Synthesis, Characterization and Antimicrobial Evolution of New Bi-α-amino Nitrile Compounds

Authors

  • Zena Abdulhameed Department of Chemistry, College of Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq
  • Ammar J. Alabdali Department of Chemistry, College of Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq

Keywords:

Bi-α-amino nitrile, Polydentate compounds, Macroacyclic compound, Anti-bacterial Activity

Abstract

This project is regarding the synthesis of  new bi-α-amino nitrile compounds derived from the reaction of di-amine , aldehyde (vanillin  or  o-vanillin ), and KCN in glacial acetic acid as a solvent . The three components-one pot reaction  produced (2, 2' - (1, 2-phenylenebis (azanediyl)) bis(2-(4-hydroxy-3-methoxyphenyl) acetonitrile) (I) and (2, 2'-(1, 2- phenylenebis (azanediyl)) bis(2-(2-hydroxy-3-methoxyphenyl) acetonitrile) (II) considering the formation of bi-imine compounds as intermediate. α-amino nitrile compounds (I and II)  were characterized using infrared spectroscopy and mass spectroscopy. The prepared compounds were screened for their anti-microbial activity. The bacteria are Gram positive (Staphylococcus aurous) and Gram negative (Escherichia coli) in vitro, the results were promising; due to the large inhibition zones.

References

Hon, Y.S.; Yan, J.L.; “Syntheses of Bifunctional Compounds from Cycloalkenes via Ozonide Intermediates”. Tetrahedron, 53(14): 5217-5232, 1997.

Doyle, A.G.; Jacobsen, E.N.; “Enantio-Selective Alkylation of Acyclic α, α‐Disubstituted Tributyltin Enolates Catalyzed by a {Cr (salen)} Complex”. Angew. Chem. Int. Ed, 46(20): 3701-3705, 2007.

Kouznetsov, V.V.; Galvis, C.E.P.; “Strecker Reaction and Α-Amino Nitriles: Recent Advances in Their Chemistry, Synthesis, and Biological Properties”. Tetrahedron, 74(8): 773–810, 2018.

Mól, W.; Matyja, M.; Filip, B.; Wietrzyk, J.; Boryczka, S.; “Synthesis and Antiproliferative Activity in Vitro of Novel (2-butynyl) Thioquinolines”. Bioorg. Med. Chem., 16(17): 8136–8141, 2008.

Ran, X.; Gestwicki, J.E.; “Inhibitors of Protein–Protein Interactions (Ppis): An Analysis of Scaffold Choices and Buried Surface Area”. Curr. Opin. Chem. Biol., 44(1): 75-86, 2018.

Raina, K.; Crews, C.M.; “Targeted Protein Knockdown Using Small Molecule Degraders”. Curr. Opin. Chem. Biol, 39(1) : 46-53, 2017.

Paull, D.H.; Fang, C.; Donald, J.R.; Pansick, A.D.; Martin, S.F.; “Bifunctional Catalyst Promotes Highly Enantioselective Bromolactonizations to Generate Stereogenic C–Br Bonds”. J. Am. Chem. Soc., 134(27): 11128-11131, 2012.

Corson, T.W.; Aberle, N.; Crews, C.M.; "Design and Applications of Bifunctional Small Molecules: Why Two Heads are Better Than One?". ACS Chem. Biol., 3(11): 677-692, 2008.

Martínez, R.; Ramon, D.J.; Yus, M.; "Catalyst-Free Multicomponent Strecker Reaction in Acetonitrile". Tetrahedron Lett., 46(49): 8471-8474, 2015.

Grundke, C.; Vierengel, N.; Opatz, T.; “α-Aminonitriles: From Sustainable Preparation to Applications in Natural Product Synthesis”. Chem. Rec., 20(9): 989-1016, 2020.

Ullah, B.; Gupta, N.K.; Ke, Q.; Ullah, N.; Cai, X.; Liu, D.; “Organocatalytic Synthesis of α-Aminonitriles: A Review”. Catalysts, 12(10): 1149, 2022.

Masamba, W.; “Petasis vs. Strecker Amino Acid Synthesis: Convergence, Divergence and Opportunities in Organic Synthesis”. Molecules, 26(6): 1707, 2021.

Grundke, C.; Opatz, T.; “Strecker Reactions with Hexacyanoferrates as Non-Toxic Cyanide Sources”. Green Chem., 21(9): 2362–2366, 2019.

Martens J.; "Enantioselective Organocatalytic Strecker Reactions in the Synthesis of α‐Amino Acids". Chem. Cat. Chem., 2(4): 379-381, 2010.

Izumi, S.; Kobayashi, Y.; Takemoto, Y.; “ChemInform Abstract: Catalytic Asymmetric Synthesis of anti-α,β-Diamino Acid Derivatives”. Chem. Info., 18(4): 696–699, 2016.

Jawad, A.; Alabdali, A.J.; “Synthesis, Characterization and Antibacterial Activity of Some Penicillin Derivatives”. Al-Nahrain J. Sci., 23(4): 29–34, 2020.

Ghani, A.; Alabdali, A.J.; “Synthesis, Characterization and Anti-Cancer Activity of gold (III) and Nickel (II) Metal Ion Complexes Derived from Tetrazole-Triazole Compound”. Al-Nahrain J. Sci., 25(2): 8-13, 2022.

Abdnoor, M.; Alabdali, A.J.; “Synthesis, Characterization, and Anticancer Activity of some Azole-Heterocyclic Complexes with Gold(III), Palladium (II), Nickel (II) and Copper (II) Metal Ions”. J. Chin. Chem. Soc., 66(11): 1–10, 2019.

Podeszwa, B.; Niedbala, H.; Polanski, J.; Musiol, R.; Tabak, D.; Finster, J.; Serafin, K.; Milczarek, M.; Wietrzyk, J.; Boryczka, S.; Mol, W.; “Investigating the Antiproliferative Activity of Quinoline-5,8-Diones and Styrylquinolinecarboxylic Acids on Tumor Cell Lines”. Bioorganic Med. Chem. Lett., 17(22): 6138–6141, 2007.

Lakshmi, S.S.; Geetha, K.; “Synthesis, Characterization and Biological Studies of Tridentate Amino Acid (L-Tryptophan) Schiff Base Transition Metal Complexes”. J. Chem. Pharm. Res., 8(1): 668-674, 2016.

Eppinger, E.; Gröning, J.A.D.; Stolz, A.; “Chemoenzymatic Enantioselective Synthesis of Phenylglycine and Phenylglycine Amide by Direct Coupling of the Strecker Synthesis with a Nitrilase Reaction”. Front. Catal., 5(2): 952944, 2022.

Oliveira, V.D.G.; Cardoso, M.F.D.C.; Forezi, L.D.S.M.; “Organocatalysis: A Brief Overview on Its Evolution and Applications”. Catalysts, 8(12): 605, 2018.

Ricano, A.; Captain, I.; Carter, K.P.; Nell, B.P.; Deblonde, G.J.P.; Abergel, R.J.; “Combinatorial Design of Multimeric Chelating Peptoids for Selective Metal Coordination”. J. Chem. Sci., 10(28): 6834-6843, 2019.

Liye, Q.; Roisnel, T.; Cordier, M.; Yuan, D.; Yao, Y.; “Rare-Earth Metal Complexes Supported by Polydentate Phenoxy-Type Ligand Platforms: CH Activation Reactivity and CO2/Epoxide Copolymerization Catalysis”. Open J. Inorg. Chem., 59 (23): 16976-16987, 2020.

Alabdali, A.J.; Al-Amery, M.; “Synthesis, Thermal Study and Biological Activity of Cobalt (II) and Copper (II) Mixed Ligand Complexes Using (N-4- Methoxy Phenyl) Amino Phenyl Acetonitrile and Histidine Ligands”. J. Pharm. Sci. Res., 11(1): 155-158, 2019.

Omoto, K.; Tashiro, S.; Kuritani, M.; Shionoya, M.; Am. J.; “Multipoint Recognition of Ditopic Aromatic Guest Molecules via Ag−πInteractions within a Dimetal Macrocycle”. Chem. Soc., 136(52): 17946–17949, 2014.

Pavia, D.; Lampman, G.M.; Kriz, G.; Vyvyan, J.; “Introduction to spectroscopy”. 4th ed.; Belmont, California: Cengage Learning, 38, 2008.

Field, L.; Sternhell, S.; Kalman, J.; “Organic Structures from Spectra”. 4th ed.; John Wiley & Sons Ltd.: The Atrium, Southern Gate, Chichester, England, 2008.

Ismaiel, S.; Alabdali, A.J.; Shaalan, N.; “Synthesis of Binuclear Complexes of Cu (II), Ni (II) and Cr (III) Metal Ions Derived from Di-Imine Compound as Biterminal Binding Site Ligand”. Al-Nahrain J. Sci., 23(4): 19–28, 2020.

Salama, M.; Ahmed, S.; Hassan, S.; “Synthesis, Characterizations, Biological, and Molecular Docking Studies of Some Amino Acid Schiff Bases with Their Cobalt(II) Complexes”. Adv. Biol. Chem., 7(5): 182–194, 2017.

Downloads

Published

2024-02-01

Issue

Section

Articles

How to Cite

[1]
“Synthesis, Characterization and Antimicrobial Evolution of New Bi-α-amino Nitrile Compounds”, ANJS, vol. 26, no. 4, pp. 21–27, Feb. 2024, Accessed: Apr. 28, 2024. [Online]. Available: https://anjs.edu.iq/index.php/anjs/article/view/2626