CXCL12 as a Metastasis Inducer Chemokine of Breast Cancer
DOI:
https://doi.org/10.22401/ktppe777Keywords:
Chemokines , CXCL12 , CXCR4 , Breast cancer metastasisAbstract
Breast cancer is a worrying challenge nowadays because it represents the most common type of cancer that has been diagnosed in women. Breast cancer deaths mainly result from metastasis instead of primary tumor. C-X-C motif chemokine ligand 12 is a chemokine that belongs to CXC group and has chemotaxis property that makes it able to migrate immune cells. Based on several studies, C-X-C motif chemokine ligand 12 and its receptor C-X-C chemokine receptor type 4 could promote breast cancer metastasis. Breast cancer metastasis is a multistep process in which the C-X-C motif chemokine ligand 12 / C-X-C chemokine receptor type 4 axis has been shown to play a key role in each of these steps such as local invasion, survival, angiogenesis, trafficking to another organ, and adaption to a new microenvironment. Many types of research have proved the crucial role of C-X-C motif chemokine ligand 12 / C-X-C chemokine receptor type 4 axis in breast cancer metastasis into the liver, bone, lung, and brain. Both in vitro and in vivo studies have provided significant results associated with the reduction of breast cancer metastasis in cell lines when they were treated with antibodies against C-X-C chemokine receptor type 4. Additionally, C-X-C motif chemokine ligand 12 / C-X-C chemokine receptor type 4 axis has provided the ability for cancer cells to resist chemotherapy, radiotherapy, and endocrine therapy. This review aims to discuss the investigations about the role of these peptides that will help in the management of a more specific and effective therapy.
References
Aguilera-Durán, G.; Romo-Mancillas, A.; “Behavior of chemokine receptor 6 (CXCR6) in complex with CXCL16 soluble form chemokine by molecular dynamic simulations: General protein‒ ligand interaction model and 3D-QSAR studies of synthetic antagonists”. Life. 11(4):346, 2021.
Akhtar, M.; et al.; “Paget’s “seed and soil” theory of cancer metastasis: an idea whose time has come”. Adv. Anat. Pathol. 26(1): 69-74, 2019.
Andre, F.; et al.; “Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer”. Ann. Oncol. 17(6):945-951, 2006.
Arimont, M.; et al.; “Structural analysis of chemokine receptor– ligand interactions”. J. Med. Chem. 60(12):4735-4779, 2017.
Aronovich, A.; et al.; “Cancer-associated fibroblasts in mycosis fungoides promote tumor cell migration and drug resistance through CXCL12/CXCR4”. J. Invest. Dermatol.141(3):619-627. e2, 2021.
Balaji, S.; et al.; “Chemokine involvement in fetal and adult wound healing”. Adv. Wound Care, 4(11): 660-672, 2015.
Bonecchi, R.; et al.; “Chemokines and chemokine receptors: an overview”. Front. Biosci.-Landmark, 14(2): 540-551, 2009.
Bray, F.; et al.; “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”. Ca-Cancer J. Clin. 68(6):394-424, 2018.
Brglez, V.; et al.; “Secreted phospholipases A2 are differentially expressed and epigenetically silenced in human breast cancer cells”. Biochem. Biophys. Res. Commun. 445(1):230-235, 2014.
Campanella, G.S.; et al.; “Development of a novel chemokine-mediated in vivo T cell recruitment assay”. J. Immunol. Methods. 331(1-2): 127-139, 2008.
Chafferm, C.L.; Weinberg, R.A.; “A perspective on cancer cell metastasis”. Sci. 331(6024): 1559- 1564, 2011.
Chambers, A.F.; Groom, A.C.; MacDonald, I.C.; “Dissemination and growth of cancer cells in metastatic sites”. Nat. Rev. Cancer. 2(8): 563-572, 2002.
Choi, J.; Kim, E.-S.; Koo, J.S.; “Expression of pentose phosphate pathway-related proteins in breast cancer”. Dis. Markers. 2018.
Chung, B.; et al.; “Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12”. NPJ breast cancer. 3(1): 6, 2017.
Duan, L.; et al.; “Leptin promotes bone metastasis of breast cancer by activating the SDF-1/CXCR4 axis”. Aging (albany NY). 12(16):16172, 2020.
Gadalla, R.; et al.; “Tumor microenvironmental plasmacytoid dendritic cells contribute to breast cancer lymph node metastasis via CXCR4/SDF-1 axis”. Breast Cancer Res. Treat. 174: 679-691, 2019.
Gorain, B.; et al.; “Overexpressed receptors and proteins in lung cancer, in Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer”. Elsevier. 39-75, 2019.
Guyon, A.; “CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems”. Front. Cell. Neurosci. 8: 65, 2014.
Hassan, S.; et al.; “Plasma stromal cell–derived factor-1: host derived marker predictive of distant metastasis in breast cancer”. Clin. Cancer Res. 14(2):446-454, 2008.
Hinton, C.V.; Avraham, S.; Avraham, H.K.; “Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain”. Clin. Exp. Metastasis. 27: 97-105, 2010.
Horn, F.; et al.; “GPCRDB information system for G protein coupled receptors”. Nucleic Acids Res. 31(1): 294-297, 2003.
Huang, E.H.; et al.; “A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer”. J. Surg. Res. 155(2): 231-236, 2009.
Hughes, C.E.; Nibbs, R.J.; “A guide to chemokines areceptors”. the febs J., 285(16): 2944- 2971,2018.
Hung, C.-S.; et al.; “High-level expression of CXCR4 in breast cancer is associated with early distant and bone metastases”. Tumor Biol. 35: 1581- 1588, 2014.
Jin, F.; et al.; “New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation”. Mol. Cancer Res. 10(8):1021- 1031, 2012.
Jin, L.; et al.; “Breast cancer lung metastasis: Molecular biology and therapeutic implications”. Cancer Biol. Ther. 19(10): 858-868, 2018.
Kiefer, F.; Siekmann, A.F.; “The role of chemokines and their receptors in angiogenesis”. Cell. Mol. Life Sci. 68: 2811-2830, 2011.
Kozłowski, J.; Kozłowska, A.; Kocki ,J.; “Breast cancer metastasis-insight into selected molecular mechanisms of the phenomenon”. Postepy Hig. Med. Dosw. 69, 2015.
Lai, W.Y.; Mueller, A.; “Latest update on chemokine receptors as therapeutic targets”. Biochem. Soc. Trans. 49(3):1385-1395, 2021.
Liekens, S.; Schols, D.; Hatse, S.; “CXCL12-CXCR4 axis in angiogenesis, metastasis and stem cell mobilization”. Curr. Pharm. Des. 16(35):3903-3920, 2010.
Loetscher, M.; et al.; “Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes”. J. Biol. Chem. 269(1):232-237, 1994.
Lorusso, G.; Rüegg, C.; “New insights into the mechanisms of organ-specific breast cancer metastasis. in Seminars in cancer biology”. Elsevier. 2012.
Luker, K.E.; Luker, G.D.; “Functions of CXCL12 and CXCR4 in breast cancer”. Cancer Lett. 238(1):30-41, 2006.
Mortezaee, K.; “CXCL12/CXCR4 axis in the microenvironment of solid tumors: A critical mediator of metastasis”. Life Sci. 249: 117534, 2020.
Moser, B.; Willimann, K.; “Chemokines: role in inflammation and immune surveillance”. Ann. Rheum. Dis. 63: ii84-ii89, 2004.
Murphy, P.M.; “Chemokines and the molecular basis of cancer metastasis”. N. Engl. J. Med. 345(11): 83, 2001.
Nagasawa, T.; Kikutani, H.; Kishimoto, T.; “Molecular cloning and structure of a pre-B-cell growth-stimulating factor”. Proc. Natl. Acad. Sci. 91(6): 2305-2309, 1994.
Palomino, D.C.T.; Marti, L.C. ; “Chemokines and immunity”. Einstein (são paulo), 13: 469-473, 2015.
Ray, P.; et al.; “CXCL12-γ in primary tumors drives breast cancer metastasis”. Oncogene. 34(16):2043-2051, 2015.
Rhodes, L.V.; et al.; “Cytokine receptor CXCR4 mediates estrogen-independent tumorigenesis, metastasis, and resistance to endocrine therapy in human breast cancer”. Cancer Res. 71(2): 603-613, 2011.
Ridiandries, A.; Tan, J.T.; Bursill, C.A.; “The role of chemokines in wound healing”. Int. J. Mol. Sci. 19(10): 3217, 2018.
Rossi, D.; Zlotnik ,A.; “The biology of chemokines and their receptors”. Annu. Rev. Immunol.18(1): 217- 242, 2000.
Sallusto, F.; Baggiolini, M.; “Chemokines and leukocyte traffic”. Nat. Immunol. 9(9):949-952, 2008.
Schulz, O.; et al.; “Chemokines and chemokine receptors in lymphoid tissue dynamics”. Annu. Rev. Immunol. 34: 203-242, 2016.
Shanmugam, M.K.; et al.; “Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis”. Front. Pharmacol. 9:1294, 2018.
Shi, Y.; Riese, D.J.; Shen, J.; “The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer”. Front. Pharmacol. 11:574667, 2020.
Siegel, R.L.; Miller, K.D.; Jemal, A.; “Cancer statistics, 2018”. Ca-Cancer J. Clin. 68(1): 7-30, 2018.
Singh, S.; et al.; “CXCL12–CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: a novel target for therapy”. Br. J. Cancer. 103(11):1671-1679, 2010.
Spitale, A.; et al.; “Breast cancer classification according to immunohistochemical markers: clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland”. Ann. Oncol. 20(4):628-635, 2009.
Strilic, B.; Offermanns, S.; “Intravascular survival and extravasation of tumor cells”. Cancer cell. 32(3):282-293, 2017.
Takeda, T.; et al.; “HER3/Akt/mTOR pathway is a key therapeutic target for the reduction of triple negative breast cancer metastasis via the inhibition of CXCR4 expression”. Int. J. Mol. Med. 52(3):1-11, 2023.
Tashiro, K.; et al.; “Signal sequence trap: a cloning strategy for secretedproteins and type I membrane proteins”. Science. 261(5121): 600-603, 1993.
Teicher, B.A.; Fricker, S.P.; “CXCL12 (SDF-1)/CXCR4 pathway in cancer”. Clin. Cancer Res.16(11):2927-2931, 2010.
Van der Vorst, E.P.; Döring, Y.; Weber ,C.; “Chemokines”. Arterioscler. Thromb. Vasc. Biol. 35(11): e52-e56,2015.
Wang, J.; et al.; “Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis”. Cytokine. 81:10-14, 2016.
Wang, Y.; et al.; “Cancer-associated fibroblasts promote irradiated cancer cell recovery through autophagy”. EBioMedicine, 17:45-56, 2017.
Wang, Y.; et al.; “Saikosaponin A inhibits triple-negative breast cancer growth and metastasis through downregulation of CXCR4”. Front. Oncol. 9: 1487, 2020.
Wendel, C.; et al.; “CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model”. PloS one. 7(1): e30046, 2012.
Wu, Q.;’ et al.; “Breast cancer subtypes predict the preferential site of distant metastases: a SEER based study”. Oncotarget. 8(17):27990, 2017.
Yang, Y.; et al.; “CXCL12- CXCR4/CXCR7 axis in cancer: From mechanisms to clinical applications”. Int. J. Biol. Sci. 19(11): 3341, 2023.
Zhao, S.; et al.; “A comprehensive analysis of CXCL12 isoforms in breast cancer1, 2”. Transl. Oncol. 7(3):429-438, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Baqir A. Altimmime, Farah A. Rashid
This work is licensed under a Creative Commons Attribution 4.0 International License.