High-Performance Liquid Chromatography (HPLC): Primary Mechanism and Popular Applications

Authors

  • Raad Radi Karabat Hammood Supervision Department, Ministry of Education, Baghdad, Iraq.
  • Ali Jasim Hammood Supervision Department, Ministry of Education, Baghdad, Iraq.
  • Wad Abdulhusein Abdulrasool Ministry of Education, Baghdad, Iraq.
  • Sabah Salam Hussein Federal Public Service Council, Baghdad, Iraq.

Keywords:

Chromatography, Gas Chromatography, HPLC, Separation techniques

Abstract

The concept chromatography can be used to refer to a huge variety of distinct analytical procedures. Each of these procedures utilizes a mobile phase and an immobile phase as a basic component, yet they all belong under the chromatography umbrella concept. The subsequent component separation that is carried out is based on the disparity in concentration ratio that can be detected between the two phases. This disparity acts as the basis for the subsequent component separation that is carried out. Due to the limits of current technology, there is presently no detector that is universally applicable to high-performance liquid chromatography (HPLC), it is required to choose a detector in accordance with the characteristics of the chemicals that are to be examined. The measurements of absorbance in ultraviolet and visible spectrum, known as UV-Vis, or disclosing fluorescence are the foundations of the most common types of fluorescence detectors. In HPLC the components of the apparatus consist of a carrier phase, which is typically a solvent with a buffer solution; a pump; an injector; a column; a detector; and an integrator. The column is the most important part of the system where the various components are separated from one another. Based on that, there are many various kinds of columns through which the behavior of the components to be separated by these columns is understood. Due to the fact that chromatography is such a widely used technology.

References

Zhang, L., Hu, Y.; Galella, E., Tomasella, F.P.; Fish, W.P.;"Separation of atropisomers by chiral liquid chromatography and thermodynamic analysis of separation mechanism". J. Pharm. Anal., 7(3): 156-162, 2017.

Nahar, L.; Sarker, S.D.; "UPLC in phytochemical analysis". Trends Phytochem. Res., 3(1): 1-2, 2019.

Moldoveanu, S.C.; David, V.; "Sample preparation in chromatography". 4th ed.; Elsevier: Amsterdam, Netherlands, 2002.

Wixom, R.L.; Gehrke, C.W. eds.; "Chromatography: a science of discovery". 2nd Ed.; John Wiley & Sons, New Jersey, USA, 2011.

Guillarme, D.; Veuthey, J.L. eds.; "General overview of fast and high-resolution Approches in liquid chromatography". In UHPLC in life sciences, 2nd ed.; Guillrame, D. G., and Veuthy, G., Eds.; Royal Society of Chemistry: Brussels, Belgium, 1-25, 2012.

Karabat, R.R.; Rasheed, A.S.; Hassan, M.J.M.; "Zwitterion Chromatography-Hydrophilic Interaction Chromatography for Separation and Quantitative of Rutin and Quercetin from Herbs and Bee Products". J. Chem. Soc. Pak., 43(4): 484-484, 2021.

Karabat, R.R.; Rasheed, A.S.; Hassan, M.J.M.; "Development of a validated zic-hilic method combined with ultraviolet detection for the determination of rutin contents in seven different tea plants", Plant Arch., 20(2): 5197-5202, 2020.

Karabat, R.R.; Rasheed, A.S.; Hassan, M.J.M.; "A new method in some german grape wines using zic-hilic technology with uv detection to separate and identify quercetin". Plant Arch., 20(1): 2692-6, 2020.

Abdulla, F.H.; Rasheed, A.S.;" Hydrophilic interaction chromatography analysis of esculin in ointments with UV detection". Curr. Pharm. Anal., 16(7): 935-941, 2020.

Hamed, Y.A.A.H.; Rasheed, A.S.; "Zwitterionic ion chromatography coupled with ultraviolet detection for the quantification of 2-deoxyguanosine in human serum". Syst. Rev. Pharm., 11(3): 240-6, 2020.

Rasheed, A.S.; Abdulla, F.H.; Karabat, R.R.; "Development, validation, and pharmaceutical dosage forms application of hydrophilic interaction chromatography assay for the quantification of theophylline", Plant Arch., 20(2): 5415-5420, 2020.

Ali, A.S.; Rasheed, A.S.; "A Study of Retention Behavior and Method Development of Salbutamol Sulfate in Hydrophilic Interaction Chromatography". Int. J. Drug Deliv. Technol. 10(3): 344-348, 2020.

Ali, A.S.; Rasheed, A.S.; "Separation and quantitative analysis of chlorpheniramine maleate by the application of the zic-hilic technique in bulk and medicine formulations". Plant Arch., 20(1): 2865-70, 2020.

Abbas, M.A.; Rasheed, A.S.; "Famotidine determination in pure and pharmaceutical formu-lations by zwitterionic chromatography-hydrophilic interac-tion liquid chromatography". Int. J. Chemtech Res., 10(5): 785-91, 2017.

Abbas, M.A.; Rasheed, A.S.; "Study on the retention behavior of famotidine in hydrophilic interaction liquid chromatography". Int. J. Chemtech Res., 10(9): 674-80, 2017.

Abbas, M.A.; Rasheed, A.S.; "Retention characteristic of ranitidine hydrochloride on new polymer-based in zwitter ion chromatography-hydrophilic interaction chromatography stationary phases". J. Chem. Soc. Pak, 40(01): 89-94, 2018.

Al-Phalahy, B.A.; Muhamad, Y.H.; Rasheed, A.S.; "Zwitterionic ion chromatography of dansyl amino acids with 4-vinylbenzyl dimethyl ammonio pentanesulfonate as stationary phase". Asian J. Chem., 28(11): 2411-2414, 2016.

Al-Phalahy, B.A.; Rasheed, A.S.; "ICP Spectrometric–Vis Separation of Cerium (IV)–Desferal Complex Using 4-Vinylbenzyl-Dimethylammonio Pentanesulfonate Zwitterionic Stationary Phase". ANJS, 19(2): 25-32, 2016.

Rasheed, A.S.; Al-Phalahy, B.A.; Ahmed, H.; "Determination of epinephrine in pharmaceutical dosage using hydrophilic interaction chromatography with ICP-AES detection". Research Journal of Biotechnology, 14 (1): 329-333, 2019.

Rasheed, A.S.; Rashid, F.A.; "Development of ZIC-HILIC Methods Using Ultraviolet Detection for determining 2-deoxyuridine in Human Serum". Syst. Rev. Pharm., 11(2): 388-94, 2020.

Flamini, R.; Menicatti, M.; De Rosso, M.; Gardiman, M.; Mayr, C.; Pallecchi, M.; Danza, G.; Bartolucci, G.; "Combining liquid chromatography and tandem mass spectrometry approaches to the study of monoterpene glycosides (aroma precursors) in wine grape". J. Mass Spectrom., 53(9): 792-800, 2018.

Patel, K.N.; Patel, J.K.; Patel, M.P.; Rajput, G.C.; Patel, H.A.; "Introduction to hyphenated techniques and their applications in pharmacy". Pharm. Methods, 1(1): 2-13, 2010.

Rimmer, C.A.; Simmons, C.R.; Dorsey, J.G.; "The measurement and meaning of void volumes in reversed-phase liquid chromatography". J. Chromatogr. A, 965(1-2): 219-232, 2002.

Snyder, L.R.; Dolan; J.W; "High-performance gradient elution: the practical application of the linear-solvent-strength model". John Wiley & Sons, 2007.

Neue, U.D; Kuss, H.J; "Improved reversed-phase gradient retention modeling". J. Chromatogr. A, 1217(24): 3794-3803, 2010.

Boswell, P.G; Schellenberg, J.R; Carr, P.W; Cohen, J.D; Hegeman, A.D; "Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles". J. Chromatogr. A, 1218(38): 6742-6749, 2011.

Subirats, X; Bosch, E; Rosés, M; "Retention of ionisable compounds on high-performance liquid chromatography XVII: Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase". J. Chromatogr. A, 1138(1-2): 203-215, 2007.

Kirkland, J.J; Van Straten, M.A; Claessens, H.A;" High pH mobile phase effects on silica-based reversed-phase high-performance liquid chromatographic columns". J. Chromatogr. A, 691(1-2):3-19, 1995.

Vitha, M; Carr, P.W; "The chemical interpretation and practice of linear solvation energy relationships in chromatography". J. Chromatogr. A, 1126(1-2):143-194, 2006.

Sahoo, B.K; Mukherjee, J; Pal, T.K; "Development and validation of a high performance liquid chromatographic method for bioanalytical application with Ranitidine HCl". Int J Pharm Pharm Sci, 3 (2): 34¬38, 2011.

Krishnasis Chakraborty; Mubeen, G; Lalitha , N; Ritu Kimbahune, R.; "RP-HPLC method Development and Validation studies of Ranitidine Hydrochloride and Domperidone in Tablets". The Pharma Innovation Journal, 4(8): 97-101, 2015.

Tomaz, I; Maslov, L; "Simultaneous determination of phenolic compounds in different matrices using phenyl-hexyl stationary phase". Food Anal. Methods, 9:401–410, 2016.

Fanali, S; Rocchi, S; Chankvetadze, B; "Use of novel phenyl‐hexyl core‐shell particles in nano‐LC". J. Electrophor., 34(12):1737-1742, 2013.

Pesek, J.J; Matyska, M.T; Larrabee, S; "HPLC retention behavior on hydride‐based stationary phases". J. Sep. Sci., 30(5):637-647, 2007.

Pesek, J.J; Matyska, M.T; Dalal, L; "Evaluation of hydride-based stationary phases for LC-MS". Chromatographia, 62:595-601, 2005.

Young, J.E; Matyska, M.T; Azad, A.K; Yoc, S.E; Pesek, J.J; "Separation differences among phenyl hydride, UDC cholesterol, and bidentate C8 stationary phases for stability indicating methods of tetracyclines". J Liq Chromatogr Relat Technol., 36(7): 926–942, 2013.

Tyteca, E; Guillarme, D; Desmet, G; "Use of individual retention modeling for gradient optimization in hydrophilic interaction chromatography: Separation of nucleobases and nucleosides". J. Chromatogr. A, 1368: 125-131, 2014.

Jandera, P; Hájek, T; Škeříková, V; Soukup, J; "Dual hydrophilic interaction‐RP retention mechanism on polar columns: Structural correlations and implementation for 2‐D separations on a single column". J. Sep. Sci., 33(6‐7): 841-852, 2010.

De Person, M; Hazotte, A.; Elfakir, C; Lafosse, M; "Development and validation of a hydrophilic interaction chromatography-mass spectrometry assay for taurine and methionine in matrices rich in carbohydrates". J. Chromatogr. A, 1081(2):174-181, 2005.

Daunoravičius, Ž; Juknaitė, I; Naujalis, E; "Padarauskas, A., Simple and rapid determination of denaturants in alcohol formulations by hydrophilic interaction chromatography". Chromatographia, 63: 373-377, 2006.

Qin, F; Zhao, Y.Y; Sawyer, M.B; Li, X.F; "Column-switching reversed phase–hydrophilic interaction liquid chromatography/tandem mass spectrometry method for determination of free estrogens and their conjugates in river water". Anal. Chim. Acta, 627(1): 91-98, 2008.

García-Lavandeira, J; Oliveri, P; Martínez-Pontevedra, J.A; Bollaín, M.H; Forina, M; Cela, R; "Computer-assisted modelling and optimisation of reversed-phase high-temperature liquid chromatographic (RP-HTLC) separations". Anal. Bioanal. Chem., 399:1951-1964, 2011.

Abraham, M.H; Ibrahim, A; Zissimos, A.M; "Determination of sets of solute descriptors from chromatographic measurements". J. Chromatogr. A, 1037(1-2): 29-47, 2004.

Fernández-Navarro, J.J; García-Álvarez-Coque, M.C; Ruiz-Angel, M.J; "The role of the dual nature of ionic liquids in the reversed-phase liquid chromatographic separation of basic drugs. J. Chromatogr". A, 1218(3): 398-407, 2011.

Fernández-Navarro, J.J; Torres-Lapasió, J.R; Ruiz-Ángel, M.J; García-Álvarez-Coque, M.C; "Silanol suppressing potency of alkyl-imidazolium ionic liquids on C18 stationary phases". J. Chromatogr. A, 1232:166-175, 2012.

Fernández-Navarro, J.J; Torres-Lapasió, J.R; Ruiz-Angel, M.J; García-Álvarez-Coque, M.C; "1-Hexyl-3-methyl imidazolium tetrafluoroborate: An efficient column enhancer for the separation of basic drugs by reversed-phase liquid chromatography". J. Chromatogr. A, 1258: 168-174, 2012.

Ubeda-Torres, M.T; Ortiz-Bolsico, C; García-Alvarez-Coque, M.C; Ruiz-Angel, M.J; "Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds". J. Chromatogr. A, 1380: 96-103, 2015.

Li, J.B; "Signal-to-noise optimization in HPLC UV detection". LC GC, 10(11):856-864, 1992.

Neue, U.D; Méndez, A; Tran, K; Diehl, D.M; "pH and selectivity in RP-chromatography. HPLC Made to Measure". A Practical Handbook for Optimization, 2008.

Fountain, K.J; Xu, J; Diehl, D.M; Morrison, D; "Influence of stationary phase chemistry and mobile-phase composition on retention, selectivity, and MS response in hydrophilic interaction chromatography". J. Sep. Sci., 33(6‐7): 740-751, 2010.

Dos Santos Pereira, A; Girón, A.J; "Admasu, E; Sandra, P; Green hydrophilic interaction chromatography using ethanol–water–carbon dioxide mixtures". J. Sep. Sci., 33(6‐7): 834-837, 2010.

Schug, K.A; Sawicki, I; Carlton Jr, D.D; Fan, H; McNair, H.M; Nimmo, J.P., Kroll, P; Smuts, J; Walsh, P; Harrison, D; "Vacuum ultraviolet detector for gas chromatography". J. Anal. Chem., 86(16): 8329-8335, 2014.

Li, J; Zou, S; Yang, W; Peng, M; Chen, B; Deng, J; Wei, M; Zheng, G; "Identification of volatile and nonvolatile compounds in Citri Reticulatae Pericarpium Viride using GC–MS, UPLC‐Q‐Exactive Orbitrap-MS, and HPLC‐PDA". Food Sci. Nutr., 11(3): 1415-1425, 2023.

Xu, J; Lin, J., Peng, S; Zhao, H; Wang, Y; Rao, L; Liao, X; Zhao, L; "Development of an HPLC-PDA Method for the Determination of Capsanthin, Zeaxanthin, Lutein, β-Cryptoxanthin and β-Carotene Simultaneously in Chili Peppers and Products". Molecules, 28(5): 236, 2023.

Moldoveanu, S.C.; Scott, W.A; "Analysis of four pentacyclic triterpenoid acids in several bioactive botanicals with gas and liquid chromatography and mass spectrometry detection". J. Sep. Sci, 39(2): 324-332, 2016.

Zhou, S; Li, R; Chen, Z; Ren, R; Wang, X; Dai, Q., Wen, D; Guan, Y; Zhang, X; Tang, S; Zhou, L; "LC–MS/MS quantification of levetiracetam, lamotrigine and 10‐hydroxycarbazepine in TDM of epileptic patients". Biomed. Chromatogr, 36(8): 5393. 2022.

Taylor, L; Gidal, B; Blakey, G; Tayo, B; Morrison, G; "A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects". CNS Drugs, 32:1053-1067, 2018.

Teo, Y.L; Ho, H.K; Chan, A; "Metabolism‐related pharmacokinetic drug− drug interactions with tyrosine kinase inhibitors: current understanding, challenges and recommendations". Br. J. Clin. Pharmacol., 79(2): 241-253, 2015.

Lindholm, J;" Development and validation of HPLC methods for analytical and preparative purposes". (Doctoral dissertation, Acta Universitatis Upsaliensis), 2004.

Capello, C; Fischer, U; Hungerbühler, K; "What is a green solvent A comprehensive framework for the environmental assessment of solvents". Green Chem., 9(9): 927-934, 2007.

Caro, Y.S; Cámara, M.S; De Zan, M.M; "A review of bioanalytical methods for the therapeutic drug monitoring of β-lactam antibiotics in critically ill patients: Evaluation of the approaches used to develop and validate quality attributes". Talanta, 210:120619, 2020.

Souza, E; Felton, J; Crass, R.L; Hanaya, K; Pai, M.P; "Development of a sensitive LC–MS/MS method for quantification of linezolid and its primary metabolites in human serum". J. Pharm. Biomed. Anal., 178:112968, 2020.

Cannon, K; Byrne, B; Happe, J; Wu, K; Ward, L; Chesnel, L; Louie, T; "Enteric microbiome profiles during a randomized Phase 2 clinical trial of surotomycin versus vancomycin for the treatment of Clostridium difficile infection". J. Antimicrob. Chemother., 72(12): 3453-3461, 2017.

Lombardo-Agüí, M; Cruces-Blanco, C; García-Campaña, A.M; Gámiz-Gracia, L; "Multiresidue analysis of quinolones in water by ultra-high perfomance liquid chromatography with tandem mass spectrometry using a simple and effective sample treatment". J. Sep. Sci, 37(16):2145-2152, 2014.

Saz, J.M; Marina, M.L; "Application of micro‐and nano‐HPLC to the determination and characterization of bioactive and biomarker peptides". J. Sep. Sci, 31(3): 446-458, 2008.

Sun, Q; Wang, Y; Cai, Q; Pang, T; Lan, W; Li, L; "Comparative analysis of lipid components in fresh Crassostrea Hongkongensis (raw) and its dried products by using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS)". FRONT NUTR, 10:1123636, 2023.

Perobelli, R.F; Xavier, B; da Silveira, A.R; Remuzzi, G.L; Motta, L.G.J; Dalmora, S.L; "Quantitation of the monoclonal antibody Denosumab by bioassay and validated LC methods". Int. J. Biol. Macromol., 119: 96-104, 2018.

Li, S; Liu, F.L; Zhang, Z; Yin, X.M; Ye, T.T;Yuan, B.F; Feng, Y.Q; "Ultrasensitive determination of sugar phosphates in trace samples by stable isotope chemical labeling combined with RPLC–MS". J. Anal. Chem., 94(11): 4866-4873, 2022.

Sharifi-Rad, J; Zhong, J., Ayatollahi, S.A; Kobarfard, F; Faizi, M; Khosravi-Dehaghi, N; Suleria, H.A; "LC-ESI-QTOF-MS/MS characterization of phenolic compounds from Prosopis farcta (Banks & Sol.) JF Macbr. and their potential antioxidant activities". Cell. Mol. Biol., 67(1): 189-200, 2021.

Sullards, M.C; Liu, Y; Chen, Y; Merrill Jr, A.H; "Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS)". Biochim Biophys Acta Mol Cell Biol Lipids, 1811(11): 838-853. 2011.

Di Stefano, V; Avellone, G; Bongiorno, D; Cunsolo, V; Muccilli, V; Sforza, S; Dossena, A; Drahos, L; Vékey, K; "Applications of liquid chromatography–mass spectrometry for food analysis". J. Chromatogr. A, 1259: 74-85, 2012.

Liu, Q; Peng, H; Lu, X; Le, X.C; "Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat". Anal. Chim. Acta, 888:1-9, 2015.

Sadee, B.A; Foulkes, M.E; Hill, S.J; "An evaluation of extraction techniques for arsenic in staple diets (fish and rice) utilising both classical and enzymatic extraction methods". Food Addit Contam, Part A, 33(3): 433-441, 2016.

Franco, D; Rodríguez-Amado, I; Agregán, R; Munekata, P.E; Vázquez, J.A; Barba, F.J; Lorenzo, J.M; "Optimization of antioxidants extraction from peanut skin to prevent oxidative processes during soybean oil storage". LWT, 88: 1-8, 2018.

El-Wahab, R.H.A.; Zaghloul, M.S; Kamel, W.M; Moustafa, A.R.A; "Diversity and distribution of medicinal plants in North Sinai, Egypt". Afr. j. environ. sci. technol., 2(7): 157-171, 2008.

Mahfoudhi, A; Prencipe, F.P; Mighri, Z; Pellati, F; "Metabolite profiling of polyphenols in the Tunisian plant Tamarix aphylla (L.) Karst". J. Pharm. Biomed. Anal., 99: 97-105, 2014.

Macías-Villamizar, V; Cuca-Suárez, L; "Structural modification of lignan compounds isolated from nectandra species (lauraceaE)". J. Chil. Chem. Soc., 62(2): 3427-3431, 2017.

Wang, P; Liu, Y; Chen, T; Xu, W; You, J; Liu, Y; Li, Y; "One-step Separation and Purification of Three Lignans and One Flavonol from Sinopodophyllum emodi by Medium‐pressure Liquid Chromatography and High‐speed Counter-current Chromatography". Phytochem Anal., 24(6): 603-607, 2013.

Ruzik, L; Kwiatkowski, P; "Application of CE-ICP-MS and CE-ESI-MS/MS for identification of Zn-binding ligands in Goji berries extracts". Talanta, 183: 102-107, 2018.

Tie, M., Li, B; Sun, T; Guan, W; Liang, Y; Li, H; "HPLC-ICP-MS speciation of selenium in Se-cultivated Flammulina velutipes". Arab. J. Chem., 13(1): 416-422, 2020.

Hori, K; Kiriyama, T; Tsumura, K; "A liquid chromatography time-of-flight mass spectrometry-based metabolomics approach for the discrimination of cocoa beans from different growing regions". Food Anal. Methods, 9: 738-743, 2016.

Scollo, E; Neville, D.C; Oruna-Concha, M.J; Trotin, M; Umaharan, P; Sukha, D; Kalloo, R; Cramer, R; "Proteomic and peptidomic UHPLC-ESI MS/MS analysis of cocoa beans fermented using the Styrofoam-box method:. Food Chem., 316: 126350, 2020.

Jandrić, Z; Roberts, D; Rathor, M.N; Abrahim, A; Islam, M; Cannavan, A; "Assessment of fruit juice authenticity using UPLC–QToF MS: A metabolomics approach". Food Chem., 148: 7-17, 2014.

Chong, H.S; Park, Y.J; Kim, E.G; Park, Y.L; Kim, J.M; Yamaguchi, T; Lee, C; Suh, H.J; "The Optimization and Verification of an Analytical Method for Sodium Iron Chlorophyllin in Foods Using HPLC and LC/MS". J. Food Hyg. Saf., 34(2): 148-157, 2019.

Mandal, B.K; Ling, Y.C; "Analysis of Chlorophylls/Chlorophyllins in Food Products Using HPLC and HPLC-MS Methods". Molecules, 28(10): 4012, 2023.

Wu, T; Ma, Z; Zhang, Y; Wu, M; Cao, H; "Simultaneous quantitative analysis of 11 constituents in Viticis Fructus by HPLC‐HRMS and HPLC‐DAD combined with chemometric methods". Phytochem Anal., 34(2): 163-174, 2023.

Alnassrallah, M.N; Alzoman, N.Z; Almomen, A; "Qualitative immunoassay for the determination of tetracycline antibiotic residues in milk samples followed by a quantitative improved HPLC-DAD method". Sci. Rep., 12(1): 14502, 2022.

Downloads

Published

2024-02-01

Issue

Section

Articles

How to Cite

[1]
“High-Performance Liquid Chromatography (HPLC): Primary Mechanism and Popular Applications”, ANJS, vol. 26, no. 4, pp. 1–12, Feb. 2024, Accessed: May 14, 2024. [Online]. Available: https://anjs.edu.iq/index.php/anjs/article/view/2587