Ocimum Gratissimum Linn. Leaf Extract and Fractions Pre-Treatments are not Associated With Deleterious Electrocardiogram Changes in Trastuzumab-Intoxicated Wistar Rats

Authors

  • Adejuwon A. Adeneye Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
  • Olufunke E. Olorundare Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
  • Olumuyiwa A. Adejumobi Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
  • Temidayo O. Omobowale Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
  • Akinyele O. Akinsola Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
  • Abayomi M. Ajayi Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria

DOI:

https://doi.org/10.22401/an14jj23

Keywords:

Ocimum gratissimum Linn., Ethanolic leaf extract and solvent fractions, ECG parameters, TZM-intoxication, Arrhythmogenic potential

Abstract

Trastuzumab (TZM) treatment is known to be associated with arrhythmogenic potential which primarily is the basis for its cardiotoxicity. The purpose of this study was to investigate the acute influence of oral pretreatments with 100 mg/kg/day of Ocimun gratissimum ethanolic leaf extract (OG) and its fractions (petroleum ether, PEOG; ethyl acetate, EAOG; and ethanolic extract, EOG) as well as valsartan-lisinopril fixed dose combination (VAL-LSP) on electrocardiogram (ECG) of Wistar rats intaperitoneally treated with 2.25 mg/kg/day TZM for 7 days.  Young adult male Wistar rats were randomly allotted into 12 groups of 6 rats per group. The rats were subjected to electrocardiograms (ECG) measurement using non-invasive procedures on days 1 and 7 of the experiment. Results showed that oral pretreatment with OG and its fractions (except EOG) as well as VAL-LSP fixed dose combination did not cause any remarkable changes in the ECG patterns of TZM-treated rats indicating that their relative oral safety in TZM chemotherapy. On the other hand, EOG pretreatment caused significant shortening of the OT/QTc interval in the TZM-treated rats highlighting the arrhthymogenic potential of this fraction. Overall, the study highlighted the arrhythmogenic potential of EOG in TZM chemotherapy while OG and its other solvent fractions as well as VAL-LSP could be considered relatively safe for use as adjuvants in TZM chemotherapy.

References

Maximiano, S.; Magalhães, P.; Guerreiro, M.P.; Morgado, M.; “Trastuzumab in the treatment of breast cancer”. BioDrugs 30(2): 75-86, 2016. doi: 10.1007/s40259-016-0162-9.

Wynn, C.S.; Tang, S-C.“Anti-HER2 therapy in metastatic breast cancer: many choices and future directions”. Cancer Meta. Rev., 41: 193-209, 2022. doi: 10.1007/s10555-022-10021-x.

Gibo, T.; Sekiguchi, N.; Gomi, D.; Noguchi, T.; Fukushima, T.; Kobayashi, T.; Ozawa, T.; Yamada, S-I.; Koizumi, T. “Targeted therapy with trastuzumab for epidermal growth factor receptor 2 (HER2) positive advanced salivary duct carcinoma: A case report.” Mol. Clin. Oncol., 11: 111-115, 2019.

doi: 10.3892/mco.2019.1875

Olorundare, O.E.; Adeneye, A.A.; Akinsola, A.O.; Ajayi, A.M.; Agede, O.A.; Soyemi, S.S.; Mgbehoma, A.I.; Okoye, I.I.; Albrecht, R.M.; Ntambi, J.M.; Crooks, P.A.; “Therapeutic potentials of selected antihypertensive agents and their fixed-dose combinations against trastuzumab-mediated cardiotoxicity.” Front. Pharmacol., 11: 610331, 2021.

https://doi.org/10.3389/fphar.2020.610331

Zhang, S.; Huang, W.C.; Li, P.; Guo, H.; Poh, S.B.; Brady, S.W.; Xiong, Y.; Tseng, L.M.; Li, S.H.; Ding, Z.; Sahin, A.A.; Esteva, F.J.; Hortobagyi, G.N.; Yu, D. “Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways.” Nat. Med., 17: 461-469, 2011. doi: 10.1038/nm.2309.

Yu, Y-M.; Chao, T-Y.; Chang, W-C.; Chang, M.J.; Lee, M-F.; Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits. J. Food Drug Anal., 24(3): 556-563, 2016.

doi: 10.1016/j.jfda.2016.02.004.

Vazdar, L.; Gabric, I.D.; Kruljac, I.; Pintarić, H.; Šeparović, R.; Kirigin Biloš, L.S.; Pavlović, M.; Tečić Vuger, A.; Štefanović, M.; “Influence of Ile655Val polymorphism on trastuzumab-induced cardiotoxicity in early-stage HER2 positive breast cancer.” Sci Rep., 11(1): 14395, 2021. doi: 10.1038/s41598-021-93634-6.

Mohan, N.; Shen, Y.; Endo, Y.; Endo, Y.; El-Zarrad, M.K.; “Trastuzumab, but not pertuzumab dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human cardiomyocytes”. Mol. Cancer Ther., 15: 321-331, 2016. doi:10.1158/1535-7163.MCT-15-0741.

Eaton, H.; Timm, K.N.; “Mechanisms of trastuzumab induced cardiotoxicity is exercise a potential treatment?” Cardio-Oncology 9: 22, 2023. doi: 10.1186/s40959-023-00172-3.

Mohan, N.; Jiang, J.; Dokmanovic, M.; Wu, W.J. “Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers.” Antib. Ther., 1(1): 13-17, 2018.

doi: 10.1093/abt/tby003.

Bayar, N.; Küçükseymen, S.; Göktaş, S.; Arslan, Ş.; “Right ventricle failure associated wıth trastuzumab.” Ther. Adv. Drug Safety, 6(3): 98-102, 2015.

doi: 10.1177/2042098615582162

Barthur, A.; Brezden-Masley, C.; Connelly, K.A.; Dhir, V.; Chan, K.K.W.; Haq, R.; Kirpalani, A.; Barfett, J.J.; Jimenex-Juan, L.; Karur, G.R.; Deva, D.P.; Yan, A.T. “Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study.” J. Cardiovasc. Magn. Res., 19: 44, 2017.

doi: 10.1186/s12968-017-0356-4.

Calleja, A.; Poulin, F.; Khorolsky, C.; Shariat, M.; Bedard, P.L.; Amir, E.; Rakowski, H.; McDonald, M.; Delgado, D.; Thavendiranathan, P. Right ventricular dysfunction in patients experiencing cardiotoxicity during breast cancer therapy. J. Oncol., 2015: 609194, 2015. doi: 0.1155/2015/609194.

Jahangir, E.; Harinstein, M.E.; Murthy, V.L.; Moslehi, J.; “The forgotten right ventricle in cardio-oncology.” J. Nucl. Cardiol., 27: 2164-2166, 2020. doi: 10.1007/s12350-019-01602-5.

Tan-Chiu, E.; Yothers, G.; Romond, E.; Geyer, C.E. Jr.; Ewer, M.; Keefe, D.; Shannon, R.P.; Swain, S.M.; Brown, A.; Fehrenbacher, L.; Vogel, V.G.; Seay, T.E.; Rastogi, P.; Mamounas, E.P., Wolmark, N.; Bryant, J. “Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2- overexpressing breast cancer: NSABP B-31.” J. Clin. Oncol. 23: 7811-7819, 2005. doi: 10.1200/JCO.2005.02.4091.

Milano, G.; Raucci, A.; Scopece, A.; Daniele, R.; Guerrini, U.; Sironi, L.; Cardinale, D.; Capogrossi, M.C.; Pompilio, G.; “Doxorubicin and trastuzumab regimen induce biventricular failure in mice. J. Am. Soc. Echocardiogr., 27(5): 568-579, 2014. doi: 10.1016/j.echo.2014.01.014.

Grover, S.; Leong, D.P.; Chakrabarty, A.; Joerg, L.; Kotasek, D.; Cheong, K.; Joshi, R.; Joseph, M.X.; DePasquale, C.; Koczwara, B.; Selvanayagam, J.B.; “Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers.” Int. J. Cardiol., 168: 5465-5467, 2013.

doi: 10.1016/j.ijcard.2013.07.246.

Karaca, M.; Kocoglu, H.; Bilgetekin, I.; Ozet, A.; Sahinli, H.; Demir, H.; Kankoc, A.; Tural, D.; Yucel, O.K. “Ventricular bigeminal rhythm associated with trastuzumab: A potential cardiac side effect.” J. Cancer Res. Ther., 14(Supplement): S536-S537, 2018.

doi: 10.4103/0973-1482.183557.

Alizadehasl, A.; Mohseni, M.; Noohi Bezanjani, F.; Maleki, M.; Roudini, K. “Trastuzumab and ECG changes dilemma.” Int. J. Hematol. Oncol. Stem Cell Res., 17(2): 63-64, 2023.

doi:10.18502/ijhoscr.v17i2.12641.

Wu, W.C.; Huang, C.C.; Tsai, Y.F; Lin, Y-S.; Feng, C-J,; Chen, Y-J.; Lai, J-I,; Chao, T-C.; Liu, C-Y. “The association of trastuzumab with atrial fibrillation and heart failure in breast cancer patients in routine clinical practice: a population-based propensity score matching and competing risk model analysis.” Breast Cancer Res. Treat., 198: 113-122, 2023. doi:10.1007/s10549-022-06753-7.

Sakuntala, P.; Selva Raju, R.; Jaleeli, K.A. “FTIR and energy dispersive x-ray analysis of medicinal plants, Ocimum gratissimum and Ocimum tenuiflorum.” Int. J. Sci. Res. Phys. Appl. Sci. 7(3): 6-10, 2019.

doi:10.26438/ijsrpas/v7i3.610.

Ajibola, M.I.; Ibrahim, R.B.; Imam, A.M.; Mustapha, A.; Safiriyu, A.; Etibor, A.T. “Neurodegenerative potential of the aqueous leaf extract of Ocimum gratissimum: A histological and biochemical study.” Anat. J. Afr., 4(2): 563-570, 2017.

doi: 10.1016/j.nutos.2022.06.001.

Ibironke, S.I.; Akinola, E.A.; Adepeju, A.B. “Comparative study of condiment vegetable basil leaf (Ocimum gratissimum) and bitter leaf (Vernonia amygdalina).” J. Food Nutr. Res., 5(3): 95-98, 2017. doi: 10.12691/ajfn-5-3-3.

Nweze, E.I.; Eze, E.E. “Justification for the use of Ocimum gratissimum L in herbal medicine and its interaction with disc antibiotics.” BMC Complement. Altern. Med., 9(37): 1472, 2009. doi: 10.1186/1472-6882-9-37.

Thubthimthed, S.; Kajsongkram, T.; Khayankamnawee, A.; Banchonglikitkul, C.; "Anti-stress activity of Ocimum gratissimum extract". Thai J. Pharm. Sci., 36: 28. https://digital.car.chula.ac.th/tjps/vol36/iss0/28.

Ilori, M.; Sheteolu, A.O.; Omonigbehin, E.A.; Adeneye, A.A.; “Antidiarrheal activities ofOcimum gratissimum (Lamiaceae).” J. Diarrhoeal Dis. Res. 14(4), 283-285, 1996. PMID: 9203793.

Matasyoh, L.G.; Matasyoh, J.C.; Wachira, F.N.; Kinyua, M.G.; Muigai, A.W.; Mukiama, T.K.; “Antimicrobial activity of essential oils of Ocimum gratissimum L. From different populations of Kenya”. Afr. J. Trad. Compl. Alt. Med., 5(2): 187-193, 2008.

doi:10.4314/ajtcam.v5i2.31272.

Ugbogu, O.C.; Emmanuel, O.; Agi, G.O.; Ibe, C.; Ekweogu, C.N.; Ude, V.C.; Uche, M.E.; Nnanna, R.O.; Ugbogu, E.A. “A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.).” Heliyon, 7(11): e08404, 2021.

doi: 10.1016/j.heliyon.2021.e08404.

Ajayi, A.M.; Ologe, M.O.; Ben-Azu, B.; Okhale, S.E.; Adzu, B.; Ademowo, O.G. “Ocimum gratissimum Linn. leaf extract inhibits free radical generation and suppressed inflammation in carrageenan-induced inflammation models in rats.” J. Basic Clin. Physiol. Pharmacol., 28(6): 531-541, 2017.

doi: 10.1515/jbcpp-2016-0096.

Edo, G.I.; Samuel, P.O.; Ossai, S.; Nwachukwu, S.C.; Okolie, M.C.; Oghenegueke, O.; Asaah, E.U,; Akpoghelie, P.O.; Ugbune, U.; Owheruo, J.O.; Ezekiel, G.O.; Onoharigho, F.O.; Agbo, J.J.; “Phytochemistry and pharmacological compounds present in scent leaf: A review” Food Chem. Adv., 3: 100300, 2023. doi:10.1016/j.focha.2023.100300.

Ighodaro, O.M.; Ebuehi, O.A.; “Aqueous leaf extract of Ocimum gratissimum potentiates activities of plasma and hepatic antioxidant enzymes in rats.” Nig. Q. J. Hosp. Med., 19(2): 106-109, 2009. PMID: 20836310.

Chen, H-M.; Lee, M-J.; Kao, S-H.; Kuo, C-Y.; Tsai, P-L.; Liu, J-Y. “Ocimum gratissimum aqueous extract induces apoptotic signaling in lung adenocarcinoma cell A549.” Evid. Based Complementary Altern. Med., 2011: 739093, 2011. doi: 10.1155/2011/739093.

Sudan, P.; Sharma, M. “Exploration of antifungal potential of extracts of leaves of Ocimum gratissimum against Microsporum gypseum.” Res. J. Pharm. Technol., 15(11): 4908-4912, 2022.

doi: 10.52711/0974-360X.2022.00824.

Chiu, C-C.; Huang, C-Y.; Chen, T-Y.; Kao, S-H.; Liu, J-Y.; Wang, Y-W.; Tzang, B-S.; Hsu T-C.; “Beneficial effects of Ocimum gratissimum aqueous extract on rats with CCl4-induced acute liver injury. Evid. Based Complementary Altern. Med. 2012: 736752, 2012.

doi: 10.1155/2012/736752.

Lee, M.J.; Chen, H.M.; Tzang, B.S. “Ocimum gratissimum aqueous extract protects H9c2 myocardiac cells from H2O2-induced cell apoptosis through akt signaling.” Evid. Based Complementary Altern. Med., 2011: 578060. doi: 10.1155/2011/578060.

Ojo, O.A.; Ojo, A.B.; Oyinloye, B.E.; Ajiboye, B.O.; Anifowose, O.O.; Akawa, A.; Olaiya, O.E.; Olasehinde, O.R.; Kappo, A.P.; “Ocimum gratissimum Linn. leaves reduce the key enzymes activities relevant to erectile dysfunction in isolated penile and testicular tissues of rats.” BMC Complement. Altern. Med., 19: 71, 2019.

doi: 10.1186/s12906-019-2481-0.

Njan, A.A.; Olaoye, S.O.; Afolabi, S.O.; Ejimkonye, B.C.; Soje, A.; Olorundare, O.E.; Iwalewa, E.O. “Safety effect of fractions from methanolic leaf extract of Ocimum gratissimum on reproduction in male Wistar rats.” Toxicol. Rep., 6: 496-504, 2019.

doi:10.1016/j.toxrep.2019.04.009.

Freire, C.M.; Marques, M.O.; Costa, M.; “Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil.” J. Ethnopharmacol., 105: 161-166, 2006. doi: 10.1016/j.jep.2005.10.013.

Okoli, C.O.; Ezike, A.C.; Agwagah, O.C.; Akah, P.A.; “Anticonvulsant and anxiolytic evaluation of leaf extracts of Ocimum gratissimum, a culinary herb.” Pharmacogn. Res. 2: 36- 40, 2010. doi: 10.4103/0974-8490.60580.

Alabi, Q.K.; Akomolafe, R.O.; Omole, J.G.; Aturamu, A.; Ige, M.S.; Kayode, O.O.; Kajewole-Alabi, D.; “Polyphenol-rich extract of Ocimum gratissimum leaves prevented toxic effects of cyclophosphamide on the kidney function of Wistar rats.” BMC Complement Altern. Med., 21: 274, 2009. doi: 10.1186/s12906-021-03447-3.

Ogundipe, O.J.; Akinpelu, O.F.; Oyerinde, A.; Oluwakemi, O.R.; “Ocimum gratissimum (Linn) leaves extract attenuates oxidative stress and liver injury in gentamicin-induced hepatotoxicity in rats.” Egypt. J. Basic Appl. Sci., 8(1): 146-155, 2021.

doi: 10.1080/2314808X.2021.1922250.

Udi, O.A.; Oyem, J.C.; Ebeye, O.A.; Chris-Ozoko, L.E.; Igbigbi, P.S.; Olannye, D.U.; “The effects of aqueous extract of Ocimum gratissimum on the cerebellum of male Wistar rats challenged by lead acetate.” Clin. Nutr. Open Sci. 44: 28-41, 2022.

doi: 10.1016/j.nutos.2022.06.001.

Parcha, V.; Dobhal, Y.; Dhasmana, D.C. “Isolation, characterization and cardioprotective potential of gratissinol from chloroform extract of Ocimum gratissimum (Linn.) leaves. J. Biol. Act. Prod. Nat., 9(4): 260-268, 2019.

doi: 10.1080/22311866.2019.1666740.

Dobhal, Y.; Parcha, V.; Dhasmana, D.C.; “Evaluation of chloroform extract and its fractions of Ocimum gratissimum (Linn.) Leaves for cardioprotective activity” J. Pharmacogn. Phytochem., 2(1): 20-25, 2013.

Olorundare, O.; Adeneye, A.; Akinsola, A.; Soyemi, S.; Mgbehoma, A.; Okoye, I.; Ntambi, J.M.; Mukhtar, H.; “African vegetables (Clerodendrum volubile leaf and Irvingia gabonensis seed extracts) effectively mitigate trastuzumab-induced cardiotoxicity in Wistar rats.” Oxid. Med. Cell. Longev. 2020: 9535426, 2020. doi: 10.1155/2020/9535426.

Adeneye, A.A.; Crooks, P.A.; Miller, A-F.; Goodman, J.; Adeyemi, O.O.; Agbaje, E.O. “Isolation and structure elucidation of a new indole alkaloid, erinidine, from Hunteria umbellata seeds.” Pharmacologia, 3(7): 204-214, 2012. doi:pharmacologia.2012.204.214.

National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. 8th ed.. Washington DC, USA: National Academies Press, 2011. https://www.ncbi.nlm.nih.gov/books/NBK54050

Adedapo, A.; Babarinsa, O.; Oyagbemi, A.; Adedapo, A.; Omobowale, T. “Cardiotoxicity study of the aqueous extract of corn silk in rats.” Maced. Vet. Rev., 39 (1): 43-49, 2016. doi:10.1515/macvetrev-2015-0065.

Ambhore, A.; Teo, S.G.; Bin Omar, A.R.; Poh, K.K.; “Importance of QT interval in clinical practice.” Singapore Med J., 55(12): 607-611, 2014. doi: 10.11622/smedj.2014172.

Vink, A.S.; Neumann, B.; Lieve, K.V.V.; Sinner, M.F.; Hofman, N.; El Kadi, S.; Schoenmaker, M.H.A.; Slaghekke, H.M.J.; de Jong, J.S.S.G.; Clur, S.B.; Blom, N.A.; Kääb, S.; Wilde, A.A.M.; Postema, P.G.; “Determination and interpretation of the QT interval.” Circulation, 138: 2345–2358, 2018.

doi:10.1161/CIRCULATIONAHA.118.033943.

Al-Khatib, S.M.; LaPointe, N.M.A.; Kramer, J.M.; Califf, R.M.; “What clinicians should know about the QT interval.” JAMA, 289(16): 2120-2127, 2003. doi:10.1001/jama.289.16.2120.

Beinart, R.; Zhang, Y.; Lima, J.A.; Bluemke, D.A.; Soliman, E.Z.; Heckbert, S.R.; Post, W.S.; Guallar, E.; Nazarian, S. “The QT interval is associated with incident cardiovascular events: the MESA study.” J. Am. Coll. Cardiol. 64: 2111-2119, 2014.

doi: 10.1016/j.jacc.2014.08.039.

Giudicessi, J.R.; Noseworthy, P.A.; Ackerman, M.J. “The QT interval: An emerging vital sign for the precision medicine era?” Circulation, 139: 2711-2713, 2019.

doi: 10.1161/CIRCULATIONAHA.119.039598.

Shah, R.R.; “Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives.” Br. J. Pharmacol., 159(1): 58-69, 2010.

doi: 10.1111/j.1476-5381.2009.00191.x.

Gaita, F.; Giustetto, C.; Bianchi, F.; Wolpert, C.; Schimpf, R.; Riccardi, R.; Grossi, S.; Richiardi, E.; Borggrefe, M. “Short QT Syndrome: a familial cause of sudden death.” Circulation, 108(8): 965-970, 2003.

doi: 10.1161/01.CIR.0000085071.28695.C4.

Pavão, M.L.R.C.; Ono, V.C.; Arfelli, E.; Simões, M.V.; Neto, J.A.M., Schmidt, A. “Sudden cardiac death and short QT syndrome” Arq. Bras. Cardiol. 103 (3): e37-e40, 2014.

doi: 10.5935/abc.20140133.

Holbrook, M.; Malik, M.; Shah, R.R.; Valentin, J.P.; “Drug-induced shortening of the QT/QTc interval: an emerging safety issue warranting further modelling and evaluation in drug research and development?” J. Pharmacol. Toxicol., 59: 21-28, 2009.

doi: 10.1016/j.vascn.2008.09.001.

Rudic, B.; Schimpf, R,; Borggrefe, M. “Short QT Syndrome - Review of diagnosis and treatment.” Arrhythm. Electrophysiol. Rev., 3(2):76-79, 2014. doi: 10.15420/aer.2014.3.2.76.

Olorundare, E.O.; Adeneye, A.A.; Akinsola, A.O., Ajayi, A.M.; Atolani, O.; Soyemi, S.S.; Mgbehoma, A.I.; Albrecht, R.M.; “Anti-apoptotic and antioxidant mechanisms may underlie the abrogative potential of Ocimum gratissimum Linn. Leaf extract and fractions against trastuzumab-induced cardiotoxicity in Wistar rats.” Toxicol. Rep., 12: 200-214, 2024.

doi: 10.1016/j.toxrep.2024.01.011.

Fukuwatari, T.; Suzuki, Y.; Sugimoto, E.; Shibata, K.; “Elucidation of the toxic mechanism of the plasticizers, phthalic acid esters, putative endocrine disrupters: Effects of dietary di(2-ethylhexyl)phthalate on the metabolism of tryptophan”. Biosci. Biotech. Biochem., 66(4): 705-710, 2002.

doi:10.1271/bbb.66.705.

Casals-Casas, C.; Desvergne, B.; “Endocrine disruptors: from endocrine to metabolic disruption.’’ Annu. Rev. Physiol., 73: 135-162, 2011.

doi:10.1146/annurev-physiol-012110-142200.

Kardas, F.; Bayram, A.K.; Demirci, E.; Akin, L.; Ozmen, S.; Kendirci, M.;, Canpolat, M.; Oztop, D.B.; Narin, F.; Gumus, H.; Kumandas, S.; Per, H.; “Increased serum phthalates (MEHP, DEHP) and bisphenol a concentrations in children with autism spectrum disorder: the role of endocrine disruptors in autism etiopathogenesis.” J. Child. Neurol., 31: 629-635, 2016.

doi:10.1177/0883073815609150.

Barry, Y.A.; Labow, R.S.; Rock, G.; Keon W.J. “Cardiotoxic effects of the plasticizer metabolite, mono (2-ethylhexyl)phthalate (MEHP), on human myocardium.” Blood, 72: 1438-1439, 1988. PMID: 3167217.

Barry, Y.A.; Labow, R.S.; Keon, W.J.; Tocchi, M.; “Atropine inhibition of the cardiodepressive effect of mono(2-ethylhexyl)phthalate on human myocardium.” Toxicol. Appl. Pharmacol., 106: 48-52, 1990.

doi: 10.1016/0041-008x(90)90104-3.

Jaimes, .; Swiercz, A.; Sherman, M.; Muselimyan, N.; Marvar, P.J.; Posnack, N.G.; “Plastics and cardiovascular health: phthalates may disrupt heart rate variability and cardiovascular reactivity.” Am. J. Physiol. Heart Circ. Physiol., 313: H1044-H1053, 2017. Doi:10.1152/ajpheart.00364.2017.

Jaimes R.; Mc-Cullough, D.; Siegel, B.; Swift, L.; McInerney, D.; Hiebert, J.; Perez-Alday, E.A.; Trenor, B.; Sheng, J.; Saiz, J.; Tereshchenko, L.G., Posnack, N.G.; “Plasticizer interaction with the heart chemicals used in plastic medical devices can interfere with cardiac electrophysiology” Circulation: Arrhythmia and Electrophysiology, 12(7): 1-13, 2019.

doi:10.1161/CIRCEP.119.007294.

Menne, J.; Farsang, C.; Deák, L.; Klebs, S.; Meier, M.; Handrock, R.; Sieder, C.; Haller, H. “Valsartan in combination with lisinopril versus the respective high dose monotherapies in hypertensive patients with microalbuminuria: the VALERIA trial.” J. Hypertens. 26(9): 1860- 1867, 2008.

doi:10.1097/HJH.0b013e32830508aa.

Mehdi, U.F.; Adams-Huet, B.; Raskin, P.; Vega, G.L.; Toto, R.D. “Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy.” J. Am. Soc. Nephrol., 20(12): 2641-2650, 2009.

doi: 10.1681/ASN.2009070737.

Adeneye, A.A.; Olorundare, O.E.; Omobowale, T.O.; Akinsola, A.O.; Kolo, P.M., Albrecht, R.M.; Crooks, P.A. “Selected antihypertensive agents and their fixed-dose ccombinations eeffectively ameliorate trastuzumab-mediated cardiac dysfunctions in rats.” Niger. J. Physiol. Sci., 36(1): 57-65, 2021. PMID: 34987247.

Downloads

Published

2024-06-15

Issue

Section

Articles

How to Cite

(1)
Ocimum Gratissimum Linn. Leaf Extract and Fractions Pre-Treatments Are Not Associated With Deleterious Electrocardiogram Changes in Trastuzumab-Intoxicated Wistar Rats. ANJS 2024, 27 (2), 68-80. https://doi.org/10.22401/an14jj23.