δ (M) - Supplemented Modules

Sahira M.Yaseen and Zainab T.Salman Department of Mathematics, College of Science, University of Baghdad.

Abstract

Let R be an associative ring with identity and M a non-zero unitary R-module. We introduce the concept of $\delta(M)$ - Supplement Submodule that if A,B $\leq M$ and M=A+B then B is called $\delta(M)$ - supplement of A if A \cap B $\leq \delta(B)$ We give some properties of this kind of module.

1. Introduction and Preliminaries

For an associative ring with identity and a right R module M , a submodule N of M is said to be small in M (N <<M) if whenever N+X=M,then X=M. let U be a submodule of an R- module M, A submodule V< M is called supplement of U if V is minimal element in the set of submodules L<M with U+L = M ,V is a supplement of U if and only if U+V= M and U \cap V<<V.

An R – module M is called supplemented if every submodule of M has supplement in M [1].

Let M be a module the concept of δ -small submodules was introduced by Zhou in [2]. Let M be an R-module and N \leq M, N is said to be δ -small (N \ll_{δ} M) if N+X=M with $\frac{M}{X}$ singular then X=M. A submodule N of an R-module M is called δ -supplement of L if M =N+L and N+L \ll_{δ} N, M is called δ -supplemented module if for each submodule A of M there exists a submodule B of M such that M=A+B and A \cap B \ll_{δ} B [3]. A module M is called δ - hollow if every proper submodule of M is δ - small [4]. A submodule N of M is called essential in M if for every non-zero submodules L \leq M we have N \cap L \neq 0 and we write N \leq_{δ} M

The following lemma show the properties of $\delta -$ small submodules .

<u>Lemma 1.1 [2] :</u>

let M be an R- module

1- For submodules N,K, L of M with N ≤ K we have N ≪_δ M if and only if K ≪_δ M and $\frac{N}{R} \ll_{\delta} \frac{M}{R}$ and N + L ≪_δ M if and only if N ≪_δ M and L ≪_δ M.

- 2-If $K \ll_{\delta} M$ and f: $M \rightarrow N$ is a homomorphism then f (K) $\ll_{\delta} M \leq N$ in particular if $K \ll_{\delta} M \leq N$ then $K \ll_{\delta} N$.
- $\begin{array}{l} \mbox{3-Let } K_1 \leq M_1 \leq M \mbox{, } K_2 \leq M_2 \leq M \mbox{ and } M {=} M_1 \\ + M_2 \mbox{ then } K_1 {+} K_2 {\ll}_{\overline{\pmb{o}}} M_1 {+} M_2 \mbox{ if and only if } \\ K_1 {\ll}_{\overline{\pmb{o}}} M_1 \mbox{ and } K_2 {\ll}_{\overline{\pmb{o}}} M_2 \end{array}$

Let M be an R-module and N \leq M let $\delta(M) = \cap \{N \leq M \mid \frac{M}{N} \in \rho\}$ where ρ is the class of singular simple modules [3]. The following lemma shows some properties of $\delta(M)$.

 $\frac{Lemma (1.2) [2]:}{1-\delta (M) = \sum \{L \le \frac{M}{L} \text{ is } \delta \text{ - small submodule of } M\}.$

- 2- If $f : M \to N$ an R-homomorphism then $f(\delta(M)) \leq \delta(N)$.
- 3- If every proper submodule of M contained in a maximal submodule the $\delta(M)$ is largest δ -small submodule of M
- 4- If $M = \bigoplus_{i \in I} Mi$ then $\delta(M) = \bigoplus_{i \in I} \delta(Mi)$.

The concepts of generalized supplemented module introduced in [5], let M be a module if A, B \leq M and M=A+B then B is called generalized supplement of A in case A \cap B \leq Rad (B). M is called generalized supplemented module if each submodule A has a generalized supplement B [6]. In this paper we introduce the concept of $\mathfrak{O}(M)$ -supplemented module as a generalized supplemented module (GS-module) and some properties of this kind of modules was given.

2. δ (M) – Supplemented Modules

Let M be a module. If A, $B \le M$ and M = A+B then B is called a generalized supplement of A in case $A \cap B \le \text{Rad}$ (B) [2].

M is called a generalized supplemented module or GS-module in case each submodule A has a generalized supplement B. In this section as a generalization of generalized supplement submodule, $\delta(M)$ -supplemented modules are introduced many properties of $\delta(M)$ -supplemented module are given.

Definition 2.1:

Let M be a module, and let A, B be submodules of M, B is called $\hat{o}(M)$ - supplement of A, if M=A+B and $A \cap B \leq \hat{o}(B)$.

M is called a $\delta(M)$ -supplemented module in case each submodule A has a $\delta(M)$ -supplemented B. hollow modules and δ -hollow modules are $\delta(M)$ -upplemented module

It clear that M is $\delta(M)$ -supplemented of $\delta(M)$ in M.

Clearly each GS-module is d(M)-supplemented module but the converse is not true in general as we see in the next remark.

Remark 2.2:

It is easy to check that if R is a semisimple ring and M a nonzero right R-module then M is nonsingular and semisimple. for any nonzero N \leq M, N is direct summand of M and hence is not small in M. but every submodule of M is δ -small in M then M is δ -hollow and then M is δ (M)-supplemented module.

Proposition 2.3:

let A, B be submodules of an R- module M, if B is $\delta(M)$ supplement sub-module of A then:

- 1- If W+B=M for some W \subset A then B is a $\delta(M)$ -supplement of W.
- 2- If K \ll_{δ} M then B is δ (M) supplement of A + K.
- 3-For $K \ll_{\delta} M$ then $K \cap B \ll_{\delta} B$ and so $\delta(B) = B \cap \delta(M)$.
- 4- For L \sqsubset A, (B+L) / L is $\delta(M)$ supplement of $\frac{A}{L}$ in $\frac{M}{L}$.

<u>Proof</u>:

- 1. Let M=A+B, since B is $\delta(M)$ supplement of A then $A \cap B \leq \delta(B)$ and $A \cap B \ll_{\delta} B$. Let $W \leq A, W \cap B \leq A \cap B \leq \delta(B)$ then $W \cap B \leq \delta(B)$ we have B is $\delta(M)$ - supplemented of W.
- If K≪_ôM then for X≤ B with (A+K)+X=M, A+X=M. Since B is ô(M) - supplemented of A and M=A+B then X=B. We have B is ô(M)- supplemented of A+K.
- 3. Let K≪_δ M and X≤ B with M=A+B=A+ (K∩B) +X=A+X Then M=A+X is there for X=B and since M/B is singular then B/X is singular. That means K∩B ≪_δB. this yields B∩δ (M)≤δ(B). Since (B)≤V∩ δ(M) always holds we get δ(B)= B∩ δ(M)
- 4. For $L \le A$, we have $A \cap (B+L)$ $=B+(A \cap L)$ by (Modularity) $\frac{A}{L} \cap \frac{B+L}{L}$ Since $A \cap B \le \delta(B)$ [B is $\delta(M)$ -supplemented of A that means if $A \cap B \ll_{\delta} B$ then $\frac{A \cap B+L}{L} \ll_{\delta} \frac{B+L}{L}$]. It follow that $\frac{A \cap B+L}{L} \le \delta\left(\frac{B+L}{L}\right)$ Then $\frac{A}{r} \cap \frac{B+L}{L} \le \left(\frac{B+L}{L}\right)$ and $\frac{A}{L} + \frac{B+L}{L} = \frac{M}{L}$

Lemma 2.4 [7]:

Suppose that $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M=M_1 \bigoplus M_2$ then $K_1 \bigoplus K_2 \leq_{\mathfrak{g}} M_1 \bigoplus M_2$ if and only if $K_1 \leq_{\mathfrak{g}} M_1$ and $K_2 \leq_{\mathfrak{g}} M_2$.

Proposition 2.5 :

Let M be $\delta(M)$ - supplemented modules then :

- 1- If A submodule of M with $A \cap \delta(M) = 0$ then A is semisimple
- 2-M=A+B for some semi simple and some module B with $\delta(B) \leq_{g} B$.

Proof:

1-Let B \leq A. Since M is $\delta(M)$ - supplemented module then there exists C \leq M such that B+C =M and B \cap C $\leq \delta(C)$ thus A=A \cap M =A \cap (B+C)=B+A \cap C we have A=B+(A \cap C), B \cap C $\leq \delta(C)$ and

 $B\cap(A\cap C)=B\cap C\leq A\cap \delta(C)\leq A\cap$ $\delta(\mathbf{M}) = 0$ We have $B \cap (A \cap C) = 0$ since $A = B \bigoplus (A \cap C)$ then A is semisimple.

2-For $\delta(M)$, let A $\leq M$ such that A $\cap \delta(M) = 0$ and $A \bigoplus \delta(M) \leq_{s} M$ see[2,prop.1.3].since M is $\delta(M)$ -supplemented module then there exist $B \leq M$ Such that M = A + B, $A \cap B \leq$ $\delta(B)$, $A \cap B = A \cap (A \cap B) \leq A \cap \delta(B) \leq A \cap \delta(B)$ $A \cap \mathcal{O}(M) = 0$ Then $A \cap B = 0$ by (1) $M = A \bigoplus B$, A is semisimple Since $\delta(M) = \delta(A) + \delta(B) = \delta$ (B) and since $A \bigoplus \delta(M) \leq M = A \bigoplus B$ and $A \leq_{\sigma} A$ and $\delta(M) \leq_{\sigma} B$ by [Lemma 2.4] $\delta(B) \leq B$.

Proposition 2.6 :

Let A, B be submodules of R. module M. and A is $\delta(M)$ -supplemented module if A+B has $\mathcal{O}(M)$ – supplement submodule in M then B is $\delta(M)$ -supplemented submodule.

Proof:

Since A+B be $\mathcal{Q}(M)$ - supplemented module then there exist $X \leq M$ such that X+(A+B)=Mand $X \cap (A+B) \leq \emptyset$ (X) For $(X+B) \cap A$, since A is $\delta(M)$ - supplement submodule then there exist $Y \le A$ such that $(X+B) \cap A+Y=A$ and $(X+B)\cap Y \leq \delta(Y)$ since X+B+Y=M that is Y is $\mathcal{Q}(M)$ - supplement of X+B in M. Next show X+Y is $\mathcal{Q}(M)$ - supplement of B in M, since (X+Y)+B=0, so it is to show that $(X+Y) \cap B \leq \mathcal{O}(X+Y)$. Since $Y+B \leq A+B$, $X \cap (Y+B) \leq X \cap (A+B) \leq \delta(M),$ thus (X+Y) $\bigcap B \leq X \bigcap (Y+B) + Y \bigcap (X+B) \leq \delta(X) + \delta(Y) \leq \delta(X+B) \leq \delta$ Y)

Corollary 2.7 :

Let M_1, M_2 be $\delta(M)$ -supplemented module Μ such that $M=M_1$ $+M_2$ then is d (M)-supplemented module.

Proof:

submodule of M, Let U be since $M = M_1 + M_2 + U$ trivially has δ(M)supplemented in M. M₂+U has **0**(M)supplemented in by [Proposition. 2.6] thus U has $\delta(M)$ – supplemented in M by [proposition. 2.6] so is M is $\delta(M)$ - supplemented module.

Proposition 2.8:

Every factor module of δ(M)supplemented module is $\mathcal{O}(M)$ –supplemented module.

Proof:

Let M be $\delta(M)$ - supplemented module and $\frac{M}{N}$ any factor module of M, for any submodule $L \leq M$ cautioning N. since M is $\delta(M)$ – supplemented module then there exist $K \le M$ such that L+K=M and $L \cap K \le \delta(K)$.

 $\frac{\frac{M}{N} = \frac{L}{N} + \frac{K+N}{N} \text{ and } \frac{l}{N} \cap \frac{N+K}{N} = \frac{L \cap (N+K)}{N} = \frac{N+(L \cap K)}{N} = \frac{N+(L \cap K)}{N} \leq \delta \left(\frac{N+K}{N}\right) \text{ that is } \frac{N+K}{N} \text{ is }$ $\delta(M)$ – supplemented module of $\frac{L}{N}$ in $\frac{M}{N}$.

<u>**Proposition 2.9**</u>: If M is $\delta(M)$ – supplemented module then $\frac{M}{\delta(M)}$ is semisimple.

Proof:

Let $N \leq M$ contain $\mathcal{O}(M)$, there exist 𝔅(M)−supplement submodule K of N in M such that M = N + K.

Since $\frac{M}{\delta(M)} = \frac{N}{\delta(M)} \oplus \frac{K + \delta(M)}{\delta(M)}$ then every submodule of $\frac{M}{\delta(M)}$ is direct summand.

we have $\frac{M}{\delta(M)}$ is semi-simple.

3- \delta (M)- amply supplement Modules

is Μ called generalized amply supplemented modules or briefly GASmodule in case M=A+B implies that A has a generalized supplement $K \leq B$.

In this section as a generalization of $\delta(M)$ -supplemented module we introduce **(M)**-amply supplemented Modules

Definition 3.1:

M is called **§** (M)- amply supplemented modules in case M=A+B implies that A has a δ (M)-supplement $K \leq B$.

Is clear every δ (M)- supplemented module is $\delta(M)$ - amply supplemented module.

Proposition 3.2:

Let M be **&** (M)-amply supplemented module and K a direct summand of M then K is a δ (M)- amply supplemented module.

Proof:

Since K is a direct summand of M, there exists $L \leq M$ such that $M=K \bigoplus L$

suppose that K=C+D, then M=D+(C \oplus L) since M is a δ (M)-amply supplemented module, there exist P≤D such that M=P+(C \oplus L) and p∩ (C \oplus L)≤ δ (P). Therefore K=K∩M= K∩(P+(C \oplus L)) =P+C and P∩C=P∩(C \oplus L)≤ δ (P), as required.

Proposition 3.3:

Let M be a module. If every submodule of M is a $\delta(M)$ - supplemented module, then M is a $\delta(M)$ -amply supplemented module.

Proof:

Let K, N \leq M ancl M=M+L. By assumption, there is H \leq L such that (L \cap N) +H = L and (L \cap N) \cap H=N \cap H $\leq \delta$ (H). thus L=H+(L \cap N) \leq H+N and hence M=N+L \leq N+H .therefor M=H+N as required.

Corollary 3.4:

Let R be any ring. Then the following statement are equivalent:

- 1. Every module is a $\delta(M)$ -amply supplemented module
- 2. Every module is a $\delta(M)$ -supplemented-module.

References

- [1] R. Wesbauer "foundation of module and ring theory algebra logic and application, USA, Vol. 3, 1991.
- [2] Y. Zhow "Generalization of perfect semperfevt and semiregular rings "algebra Coll. Vol.7, No.3, 2000, pp. 305 – 318.
- [3] Y .Wany "δ- small submodule and δ- supplement module" International Journal of Math Sciences Volume 2007.
- [4] M.J. Nematoilahi, "on-δ-supplemented modules", Toallem University, 20 th seminar on Algebra (Apv, 22-23, 2009, pp.155-158.
- [5] W .Xue "characterization of semi perfect Rings" publications Math. 40 (1996) 115 – 125.
- [6] Y .Wany and N. Ding "Genera neseJournal of Math", Vol. 10, 2006, pp.1587 - 1601.

[7] F. W. Anderson and K. R .Fuller, "Rings and Categories of Modules, Sprenger – Verlag, 1974.

الخلاصة

لتكن R حلقة، M مقاسات في هذا البحث نقدم تعريف
المقاس المكمل من النوع (M)
$$\delta$$
 الجزئي حيث اذا كان A،
B مقاسات جزئية من M و A + B = فأن B
يكون مقاس جزئي مكمل من النوع(M) δ اذا كان
(M) $\delta \ge B \cap A$ وكذلك قمنا بأعطاء خواص هذا النوع
من الموديلات.