Comparison of the Effectiveness of 532 nm and 660 nm Diode Laser on MRSA Viability in Different Tissue Thicknesses in Vitro

Authors

  • Ali A. Turki Aldalawi Department of Vocational Education, Babylon Education Directorate, Babylon, Iraq.

DOI:

https://doi.org/10.22401/qxg86t83

Keywords:

Diode laser , Tissue thickness , MRSA infection , Treatment effectiveness , Bacterial viability

Abstract

Laser-mediated therapeutic approaches have offered multiple advantages in reducing cutaneous microbial complications across different environments along with biological processes. However, the application of such an approach in clinical trials of different tissues has been very difficult and cannot be applied to improve microbial control investigations across different tissue sites. This study aims to provide a comparative perspective to evaluate the analgesic parameters of 530nm and 660nm lasers at MRSA-infected tissue sites under laboratory conditions. To investigate this, the light penetration depths and transport properties will be initially investigated, providing insight into this strategy and its optimization in laser-based microbial decontamination efficiency. This type of treatment facilitates the development of new and untested protocols that take into account the optical properties of MRSA-infected tissues in different clinical settings, to ensure optimal control of microbial pathogens while minimizing the potential for future infection of surrounding tissues. Wavelengths of 660 nm provided acceptable efficiency for controlling pathogens in different 3 mm thick cattle meat samples, confirming the effectiveness of this technique. In contrast, the 530nm wavelengths provided better efficacy in beef tissue samples of 5mm and 10mm thickness, demonstrating the validity of the advantages of laser therapy for diverse tissues compared to standard antibiotics, while indexing new treatment protocols against pathogens in various therapeutic settings. This treatment approach offers several advantages of laser properties over conventional therapies while reducing the concerns expected with laser-based interventions. Thus, this technique can be calibrated in the laboratory to ensure light transmittance considerations are matched to target site characteristics to reduce microbial risk and ensure patient safety through optimal tissue conditions.

References

Matsubara, V. H. ; Leong, B. W., Leong, M. J. L.; Lawrence, Z.; Becker, T.; Quaranta, A.; “Cleaning potential of different air abrasive powders and their impact on implant surface roughness”. Clin. Implant Dent. Relat. Res., 22(1): 96–104, 2020.

Wang, K.; Pu, H.; Sun, D.; “Emerging spectroscopic and spectral imaging techniques for the rapid detection of microorganisms: An overview”. Compr. Rev. Food Sci. Food Saf. 17(2): 256–273, 2018.

Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A. S. ; Somasundaram, J.; Rajan, M.; “Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review”. Antibiotics 11(5): 606, 2022.

Qi, M. ; et al.; “Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases”. Int. J. Nanomedicine, pp. 6937–6956, 2019.

Bordin-Aykroyd, S.; Dias, R. B.; Lynch, E.; “Laser-tissue interaction”. EC Dent. Sci. 18: 2303–2308, 2019.

Zhou, J.; et al.; “Impact of lanthanide nanomaterials on photonic devices and smart applications”. Small 14(40): 1801882, 2018.

Hamblin, M. R.; Agrawal, T.; de Sousa, M.; Handbook of low-level laser therapy. CRC Press, 2016.

Keiser, G.; Keiser, G.; “Light-tissue interactions”. Biophotonics Concepts to Appl.: 147–196, 2016.

Mussttaf, R. A.; Jenkins, D. F. L.; Jha, A. N.; “Assessing the impact of low level laser therapy (LLLT) on biological systems: a review,” Int. J. Radiat. Biol., vol. 95, no. 2, pp. 120–143, 2019.

Cave, R.; Cole, J.; Mkrtchyan, H. V.; “Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control”. Environ. Int. 157: 106836, 2021.

Vitko, N. P.; Richardson, A. R.; “Laboratory maintenance of methicillin‐resistant Staphylococcus aureus (MRSA),” Curr. Protoc. Microbiol. 28(1): 9C–2, 2013.

Cruz, C. D.; Shah, S.; Tammela, P.; “Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains,” BMC Microbiol., vol. 18, no. 1, pp. 1–9, 2018.

Aiken, Z. A.; “Measuring the susceptibility and adhesion of microorganisms to light-activated antimicrobial surfaces”. UCL (University College London), 2012.

Cios, A. et al.; “Effect of different wavelengths of laser irradiation on the skin cells,” Int. J. Mol. Sci. 22(5): 2437, 2021.

Ahmed, E.; El-Gendy, A. O.; Hamblin, M. R.; Mohamed, T.; “The effect of femtosecond laser irradiation on the growth kinetics of Staphylococcus aureus: An in vitro study”. J. Photochem. Photobiol. B Biol. 221: 112240, 2021.

Khalkhal, E.; Razzaghi, M.; Rostami-Nejad, M.; Rezaei-Tavirani, M.; Beigvand, H. H.; Tavirani, M. R.; “Evaluation of laser effects on the human body after laser therapy”. J. Lasers Med. Sci. 11(1); 91, 2020.

Aldalawi, A.A. et al.; “Comparison of Wavelength-Dependent Penetration Depth of 532 nm and 660 nm Lasers in Different Tissue Types”. J. Lasers Med. Sci.14, 2023.

Liu, H.; Zhang, Y.; Hu, Y.; Tse, Z.; “Laser Power Transmission and Its Application in Laser-Powered Electrical Motor Drive: A Review”. Power Electron. Drives 6(1): 167–184, 2021.

Zhang, Y. et al.; “pH-responsive hierarchical H2S-releasing nano-disinfectant with deep-penetrating and anti-inflammatory properties for synergistically enhanced eradication of bacterial biofilms and wound infection”. J. Nanobiotechnology 20(1): 55, 2022.

Zapata, A.: Ramirez-Arcos, S.; “A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density,” Curr. Microbiol. 70: 907–909, 2015.

Islam, M. A.; Alam, M. M.; Choudhury, M. E.; Kobayashi, N.; Ahmed, M. U.; “Determination of minimum inhibitory concentration (MIC) of cloxacillin for selected isolates of methicillin-resistant Staphylococcus aureus (MRSA) with their antibiogram”, 2008.

Shao, L.; Majumder, S.; Liu, Z.; Xu, K.; Dai, R.; George, S.; “Light activation of gold nanorods but not gold nanospheres enhance antibacterial effect through photodynamic and photothermal mechanisms”. J. Photochem. Photobiol. B Biol. 231: 112450, 2022.

ElZorkany, H. E.; Youssef, T.; Mohamed, M. B.; Amin, R. M.; “Photothermal versus photodynamic treatment for the inactivation of the bacteria Escherichia coli and Bacillus cereus: an in vitro study”. Photodiagnosis Photodyn. Ther., 27: 317–326, 2019.

Triana, M. A.; Restrepo, A. A.; Lanzafame, R. J.; Palomaki, P.; Dong, Y.; “Quantum dot light-emitting diodes as light sources in photomedicine: photodynamic therapy and photobiomodulation”. J. Phys. Mater. 3(3): 32002, 2020.

Mallidi, S.; Anbil, S.; Bulin, A.-L.; Obaid, G.; Ichikawa, M.; Hasan, T.; “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy”. Theranostics 6(13): 2458, 2016.

Tuchin, V. V.: “Tissue optics and photonics: light-tissue interaction”. J. Biomed. Photonics Eng. 1(2): 98–134, 2015.

Kumari, S.; Nirala, A. K.; “Study of light propagation in human and animal tissues by Monte Carlo simulation”. Indian J. Phys. 86: 97–100, 2012.

Mustafa, F. H.; Jaafar, M. S.; “Comparison of wavelength-dependent penetration depths of lasers in different types of skin in photodynamic therapy”. Indian J. Phys. 87(3): 203–209, 2013.

Hong, J.; Guan, W.; Jin, G.; Zhao, H.; Jiang, X.; Dai, J.; “Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry”. Microbiol. Res. 170: 69–77, 2015.

Al-Shammary, A. A. K.; Mohd Ma’amor, N. A. A.; Chen, S. Q.; Lee, K. S.; Mohd Hanafiah, K.; “Bactericidal effects of in vitro 405 nm, 530 nm and 650 nm laser irradiation on methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Mycobacterium fortuitum”. Lasers Dent. Sci. 4(3): 111–121, 2020.

Downloads

Published

2024-09-16

How to Cite

(1)
Comparison of the Effectiveness of 532 Nm and 660 Nm Diode Laser on MRSA Viability in Different Tissue Thicknesses in Vitro. ANJS 2024, 27 (3), 69-80. https://doi.org/10.22401/qxg86t83.