Synthesis of Hydroxamic Ligands with Transition Metal Complexes, their Biological Activities and Characterization Through Spectroscopic Techniques

  • Farzana Saleem Department of Chemistry, Faculty of Basic Sciences, University of Balochistan, Quetta. Pakistan
  • Naqeebullah Khan Department of Chemistry, Faculty of Basic Sciences, University of Balochistan, Quetta. Pakistan
  • Samiullah Department of Chemistry, Faculty of Basic Sciences, University of Balochistan, Quetta. Pakistan
  • Attiq-ur-Rehman Department of Chemistry, Faculty of Basic Sciences, University of Balochistan, Quetta. Pakistan
  • Irshad Ali Department of Chemistry, Faculty of Basic Sciences, University of Balochistan, Quetta. Pakistan
Keywords: Vancomycin, Zero-order, Area under curve, First derivative method, Spectrophotometric

Abstract

New metal complexes including Ni (Ⅱ), Co (Ⅱ), Cu (Ⅱ), Fe (Ⅲ), Cr (Ⅲ), Cd (Ⅱ) and Zn (Ⅱ) have been synthesized from parent ligand N-methyl m-nitrobenzohydroxamic acid. The condensation ratio is 2:1 of the ligand and metal salt (MX) in methanol. The ligand N-methyl m-nitrobenzohydroxamic has been prepared by the interaction of N-methylhydroxylamine hydrochloride with m-nitrobenzoyl chloride. The coordination modes and bonding of the ligands along with its metal complexes have been identified by FT-IR, 1H-NMR and UV-Vis spectroscopic techniques. It has been enumerated by spectroscopic techniques that the complex is formed via O, O-coordination to metal through the oxygen of carbonyl group and deprotonated hydroxyl group. The antibacterial and antifungal activities of the ligand as well as its complexes have been estimated against two gram negative strains such as Escherichia coli and Salmonella typhi, one gram positive strain Escherichia coli and one fungal strain yeast. In addition to this the cytotoxicity and antitumor activities have been evaluated resistant to Brine shrimps eggs and Hela cell line respectively.

References

[1] Hassan, L. R.; Ramasamy, K.; Lim, S. M.; Bahron, H.; Taj Uddin, A.M.; “Synthesis and characterization of benzohydroxamic acid metal complexes and their cytotoxicity study”; Tech. J. 80, 87-94, 2018.
[2] Adiguzel, E.; Yilmaz, F.; Emirik, M.; Ozil, M.; “Synthesis and characterization of two new hydroxamic acids derivatives and their metal complexes. An investigation on the keto/ enol, E/Z and hydroxamate/ hydroximates forms”; J. Molec. Struc., 1127-403, 2017.
[3] Liu, K.; Chang, G.; Yan, H.; Li, Z.; Hong, M.; Niu, M.; ”Dimethyl tin(IV)complexes derived from hydroxamic acid and acylhydrazone ligands: Synthesis, DNA/bovine serum albumin interaction and cytotoxicity”; J. Appl. Organometal. Chem. 32, 2018.
[4] Khan, N.; Farina, Y.; Mun, L. K.; Rajab, N. F.; Awang, N.; “Triorganotin(IV) complexes with o-substituted arylhydroxamates: Synthesis, spectroscopic characterization, X-ray structures and in vitro cytotoxic activities”; J. Organometal. Chem. 763-764, 26–33, 2014.
[5] Mun, L. K.; Farina, Y.; Khan, N.; Rajab, N. F.; Awang, N.; “Syntheses, spectral characterization, X-ray studies and in vitro cytotoxic activities of triorganotin (IV) derivatives of p-substituted N-methyl benzyl amine dithiocarbamates”; J. Molec. Struc. 1076, 403–410, 2014.
[6] Gupta, S. P.; Sharma, A.; “The Chemistry of Hydroxamic Acids”; J. Hydrox. Acids, 1–17, 2013.
[7] Jewula, P.; Berthet, J. C.; Chambron, J. C.; Rousselin, Y.; Thuéry, P.; Meyer, M.; “Synthesis and Structural Study of Tetravalent (Zr4+, Hf4+, Ce4+, Th4+, U4+) Metal Complexes with Cyclic Hydroxamic Acids”; Euro. J. Inorg. Chem., 1529–1541, 2015.
[8] Palanimurugan, A.; Kulandaisamy, A.; “DNA, in vitro antimicrobial/anticancer activities and biocidal based statistical analysis of Schiff base metal complexes derived from salicylalidene-4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one and 2-aminothiazole”; J. Organometal. Chem. 861, 263–274, 2018.
[9] Abs-Elzaher, M. M.; J. Chin. Chem, Soc. 48, 26-35 (2012).
[10] Sedaghat, T.; Tahmasbi, L.; Motamedi, H.; Reyes-Martinez, R.; Morales-Morales, D.; “Diorganotin (IV) complexes with furan-2-carbohydrazone derivatives: Synthesis, characterization, crystal structure and antibacterial activity”; J. Coord. Chem. 66, 712-724, 2013.
[11] Farina, Y.; Chan, K.; Mun, L.; Rajab, N.; Ooi, T.; “Diorganotin (IV) derivatives of N-methyl p-fluorobenzo-hydroxamic acid: Preparation, spectral characterization, X-ray diffraction studies and antitumor activity”; Molecu. 18, 8696–8711, 2013.
[12] Khan, N.; Farina, Y.; Mun, L. K.; Rajab, N. F.; Awang, N.; “Syntheses, spectral characterization, X-ray studies and in vitro cytotoxic activities of triorganotin (IV) derivatives of p-substituted N-methylbenzylaminedithiocarbamates”; J. Molecu. Struct. 1076, 403–410, 2014.
[13] Akbar, A.; Anal, A. K.; “Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat”; Food Control 38, 88–95, 2014.
[14] Avila-Sorrosa, A.; Hernández-González, J. I.; Reyes-Arellano, A.; Toscano, R. A.; Reyes-Martínez, R.; Pioquinto-Mendoza, J. R.; Morales-Morales, D.; “Synthesis, structural characterization and biological activity of fluorinated Schiff-bases of the type [C6H4-1-(OH)-3-(CHNArF)]”; J. Molecu. Struct. 1085, 249–257, 2015.
[15] Khan, S.; Nami, S. A.; Siddiqi, K. S.; “Mononuclear indolyldithiocarbamates of SnCl4 and R2SnCl2: Spectroscopic, thermal characterizations and cytotoxicity assays in vitro”; J. Organometal. Chem. 693, 1049–1057, 2008.
[16] Fatima, H.; Khan, K.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I. U.; “Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation”; BMC Compl. Alter. Med. 15, 376, 2015.
[17] Khan, N.; Farina, Y.; Mun, L. K.; Rajab, N. F.; Awang, N.; “Syntheses, characterization, X-ray diffraction studies and in vitro antitumor activities of diorganotin (IV) derivatives of bis (p-Substituted-N-methylbenzylaminedithiocarbamates)”; Polyhedron 85, 754–760, 2015.
[18] Shahid, K.; Ali, S.; Bhatti, M. H.; Mazhar, M.; Mahmood, S.; Rehman, S.; “Synthesis, characterization and thermal analysis of organotin (IV) derivatives of 4-(N-Maleoyl) butanoate”; Turk. J. Chem. 26, 589–598, 2002.
[19] Irshad, A.; Khan, N.; Farina, Y.; Baloch, N.; Ali, A.; Mun, L. K.; Murtaza, G.; “Synthesis, spectroscopic characterization, X-ray diffraction studies and in-vitro antibacterial activities of diorganotin (IV) derivatives with N-methyl–4- bromo-benzo-hydroxamic acid”; Inorg. Chimica Acta 469, 280–287, 2018.
[20] Raman, N.; Kulandaisamy, A.; Thangaraja, C.; Jeyasubramanian, K.; “Redox and antimicrobial studies of transition metal (II) tetradentate Schiff base complexes”; Trans. Metal Chem. 28, 29–36, 2003.
[21] Murtaza, G.; Rauf, M. K.; Badshah, A.; Ebihara, M.; Said, M.; Gielen, M.; Mirza, B.; “Synthesis, structural characterization and in vitro biological screening of some homoleptic copper (II) complexes with substituted guanidines”; Europ. J. Med. Chem. 48, 26–35, 2012.
[22] Affan, M. A.; Salam, M. A.; Ahmad, F. B.; White, F.; Ali, H. M.; “Organotin (IV) complexes of 2-hydroxyacetophenone-N (4)-cyclo-hexyl-thiose-micarbazone (H2dact): Synthesis, spectral characterization, crystal structure and biological studies”; Inorg. Chimica Acta 387, 219–225, 2012.
[23] Lin, J.; Lin, J. L.; Tzeng, W. B.; “Mass analyzed threshold ionization spectroscopy of N-deuterium substituted indoline cation: isotope effect on the electronic transition, ionization and molecular vibration”; Chem. Phys. Lett. 371, 662–669, 2003.
[24] Li, Y.; Liu, J.; Li, Q.; “Mechanisms by which the antitumor compound di‐n‐butyl‐di‐(4‐chloro-benzohydroxamato) tin (IV) induces apoptosis and the mitochondrial‐mediated signaling pathway in human cancer SGC‐7901 cells”; Molecu. Carcinogenesis 49, 566–581, 2010.
[25] Nath, M.; Pokharia, S.; Yadav, R.; “Organotin (IV) complexes of amino acids and peptides”; Coord. Chem. Rev. 215, 99–149, 2001.
[26] Khan, S.; Nami, S. A.; Siddiqi, K. S.; “Mononuclear indolyldithiocarbamates of SnCl4 and R2SnCl2: Spectroscopic, thermal characterizations and cytotoxicity assays in vitro”; J. Organometal. Chem. 693, 1049–1057, 2008.
[27] Labisbal E.; Rodriguez, L.; Sousa-Pedrares, A.; Alonso, M.; Vizoso, A.; Romero, J.; Sousa, A.; “Synthesis, characterisation and X-ray structures of diorganotin (IV) and iron (III) complexes of dianionicterdentate Schiff base ligands”; J. Organomet. Chem. 691, 1321–1332, 2006.
[28] Nagy, E. M.; Sitran, S.; Montopoli, M.; Favaro, M.; Marchiò, L.; Caparrotta, L.; Fregona, D.; “Zinc(II) complexes with dithiocarbamato derivatives Structural characterisation and Sbiological assays on cancerous cell lines”; J. Inorg. Biochem. 117, 131–139, 2012.
[29] Gielen, M.; Handlir, K.; Hollein, M.; De Vos, D.; ”Synthesis, characterization and anti-tumour activity of some butyltin (IV) cysteaminates and N,N-dimethyl-cysteaminates”; Met. Based Drugs 7, 233–236, 2000.
Published
2020-06-04
How to Cite
Saleem, F., Khan, N., Samiullah, Attiq-ur-Rehman, & Ali, I. (2020). Synthesis of Hydroxamic Ligands with Transition Metal Complexes, their Biological Activities and Characterization Through Spectroscopic Techniques. Al-Nahrain Journal of Science, 23(2), 1-7. Retrieved from https://anjs.edu.iq/index.php/anjs/article/view/2270
Section
Articles