Optical Bullets Using Two Integration Architectures

Authors

  • Anwar Ja'afar Mohamad Jawad Department of Computer Technical Engineering, Al-Rafidain University College, Baghdad-10064, Iraq.
  • Anjan Biswas Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245—2715, USA.
  • Yakup Yildirim Department of Computer Engineering, Biruni University, Istanbul–34010, Turkey.
  • Ali Saleh Alshomrani Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah—21589, Saudi Arabia.

DOI:

https://doi.org/10.22401/pd5fb369

Keywords:

Wave solutions , The (3+1) dimensional Schrödinger equation , Bullet solution , Extended simple equation method, Csch method

Abstract

In this study, the exact Bullet solutions for the (3+1)-dimensional Schrödinger equation which demonstrates the Bullet behaviour in optical fibers can be accumulated through the extended simple equation method, and Csch method. The applied strategies may retrieve several kinds of optical Bullet solutions within one frame, which is quite simple and reliable. As a result, we are able to develop a variety of traveling wave structures namely the periodic, singular Bullet wave. The extended simple equation method, and Csch method approaches were implemented perfectly and can be extended to deal with many advanced models in contemporary areas of science and engineering.

References

Tan, W.; Yin, Z.Y.; "The twin properties of rogue waves and homoclinic solutions for some nonlinear wave equations". Int. J. nonlin. Sci. Num., 22 (3-4): 409–417, 2021.

Zayed, M.E.E.; El–Horbaty, E.M.M.; Alngar, M.E.M.; El–Shater, M.; Jawad, A.J.M.; Biswas, A.; Yıldırım, Y.; Alshomrani, A.S.;, "Dispersive Optical Solitons For Schrodinger–Hirota Equation With Fourth–Order Dispersion And Multiplicative White Noise". J. Appl. Sci. Eng., 27(10): 3237-3250, 2024.

Jihad, N.; Abd Almuhsan, M.; "Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques". Rafidain J. Eng. Sci., 1(1): 81–92, 2023.

Zhang, S.; Yaman, F.; Nakamura, K.; Inoue, T.; Kamalov, V.; Jovanovski, L.; Vusirikala, V.; Mateo, E.; Inada, Y.; Wang, T.; "Field and lab experimental demonstration of nonlinear impairment compensation using neural networks". Nat. comm. J., 10(1) :3033, 2019.

Zulfiqar, A.; Ahmad, J.; "Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method". Results Phys., 19: 103476, 2020.

Kundu, P.R.; Fahim, M.R.A.; Islam, M.E.; Akbar, M.A.; "The sine-gordon expansion method for higher-dimensional nlees and parametric analysis". Heliyon, 7(3), 2021.

Biswas, A.; Yildirim, Y.; Yasar, E.; Zhou, Q.; Moshokoa, S.P.; Belic, M.; "Optical Solitons for lakshmanan–porsezian–daniel model by modified simple equation method", Optik (Stuttg.) 160 :24–32, 2018.

Ghanbari, B.; G´omez-Aguilar, J.; "The generalized exponential rational function method for radhakrishnan-kundu-lakshmanan equation with βconformable time derivative". Rev. Mex. Fis. 65(5) :503– 518, 2019.

Akram, G.; Sadaf, M.; Arshed, S.; Sameen, F.; "Bright, dark, kink, singular and periodic Soliton solutions of lakshmanan–porsezian–daniel model by generalized projective riccati equations method". Optik (Stuttg.) 241:167051,2021.

Rezazadeh, H.; Korkmaz, A.; Eslami, M.; Mirhosseini-Alizamini, S.M.; "A large family of optical solutions to kundu–eckhaus model by a new auxiliary equation method". Opt. Quantum Electron., 51: 1–12, 2019.

Fokas, A.; Lenells, J.; "The unified method: I. nonlinearizable problems on the half-line". J. Phys. A-Math., 45(19):195201, 2012.

Islam, N.; Khan, K.; Islam, M.H.; "Traveling wave solution of dodd-bulloughmikhailov equation: a comparative study between generalized kudryashov and improved f-expansion methods". J. Phys. Commun., 3(5): 055004. 29, 2019.

Lakestani, M.; Manafian, J.; "Analytical treatment of nonlinear conformable time-fractional boussinesq equations by three integration methods". Opt. Quantum Electron., 50: 1–31, 2018.

Qin, H.; Attia, R.A.; Khater, M.; Lu, D.; "Ample Soliton waves for the crystal lattice formation of the conformable time-fractional (n+ 1) sinh-gordon equation by the modified khater method and the painlev´e property". J. INTELL. FUZZY SYST., 38(3): 2745–2752, 2020.

Wang, G.; "A new (3+ 1)-dimensional Schrödinger equation: derivation, Soliton solutions and conservation laws". Nonlinear Dyn., 104 (2):1595–1602, 2021.

Jawad, A.; Biswas, A.; “Solutions of Resonant Nonlinear Schrödinger’s Equation with Exotic Non-Kerr Law Nonlinearities”. Rafidain J. Eng. Sci., 2(1): 43–50, 2023.

Jawad, A.; Abu-AlShaeer, M.; "Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods". Rafidain J. Eng. Sci., 1(1): 1–8, 2023.

Wazwaz, A-M.; Mehanna, M.; "Bright and dark optical Solitons for a new (3+ 1)-dimensional nonlinear Schrödinger equation". Optik (Stuttg.) 241: 166985, 2021.

Kumar, S.; Hamid, I.; Abdou, M.; "Some specific optical wave solutions and combined other Solitons to the advanced (3+ 1)-dimensional Schrödinger equation in nonlinear optical fibers". Opt. Quantum Electron., 55(8):728, 2023.

Downloads

Published

2024-10-03

How to Cite

(1)
Optical Bullets Using Two Integration Architectures. ANJS 2024, 27 (4), 1-6. https://doi.org/10.22401/pd5fb369.