Enhancing Photoirradiation Stability: A Review on Modification of Poly(methyl methacrylate)

Authors

  • Hadeel Adil Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Hanan A. Ibraheem Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Huda Ghazi Naser Department of Applied Pathological Analysis, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Ala’a R. Shaker Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Husam Salman Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
  • Mohammed Al-Mashhadani Department of Chemistry / College of Sciences / Al-Nahrain University / IRAQ
  • Maya Abdullayeva Azerbaijan State University of Oil and Industry, Azadlig 20, Baku, AZ-1010, Azerbaijan.
  • Mamoun Fellah Mechanical Engineering Department, ABBES Laghrour- Khenchela University, PO 1252, CP, 40004, Algeria.
  • Amani A. Husain Polymer Research Unit, College of Science, Mustansiriyah University, 10052 Baghdad, Iraq.
  • Emad Yousif Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.

DOI:

https://doi.org/10.22401/tav7dv39

Keywords:

PMMA modification , Photoirradiation stability , UV resistance , Nanocomposites , Amine light stabilizers

Abstract

Due to photoirradiation-induced deterioration, poly(methyl methacrylate) (PMMA), a thermoplastic that is extensively used and valued for its transparency and adaptability, performs less well in a variety of applications. This extensive analysis looks at creative approaches to improve the photoirradiation stability of PMMA, mostly concentrating on pendant modification techniques. The first sections of the paper explain the importance of stability in PMMA, describe the difficulties caused by photoirradiation, and state the goals of the review. An in-depth analysis of PMMA, including its attributes, traits, and many uses, prepares the reader for the investigation of stability improvement methods that follow. The literature review section explores previous research on PMMA stability, pointing out knowledge gaps and areas needing more research. After that, the focus turns to pendant customization and offers a thorough explanation, illustrations, and change procedures. An extensive analysis is conducted on many pendant modification methods, such as photostabilizing nanoparticles, hindered amine light stabilizers, and grafting of benzotriazole derivatives. Comparative evaluations draw attention to the advantages and disadvantages of each method. Optical devices, automotive components, and architectural glazing are identified as domains in which modified PMMA exhibits exceptional performance.  

References

Ali, U.; Karim, K.J.B.A.; Buang, N.A.; “A review of the properties and applications of poly (methyl methacrylate) (PMMA)”. Polym. Rev., 55(4): 678-705, 2015.

Sansul, S.; Yousif, E.; Zainulabdeen, K.; “A review study of the structure, properties and general application of poly (methyl methacrylate)”. Charact. Appl., 6(1): 1-10, 2023.

Yuan, M.; Xu, L.; Cui, X.; Lv, J.; Zhang, P.; Tang, H.; “Facile synthesis of ultrahigh molecular weight poly (methyl methacrylate) by organic halides in the presence of palladium nanoparticles”, Polym., 12(11): 2747, 2020.

Pawar, E.; “A review article on acrylic PMMA”, IOSR J. Mech. Civ. Eng, 13(2): 1-4, 2016.

Musa, W.A.; Hamad, T.K; Nabi, M.T.A.; “Thickness Effect on the Optical Constants of Poly Methyl Methacrylate (PMMA) Doped by Potassium Iodide”, ANJS, 16(3): 119-123, 2013.

Shanti, R.; “Poly (Methyl methacrylate-co-butyl acrylate-co acrylic acid): Synthesis, characterization and targeted solid state-Dye sensitized solar cell application”, R Shanti Rajantharan (Doctoral dissertation, University of Malaya), 2018.

Shanti, R.; Hadi, A.N.; Salim, Y.S.; Chee, S.Y.; Ramesh, S.; Ramesh, K.; “Degradation of ultra-high molecular weight poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation”, RSC advances, 7(1): 112-120, 2017.

Tan, J.; Zhu, H.; Cao, S.; Chen, S.; Tian, Y.; Ding, D.; Zheng, X.; Hu, C.; Hu, T.; Wu C.; “Preparation and catalytic properties of poly (methyl methacrylate)-supported Pd 0 obtained from room-temperature, dark reduction of ionic aggregates of the unstable Pd 2+ solution ionomer”, RSC advances, 10(70): 43175-43186, 2020.

Fila, K.; Goliszek, M.; Podkościelna, B.; Podgórski, M.; “Polymer side-chain modification in methacrylate and styrene copolymers through thiol-thioester dynamic exchange”, Eur. Polym. J., 136: 109918, 2020.

Wu, W.; Ouyang, Q.; He, L.; Huang, Q.; “Optical and thermal properties of polymethyl methacrylate (PMMA) bearing phenyl and adamantyl substituents”. Colloids Surf., A, 20(653): 130018, 2022.

Chang, L.; Woo, E.M.; “Tacticity effects on glass transition and phase behavior in binary blends of poly (methyl methacrylate) s of three different configurations”. Polym. Chem., 1(2): 198-202, 2010.

Plota, A.; Masek, A.; “Lifetime prediction methods for degradable polymeric materials—A short review”, Materials, 13(20): 4507, 2020.

Al-Khulaifi, R.S.; AlShehri, M.M.; Al-Owais, A.A.; Algarni, T.S.; Saeed, W.S.; Badjah-Hadj-Ahmed, A.Y.; Aouak, T.; “New Method Based on the Direct Analysis in Real Time Coupled with Time-of-Flight Mass Spectrometry to Investigate the Thermal Depolymerization of Poly (methyl methacrylate)”. Polymer, 15(3): 599, 2023.

Shaker, M.A.; Younes, H.M.; “Photo-irradiation paradigm: mapping a remarkable facile technique used for advanced drug, gene and cell delivery”, JCR, 217: 10-26, 2015.

Yamaguchi, T.; Ogawa, M.; “Photoinduced movement: how photoirradiation induced the movements of matter”, STAM, 23(1): 796-844, 2022.

Solyman, S.M.; Darwish, M.S.; Yoon, J.; “Catalytic activity of hybrid iron oxide silver nanoparticles in methyl methacrylate polymerization”, Catalysts, 10(4): 422, 2020.

Diken, M.E.; Doğan, S.; Turhan, Y.; Doğan, M.; “Biological properties of PMMA/nHAp and PMMA/3-APT-nHAp nanocomposites”. Int. J. Polym. Mater., 67(13): 783-791, 2018.

Xiao, P.; Zhang, J.; Zhao, J.; Stenzel, M.H.; “Light-induced release of molecules from polymers” Prog. Polym. Sci., 74: 1-33, 2017.

Al-Obaidi, N.S.; Ahmed, A.A.; Abd, A.N.; “Photo Stabilizing Efficiency Of Poly (methyl methacrylate) Based On Metal Ion Complexes Of Saccharine”, Bionatura, 8(1): 1-11, 2023.

Sansul, S.; Yousif, E.; Ahmed, D.S.; El-Hiti, G.A.; Kariuki, B.M.; Hashim, H.; Ahmed, A.; “Pendant modification of poly (methyl methacrylate) to enhance its stability against photoirradiation”. Polymer, 15(14): 2989, 2023.

Nandi, A.K.; Basak, U.; Chatterjee, D.P.; “Controlled grafting of polythiophene and poly (vinylidene fluoride)”, J. Polym. Sci., Part A, 1-23, 2023.

Shanmugam, S.; Xu, J.; Boyer, C.; “Photocontrolled living polymerization systems with reversible deactivations through electron and energy transfer”. Macromol. Rapid Commun., 38(13): 1700143, 2017.

Klampfl, C.W.; Himmelsbach, M.; “Advances in the determination of hindered amine light stabilizers–A review”, Anal. Chim. Acta, 933: 10-22, 2016.

Gijsman, P.; “Photostabilization of polymer materials” Photochemistry and photophysics of polymer materials, 627-679, 2010.

Bhayo, A.M.; Yang, Y.; He, X.; “Polymer brushes: Synthesis, characterization, properties and applications”, Prog. Mater. Sci., 130: 101000, 2022.

Ibraheem, H.A.; El-Hiti, G.A.; Yousif, E.; Ahmed, D.S.; Hashim, H.; Kariuki, B.M.; “Investigation of the Impact of Chemical Modifications on the Photostability of Polymethyl Methacrylate”. Int. J. Polym. Sci. 2024, 2024.

Rymuszka, D.; Terpiłowski, K.; Sternik, D.; Tomczyńska-Mleko, M.; Goncharuk, O.; “Wettability and thermal analysis of hydrophobic poly (methyl-methacrylate) /silica nanocomposites”. Adsorpt. Sci. Technol., 35(5-6): 560-571, 2017.

Han, D.C.; Kim, H.; Kwak, G.; “Benzotriazole-containing fluorinated acrylic polymer coatings with high thermal stability, low surface energy, high visible-light transparency, and UV-blocking performance”. Polym. Bull., 80(5), pp.5641-5654, 2023.

Forte, M.A.; Silva, R.M.; Tavares, C.J.; Silva, R.F.E.; “Is poly (Methyl Methacrylate) (PMMA) a suitable substrate for ALD?: A review”, Polymer, 13(8), 1346, 2021.

Ling, Z.; Zhongshi, L.; Wenjun, F.A.; Tianyou, P.; “A novel polymethyl methacrylate (PMMA)-TiO 2 nanocomposite and its thermal and photic stability”, Wuhan University J. Nat. Sci., 11: 415-418, 2006.

Zafar, M.S.; “Prosthodontic applications of polymethyl methacrylate (PMMA): An update”. Polym. 12(10): 2299, 2020.

Hammam, M.; El-Mansy, M.K.; El-Bashir, S.M.; El-Shaarawy, M.G.; “Performance evaluation of thin-film solar concentrators for greenhouse applications”, Desalination, 209(1-3): 244-250, 2007.

Chen, F.; Ma, X.; Qu, X.; Yan, H.; “Structure and properties of an organic rectorite/poly (methyl methacrylate) nanocomposite gel polymer electrolyte by in situ synthesis”. J. Appl. Polym. Sci, 114(5): 2632-2638, 2009.

John, J.; Gangadhar, S.A.; Shah, I.; “Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers”, J Prosthet Dent, 86(4): 424-427, 2001.

Mishra, S.; Sen, G.; “Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications”, Int. J. Biol. Macromol., 48(4): 688-694, 2011.

Zafar, M.S.; “Prosthodontic applications of polymethyl methacrylate (PMMA): An update”, Polym., 12(10): 2299, 2020.

Choudhary, A.; Banerjee, M.; Mukherjee, G.S.; Joshi, A.; “April. Magnetic and structural properties of poly methyl methacrylate (PMMA)/Fe film”, In AIP Conference Proceedings AIP Publishing, 2100(1): 2019.

Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A.; “PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition”, Int J Nanomedicine, 3801-3812, 2017.

Gad, M.M.; Abualsaud, R.; “Behavior of PMMA denture base materials containing titanium dioxide nanoparticles: A literature review”, Int. J. Biomater., 2019: 1-14, 2019.

Downloads

Published

2024-09-16

How to Cite

(1)
Enhancing Photoirradiation Stability: A Review on Modification of Poly(methyl Methacrylate). ANJS 2024, 27 (3), 32-42. https://doi.org/10.22401/tav7dv39.