Mitochondrial DNA and Disease: Areview

Authors

  • Marwa Adel Hussein Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq
  • Ruaa Hameed Abdulridha Department of Applied Pathological Analyses; College of Science; Al-Nahrain University; Baghdad, Iraq
  • Ibtisam Jasim Sodani Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq.
  • Mais Adnan Al-Ward Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq.
  • May Ridha Jaafar Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq.
  • Hala Khalid Ibrahim Al-Sammarrie Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq.
  • Shahad Emad Neamah Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq.
  • Asmaa A. Jawad Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq.
  • Nadhum Hussen Safir Forensic DNA Centre for Research and Training / AL-Nahrain University, Jadriya, Baghdad, Iraq.

DOI:

https://doi.org/10.22401/476p9g15

Keywords:

Mitochondrial damage , Disease , Ribonucleic acid , Adenosine triphosphate

Abstract

Mitochondria are organelles responsible for converting energy into a usable form for cellular metabolic activities. These organelles have their own DNA. Mutations in mitochondrial DNA (mtDNA) are frequent despite Its limited number of genes. Molecular genetics diagnostics enables the examination of DNA in many fields, like infectiology, cancer, and genetics of people. It is essential to identify abnormalities in mitochondrial DNA in patients since these mutations directly affect mitochondrial metabolism and may contribute to various illnesses. The mtDNA found in every human cell is a limited and significant source of harmful mutations and rearrangements. This review provides a concise overview of the unique principles of mitochondrial genetics, including maternal inheritance, mitotic segregation, heteroplasmy, and the threshold effect. It emphasizes the relatively common occurrence of medical conditions associated with mitochondrial DNA (mtDNA) and discusses recent discoveries of pathogenic mutations, with a particular focus on mutations that impact protein-coding genes. Next, we go into more contentious topics, such as the functional or pathological significance of mtDNA haplotypes, the disease-causing potential of homoplasmic mutations, and the mostly unknown mechanisms behind mtDNA mutations.

References

Chandel, N.; ''Mitochondria''. Bio. j., 13 (3), a040543, 2021.

Devin, A.; Rigoulet, M.; ''Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells''. Amer. J. Phy. Ce. Phy., 292 (1), C52-C58, 2007.

Antico Arciuch, V. G.; Elguero, M. E.; Poderoso, J. J.; ''Mitochondrial regulation of cell cycle and proliferation''. Anti. red. sig., 16 (10), 1150-1180, 2012.

Rahman, S.; ''Mitochondrial disease in children''. J. inter. med., 287 (6), 609-633, 2020.

Stenton, S. L.; Prokisch, H.; ''Genetics of mitochondrial diseases: Identifying mutations to help diagnosis''. Bio. j., 56, 2020.

Ng, Y. S.; et al.; ''Mitochondrial disease in adults: recent advances and future promise''. Lan. Neu., 20 (7), 573-584, 2021.

Citrigno, L.; et al.; ''Genomics landscape of mitochondrial DNA variations in patients from South Italy affected by mitochondriopathies''. Neu. Sci. J., 457, 122869, 2024.

Atilano, S. R.; et al.; ''Low frequency mitochondrial DNA heteroplasmy SNPs in blood, retina, and [RPE+ choroid] of age-related macular degeneration subjects''. Pl. j., 16 (1), e0246114, 2021.

DiMauro, S.; Barca, E.; ''Mtochonrial Neurology: A Tale of Two Genomes''. Dia. and. j., 1-31, 2021.

Tabassum, N.; et al.; ''A review on the possible leakage of electrons through the electron transport chain within mitochondria''. Li. Sci., 6, 105-113, 2020

Su, Z.; Wilson, B.; Kumar, P.; Dutta, A.; ''Noncanonical roles of tRNAs: tRNA fragments and beyond''. An. rev. gen., 54, 47-69.=, 2020

Sallmyr, A.; Bhandari, S. K.; Naila, T.; ''Mammalian DNA ligases; roles in maintaining genome integrity''. Mol. Bio. j., 168276, 2023.

Mustafa, M. F.; Fakurazi, S.; Abdullah, M. A.; Maniam, S.; ''Pathogenic mitochondria DNA mutations: current detection tools and interventions''. Ge. j., 11 (2), 192, 2020.

Habbane, M.; Montoya, J.; Rhouda, T.; Sbaoui, Y.; ''Human mitochondrial DNA: Particularities and diseases''. Bio. j., 9 (10), 1364, 2021.

Carvalho, G.; Repolês, B. M.; Mendes, I.; ''Mitochondrial DNA instability in mammalian cells. Anti. Red''. Sig., 36 (13), 885-905, 2022.

Guo, X.; Xu, W.; Zhang, W.; Pan, C.; ''High-frequency and functional mitochondrial DNA mutations at the single-cell level''. Pro. Nat. Aca. Sci., 120 (1), e2201518120, 2023.

Limpens, E.; van C.; ''Stochastic nuclear organization and host-dependent allele contribution in Rhizophagus''. Ir. j., 65 (11), 351-555 2022.

de Castro Abreu, D. M.; ''Impact of mtDNA mutations on chromatin remodeling''. Chem. j. scie. 23 (1), 320, 2020.

Lechuga‐Vieco, A. V.; Justo‐Méndez, R.; ''Not all mitochondrial DNAs are made equal and the nucleus knows it''. Iub. Li. j., 73 (3), 511-529, 2021.

Pereira, C. V.; Gitschlag, B. L.; ''Cellular mechanisms of mtDNA heteroplasmy dynamics. Critical reviews in biochemistry and mol''. bio. j., 56 (5), 510-525, 2021.

Supinski, G. S.; Schroder, E. A.; ''Mitochondria and critical illness''. Che. j., 157 (2), 310-322, 2020.

Protasoni, M.; Zeviani, M.; ''Mitochondrial structure and bioenergetics in normal and disease conditions''. Inter. J. Mol. Sci., 22 (2), 586, 2021.

Dahadhah, F.; ''The association between Mitochondrial NADH Dehydrogenase (MTND3, MTND4L, MTND4) polymorphisms and male infertility''. Med. j., 76 (61), 78-81, 2021.

Scozzi, D.; Cano, M.; Sahu, S.; ''Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19''. Ins. J., 6 (4), 2021.

Bernardino, T. M.; Ng, Y.; Pickett, S.; Turnbull, D. M.; ''Mitochondrial DNA disorders: from pathogenic variants to preventing transmission''. Hu. Mol. Gen., 30 (R2), R245-R253, 2021.

Saneto, R. P.; ''Mitochondrial diseases: expanding the diagnosis in the era of genetic testing''. Gen. j., 4, 384, 2020.

Moreno-Sánchez, R.; Marín-Hernández, A.; Saavedra, E.; Enríquez, S.; ''Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism''. Bio. cel. bio., 50, 10-23, 2014.

Fischel‐Ghodsian, N.; ''Mitochondrial deafness mutations reviewed''. Hu. mut., 13 (4), 261-270, 1999.

Pitceathly, R.; Rahman, S.; Hanna, M.; ''Single deletions in mitochondrial DNA–molecular mechanisms and disease phenotypes in clinical practice''. Neu. Dis., 22 (7), 577-586, 2012.

Zhu, Z.; Wang, X.; ''Significance of mitochondria DNA mutations in diseases''. Mit. DNA and dis., 219-230, 2017.

Greaves, L. C.; Reeve, A. K.; Taylor, R. W.; ''Mitochondrial DNA and disease''. Path. j., 226 (2), 274-286, 2012.

Maleszewski, J. J.; Lai, C. K.; Nair, V.; ''Anatomic considerations and examination of cardiovascular specimens (excluding devices)''. Card. path., 27-84, 2022.

Parodi-Rullán, R.; Sone, J. Y.; Fossati, S.; ''Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease''. Alz. dis. j., 72 (4), 1019-1039, 2019.

Toncheva, D.; Serbezov, D.; Nesheva, D.; ''Ancient mitochondrial DNA pathogenic variants putatively associated with mitochondrial disease''. Pl. j., 15 (9), e0233666, 2020.

Set, K. K.; Sen, K.; Huq, A.; Agarwal, R.; ''Mitochondrial disorders of the nervous system: A review. Cli''. Ped., 58 (4), 381-394, 2019.

Sonam, K.; Bindu, P. S.; Khan, N. A.; ''Mitochondrial oxidative phosphorylation disorders in children: phenotypic, genotypic and biochemical correlations in 85 patients from South India''. Mit. j., 32, 42-49, 2017.

Alston, C. L.; Rocha, M. C.; Lax, N. Z.; Turnbull, D. M.; Taylor, R. W.; ''The genetics and pathology of mitochondrial disease''. Path. j., 241 (2), 236-250, 2017.

Spires-Jones, T. L.; Attems, J.; Thal, D. R.; ''Interactions of pathological proteins in neurodegenerative diseases''. Act. neu., 134, 187-205, 2017.

Tkaczyk-Wlizło, A.; Kowal, K.; Ślaska, B.; ''Mitochondrial DNA alterations in the domestic dog (Canis lupus familiaris) and their association with development of diseases: A review''. Mit. j., 63, 72-84, 2022.

Fan, H.; Lee, F.; Yue, T.; ''Clinical characteristics of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes''. Lif. j., 11 (11), 1111, 2021.

Galnares-Olalde, J. A.; et al.; ''Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome: frequency, clinical features, imaging, histopathologic and molecular genetic findings in a third-level healthcare center in Mexico''. chem. scie. j., 2 (12), 386, 2021.

Parakatselaki, M.-E.; Ladoukakis, E. D.; ''mtDNA heteroplasmy: origin, detection, significance, and evolutionary consequences''. chem. scie. j., 11 (7), 633, 2021.

St John, J. C.; Okada, T.; Andreas, E.; ''The role of mtDNA in oocyte quality and embryo development''. Mol. Rep. Dev., 90 (7), 621-633, 2023.

Bar‐Ziv, R.; Bolas, T.; Dillin, A.; ''Systemic effects of mitochondrial stress''. En. rep., 21 (6), e50094, 2020.

Rackham, O.; Filipovska, A.; ''Organization and expression of the mammalian mitochondrial genome''. Nat. Re. Gen., 23 (10), 606-623, 2022.

Chen, X.; Prosser, R.; Simonetti, S.; Sadlock, J.; ''Rearranged mitochondrial genomes are present in human oocytes''. Am. j. hu. gen., 57 (2), 239, 1995.

Burr, S. P.; Chinnery, P. F.; ''Heredity and segregation of mtDNA''. Huma. Mito. Geno. j., 4 (31), 87-107, 2020.

Lawless, C.; Greaves, L.; Reeve, A. K.; Turnbull, D. M.; ''The rise and rise of mitochondrial DNA mutations''. Op. bio., 10 (5), 200061, 2020.

Kopinski, P. K.; Singh, L. N.; Wallace, D. C.; ''Mitochondrial DNA variation and cancer''. Nati. Reac. Cata. j., 21 (7), 431-445, 2021.

Stoccoro, A.; Coppedè, F.; ''Mitochondrial DNA methylation and human diseases. Inter. J. Mol. Sci., 22 (9), 4594, 2021.

Pérez, P.; Velásquez, M.; García, N.; ''Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases''. Mol. Bas. Dis., 1866 (6), 165761, 2020.

Iannello, M.; Milani, L.; ''A naturally heteroplasmic clam provides clues about the effects of genetic bottleneck on paternal mtDNA''. Gen. bio. evo., 13 (3), evab022, 2021.

Stephen, E. D.; ''Investigating mtDNA replication in neurons; implications for mtDNA deletion formation''. cata. chem. j., 41 (11), 64, 2020.

La Morgia, C.; Maresca, A.; Caporali, L.; ''Valentino, M.; Carelli, V. Mitochondrial diseases in adults''. Int. Med. j., 287 (6), 592-608, 2020.

Punsoni, M.; Mangray, S.; Yakirevich, E.; ''Succinate dehydrogenase B (SDHB) immunohistochemistry for the evaluation of muscle biopsies''. Ap. imm. & mol. j., 25 (9), 645, 2017.

Downloads

Published

2024-06-15

Issue

Section

Articles

How to Cite

(1)
Mitochondrial DNA and Disease: Areview. ANJS 2024, 27 (2), 81-90. https://doi.org/10.22401/476p9g15.

Most read articles by the same author(s)