G.; ” Moving object location prediction algorithm based on Markov model and trajectory similarity”.J. Comput. Appl.,36(1): 39–43, 2016.
El-Eraqi, M.B.; Mohammed, A.; Mohammed, S.; “The Urban Sprawl on Agricultural Lands in Giardia Governorate”. J. Agric. Sci., 27(3): 1771-1781, 2019.
Shana, M.; Hong, H.; Sajjad, H.; “Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration India”. Sci. Total Environ., 62(8): 1557-1566, 2018.
Baig, M.; “Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor”, Water, 14(.3): 402, 2022.
Erkan, U.; Gökrem, L.; “Levant. A new method based on pixel density in salt and pepper noise removal”. Turk. J. Elec. Eng. Comp. Sci., 26(1): 162-171, 2018.
Samat, N.; Mohammed, N.A.; Maghsoodi, M.J.; “Modeling land cover changes in peri-urban areas A case study of George town conurbation, Malaysia”. Land, 9(10): 373-380. 2020.
Wang, S.; Zheng.; Xi.; “Dominant transition probability: Combining CA-Markov model to simulate land use change”. Environ. Develop. Sustain., 25(7): 6829-6847. 2023,
Sadek, M.; Mostafa, X.L.; Freeshan.; M.; “Low-cost solutions for assessment of flash flood impacts using Sentinel-1/2 data fusion and hydrologic/hydraulic modeling” Egypt. Adv. Civ. Eng., 20(20): 1-21. 2020.
Sadek, M.; Xuxiang,l. I.; “Low-cost solution for assessment of urban flash flood impacts using sentinel-2 satellite images and fuzzy analytic hierarchy process: a case study of ras ghareb city, Egypt”. Water, 20(19): 1-15, 2019.
Mostafa, E.; Sadek.; M.; Dosou.; Monitoring and forecasting of urban expansion using machine learning-based techniques and remotely sensed data: A case study of gharbia governorate, Egypt”. Rem. Sens., 13(22): 4498,. 2021.
Pal, S.; Ziaul, S.K.; “Detection of land use and land cover change and land surface temperature in English Bazar urban center”. J. Remote Sens. Space Sci., 20(1): 125-145, 2017.
Sadek, M.; Mustafa, L.E.; Dosou.; F.; “Monitoring flash flood hazard using modeling-based techniques and multi-source remotely sensed data: the case study of Ras Ghareb City, Egypt”. Arab. J. Geosci., 23( 14): 1-16, 2021.
Subasinghe, S.; Estoque, R.C.; Murayama, Y.; “Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka”. Int. J. Geo-Inf., 5(11): 197, 2016.
Rousta, I.;, Sarif, M.; Gupta, R.D.; Olafson., H.; “Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using Landsat data: A case study of Metropolitan City Tehran (1988–2018)”. Sustainability, 10(12):4433-4439. 2018.
Hamdy, O.; Zhao, S.; Sallhen, M.A.; “Analyses the driving forces for urban growth by using idrisi Selva models Abouelreesh-Aswan as a case study”. Int. J. Eng. Sci. Technol., 9(3):.216 - 226, 2017.
Wang, Y.; Yuan, N.J.; Lian, D.; “Regularity and conformity Location prediction using heterogeneous mobility data”. Int. Conference Knowledge, 1275-1284, 2015.
Wang X.; Jiang, X.H.; Lin, J.; “Xiong JB. Prediction of moving object trajectory based on probabilistic suffix tree”. J. Comp. Appl. 33(11): 3119–3122, 2013.
Qiao, Y.S.; Zhang, Y.; Abdesslem, F.B.; Zhang, X.; Yang, J.; “A hybrid Markov-based model for human mobility prediction”. Neurocomputing, (278): 99–109, 2018.
Subasinghe, S.; Estoque, R.C.; Murayama, Y.; “Spatiotemporal analysis of urban growth using GIS and remote sensing: A case study of the Colombo Metropolitan Area, Sri Lanka”. Int. J. Geo-Inf., 5(11): 197, 2016.
Kore, N.B.; Ravi, K.; Patil, S.B.; “A simplified description of fuzzy TOPSIS method for multi criteria decision making”. Int. Res. J. Eng. Technol., 4(5): 2047-2050, 2017.
Zhang, C.; Liang, H.; Wang, K.; Sun, J.; “Personalized trip recommendation with poi availability and uncertain traveling time”. Int. Manag.: 911-920, 2015.
Zhenhui, L.I.; “Where Did You Go: Personalized Annotation of Mobility Records”, Int. Manag.: 589–598, 2016.
Lian, D.; Zheng, V.W.; Yuan, N.J.; Zhang, F.; “CEPR; A collaborative exploration and periodically returning model for location prediction”. Acmt. Intel. Sys. Tech., 6(1): 1-27, 2015,
Aburas, M.M.; Ramli, M.F.; Ashaarri, H.; Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio”. J. App. Earth Obs. Geoinf., 59(2):.65-78, 2017.
Sánchez, M.J.; Galve, J.M.; Gonzalez, J.; “Monitoring 10-m LST from the Combination MODIS/Sentinel-2, validation in a high contrast semi-arid agro ecosystem”. Remote Sens. 12(9): p.1453-1465. 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Shaymaa Riyadh Thanoon
This work is licensed under a Creative Commons Attribution 4.0 International License.