On Pre-Proper Functions

Sabiha I.Mahmood

Department of Mathematics, College of Science, Al-Mustansiriyah University

Baghdad-Iraq.

Abstract

In this paper we introduce new type of functions called pre-proper functions as generalization of proper functions. Also, we study the characterizations and basic properties of pre-proper and preclosed functions. Moreover we study the relation between the pre-proper functions and each of proper functions, pre-closed functions and closed functions respectively and we give an example when the converse may not be true.

1.Introduction

The concept of a proper functions was first introduced by N. Bourbaki.[1], by using closed functions. The purpose of this paper is to generalize the concept of proper functions [1] to the concept of pre-proper functions. We give the definition by depending on the definition of pre-closed functions which is introduced by S.N. El-Deeb and etal.,[2] which itself depends on the concept of pre-closed set which is introduced by A.S. Mashhour and etal.,[3]. Also, we study the characterizations and basic properties of pre-proper and pre-closed functions. Moreover we study the relation between the pre-proper functions and each of proper functions, pre-closed functions and closed functions resp. and we give an example when the converse may not be true in general. Recall that a subset A of a topological space X is called pre-open if $A \subseteq int(cl(A))$ where cl(A) and int(cl(A)) denotes the closure of A and interior of cl(A) resp.[3]. The complement of a pre-open set is called a pre-closed set [3] or equivalently a subset A of a topological space X is pre-closed iff $cl(int(A)) \subseteq A$ [4]. The family of all pre-open sets of a topological space X is denoted by PO(X) [5] .The intersection of all pre-closed sets containing a set A is pre-closed which is called the pre-closure of A and is denoted by pcl(A) [5]. A subset A of a topological space X is pre-closed iff A = pcl(A) [6]. A function $f: X \rightarrow Y$ is called proper if (i) f is continuous (ii) $f \times I_Z : X \times Z \to Y \times Z$ is closed, for every topological space Z, where I_Z denotes the identity function on Z [1]. Also, a function $f: X \rightarrow Y$ is called pre-irresolute if the inverse image of every pre-open subset of Y is

an pre-open set in X [7].If A is a subset of $Y \subseteq X$, the closure of A and the interior of A with respect to Y is denoted by $cl_y(A)$ and int_y(A) resp..

2. Preliminaries

2.1. Definition [8]:

Let $(x_d)_{d\in D}$ be a net in a topological space X. Then $(x_d)_{d\in D}$ is said to have $x \in X$ as an pre-cluster point (written $x_d \propto x$) iff for each pre-neighborhood U of x and for each $d \in D$, there is some $d_0 \ge d$ such that $x_{d_0} \in U$. This is sometimes said $(x_d)_{d\in D}$ has x as an pre-cluster point iff $(x_d)_{d\in D}$ is frequently in every pre-neighborhood of x.

2.2. Theorem [8]:

Let X be a topological space and $A \subseteq X$, $x \in X$. Then $x \in pcl(A)$ if and only if there exists a net $(x_d)_{d \in D}$ in A such that $x_d \stackrel{p}{\sim} x$.

2.3. Proposition:

If X is topological space, Y is an open subset of X and A is pre-closed in X, then A I Y is pre-closed in Y.

Proof:

To prove that $cl_y(int_y(A \mathbf{I} \mathbf{Y})) \subset A \mathbf{I} \mathbf{Y}$. $\mathbf{Q} cl_y(int_y(A \mathbf{I} \mathbf{Y})) = cl(int_y(A \mathbf{I} \mathbf{Y})) \mathbf{I} \mathbf{Y}$. And since Y is an open subset of X, then $cl(int_y(A \mathbf{I} \mathbf{Y})) \mathbf{I} \mathbf{Y} \subseteq cl(int(A) \mathbf{I} cl(\mathbf{Y}) \mathbf{I} \mathbf{Y}$. $\subseteq cl(int(A)) \mathbf{I} \mathbf{Y} \subseteq A \mathbf{I} \mathbf{Y}$, since A is pre-closed in X. Thus A **I** Y is pre-closed in Y.

Science

3. Pre-closed functions *3.1. Definition* [2],[9]:

Let X and Y be two topological spaces. A function $f: X \rightarrow Y$ is called an pre-closed (pre-open) function if the image of every closed (open) subset of X is an pre-closed (pre-open) set in Y.

3.2.Examples:

1) Let $f : (\mathfrak{R}, \mu) \to (\mathfrak{R}, \mu)$ be a function which is defined by :

 $f(x)=0, \forall \ x\in \Re$. Then f is an pre-closed function.

2) An inclusion function $i: F \to X$ is pre-closed iff F is an pre-closed set in X.

Since every closed set is an pre-closed set, then we have the following theorem.

3.3.Theorem:

Every closed function is an pre-closed function.

<u>3.4.Remark:</u>

The converse of (3.3) may not be true in general.

Example:

If F is an pre-closed set in X, then the inclusion function $i: F \rightarrow X$ is pre-closed, but not closed function.

3.5. Theorem:

Let X and Y be two topological spaces. A function $f: X \rightarrow Y$ is pre-irresolute iff the inverse image of every pre-closed subset of Y is an pre-closed set in X.

Proof:

The proof of 3.5 is obvious.

<u>3.6. Theorem:</u>

Let X,Y,Z be three topological spaces, and $f: X \rightarrow Y, g: Y \rightarrow Z$ be two functions. Then:-

- 1) If f is closed and g is pre-closed, then g of is pre-closed.
- 2) If g of is pre-closed and f is continuous and onto, then g is pre-closed.
- **3**) If g **o** f is pre-closed and g is one-to-one and pre-irresolute, then f is pre-closed.

Proof:

- 1) To prove that gof: X → Z is pre-closed. Let F be a closed subset of X .Since f is closed, then f(F) is a closed set in Y. But g is an pre-closed function, then g(f(F)) is an pre-closed set in Z, hence (gof)(F) is an pre-closed set in Z.Thus gof: X → Z is an pre-closed function.
- 2) To prove that g: Y → Z is pre-closed. Let A be a closed subset of Y, since f is continuous, then f⁻¹(A) is a closed set in X, since gof is pre-closed, then (gof)(f⁻¹(A)) = g(fof⁻¹(A)) is pre-closed in Z. Since f is onto, then g(A) is pre-closed in Z.Thus g: Y → Z is an pre-closed function.
- 3)To prove that $f: X \to Y$ is pre-closed. Let A be a closed subset of X, since $g \circ f$ is pre-closed, then $(g \circ f)(A)$ is pre-closed in Z. Since g is pre-irresolute, then $g^{-1}(g \circ f(A)) = (g^{-1} \circ g)(f(A))$ is pre-closed in Y.Since g is one-to-one, then f(A) is pre-closed in Y. Thus $f: X \to Y$ is an pre-closed function.

3.7. Theorem:

Let X and Y be two topological spaces and $f: X \to Y$ be an pre-closed function. Then for each open subset T of Y, $f_T: f^{-1}(T) \to T$ which is defined by $f_T(x) = f(x)$, $\forall x \in f^{-1}(T)$ is also pre-closed.

Proof:

Let F be a closed subset of $f^{-1}(T)$, then there is a closed subset F_1 of X such that $F = F_1 \mathbf{I} f^{-1}(T)$. Since $f_T(F) = f(F_1) \mathbf{I} T$ and $f(F_1)$ is pre-closed in Y and T is open in Y, then by $(2.3) f(F_1) \mathbf{I} T$ is pre-closed in T.Thus f_T is an pre-closed function.

<u>3.8. Theorem:</u>

Let $f: X \to Y$ be an pre-closed Function and let F be a closed subset of X, then the restriction function $f \setminus F: F \to Y$ is an pre-closed function.

Proof:

Since F is a closed set in X, then the inclusion function $i:F \to X$ is a closed function. Since $f:X \to Y$ is an pre-closed function, then by (3.6) $f \mathbf{0}i:F \to Y$ is an pre-closed function. But $f \mathbf{0}i = f \setminus F$, thus the restriction function $f \setminus F:F \to Y$ is an pre-closed function.

3.9. Remark:

If $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ are two pre-closed functions .Then $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ is not necessarily an pre-closed function.

Example:

Let $f_1: (\mathfrak{R}, \mu) \to (\mathfrak{R}, \mu)$ be a function which is defined by: $f_1(x) = 0, \forall x \in \mathfrak{R}$. And Let $f_2: (\mathfrak{R}, \mu) \to (\mathfrak{R}, \mu)$ be a function which is defined by: $f_2(x) = x, \forall x \in \mathfrak{R}$. Where f_2 is the identity function on \mathfrak{R} .

Clearly f_1 and f_2 are pre-closed functions, but $f_1 \times f_2 : \Re \times \Re \to \Re \times \Re$, Such that

 $(f_1 \times f_2)(x, y) = (0, y), \forall (x, y) \in \Re \times \Re$ is not an pre-closed function, since the set

$$\begin{split} \mathbf{A} &= \{ (\mathbf{x}, \mathbf{y}) \in \mathfrak{R} \times \mathfrak{R} : \mathbf{x} \ \mathbf{y} = 1 \} \quad \text{is closed in} \\ \mathfrak{R} \times \mathfrak{R}, \quad \text{but} \quad (\mathbf{f}_1 \times \mathbf{f}_2)(\mathbf{A}) = \mathfrak{R} - \{ 0 \} \quad \text{is not} \\ \text{pre-closed in} \ \mathfrak{R} \times \mathfrak{R}. \end{split}$$

Now, we introduce the following theorem:

3.10. Theorem:

Let $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be two functions and if $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ is pre-closed, then f_1 and f_2 are also pre-closed functions.

Proof:

Suppose that $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is an pre-closed function. To prove that

 $f_1: X_1 \rightarrow Y_1$ is an pre-closed function. Let F be a closed subset of X_1 , to prove that $f_1(F)$ is pre-closed in Y_1 .

Suppose that $G = f_1(F) \Rightarrow F \times X_2$ is closed in $X_1 \times X_2$. Since $f_1 \times f_2$ is pre-closed $\Rightarrow (f_1 \times f_2)(F \times X_2) = f_1(F) \times f_2(X_2)$ $= G \times f_2(X_2)$ is pre-closed in $Y_1 \times Y_2$. i.e. $cl(int(G \times f_2(X_2))) \subseteq G \times f_2(X_2)$ $\Rightarrow cl(int(G)) \times cl(int(f_2(X_2))) \subseteq G \times f_2(X_2)$ $\Rightarrow cl(int(G)) \subseteq G \& cl(int(f_2(X_2))) \subseteq f_2(X_2).$ Thus $G = f_1(F)$ is an pre-closed set in Y_1 Hence $f_1 : X_1 \rightarrow Y_1$ is an pre-closed function. By the same way we can prove that f_2 is an pre-closed function. Thus f_1 and f_2 are pre-closed functions.

4. Pre-proper functions

Here we introduce functions, which we call them pre-proper functions, which is weaker than proper functions, with some examples and theorems.

4.1. Definition:

Let X and Y be two topological spaces, and $f: X \rightarrow Y$ be a function. Then f is called an pr-proper function if :i) f is continuous.

ii) $f \times I_Z : X \times Z \rightarrow Y \times Z$ is pre-closed, for every topological space Z.

4.2. Examples:

1) Let $f: (\mathfrak{R}, \mu) \to (\mathfrak{R}, \mu)$ be a function which is defined by: $f(x) = 0, \forall x \in \mathfrak{R}$. Notice that f is an pre-closed function, but f is not an pre- proper function, since for the usual topological

space (\mathfrak{R}, μ) , the function

 $f \times I_{\mathfrak{R}} : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R} \times \mathfrak{R}$, such that

 $(f \times I_{\Re})(x, y) = (0, y), \forall (x, y) \in \Re \times \Re$

is not an pre-closed function.

2) An inclusion function $i: F \to X$ is preproper iff F is an pre-closed set in X.

Since every closed function is an pre-closed function, then we have the following theorem.

4.3. Theorem:

Every proper function is an pre-proper function.

4.4. Remark:

The converse of (4.3) may not be true in general.

Example:

If F is pre-closed in X, then $i:F \to X$ is an pre-proper function ,but not a proper function.

4.5. Theorem:

Every pre-proper function is an pre-closed function.

Proof:

Let $f: X \to Y$ be an pre-proper function, then $f \times I_Z : X \times Z \to Y \times Z$ is pre-closed for every topological space Z. Let $Z = \{t\}$, then $X \times Z = X \times \{t\} \cong X$

and $Y \times Z = Y \times \{t\} \cong Y$ and we can replace $f \times I_z$ by f.Thus $f: X \to Y$ is an pre-closed function.

4.6. Remark:

The converse of (4.5) may not be true in general.

<u>Example:</u>

In (4.2) $f : (\Re, \mu) \to (\Re, \mu)$ is an pre-closed function, but not an pre-proper function.

Now, we introduce the following definition.

4.7. Definition:

Let X and Y be two topological spaces. A function $f: X \rightarrow Y$ is called an pre-homeomorphism if :

i) f is continuous.

ii) f is one-to-one and onto.

iii) f is pre-closed (pre-open).

4.8. Theorem:

Let X and Y be two topological spaces, and $f: X \rightarrow Y$ be a continuous, one-to-one function. Then the following statements are equivalent:

i) f is pre-proper.

ii) f is pre-closed.

iii) f is an pre-homeomorphism of X onto an pre-closed subset of Y.

Proof:

By (4.5), $(i \Rightarrow ii)$.

 $(ii \Rightarrow iii)$.Assume that $f: X \to Y$ is an pre-closed function. Since X is a closed set in X, then f(X) is an pre-closed set in Y. Since f is continuous and one-to-one, then f is an pre-homeomorphism of X onto an pre-closed subset f(X) of Y.

 $(iii \Rightarrow i)$. Assume that f is an pre-homeomorphism of X onto an pre-closed subset U of Y. Now, let Z be any topological

space, and W be any closed set in $X \times Z$, then $W = W_1 \times W_2$, where W_1 is closed in X and W_2 is closed in Z. Since $(f \times I_Z)(W) = (f \times I_Z)(W_1 \times W_2)$

= $f(W_1) \times W_2$ and f is an pre-homeomorphism, then $f(W_1)$ is an pre-closed set in U, thus $f(W_1) \times W_2$ is an pre-closed in U×Z.Since U×Z is an pre-closed set in Y×Z,then by [10] $(f \times I_Z)(W)$ is pre-closed in Y×Z. Hence $f \times I_Z : X \times Z \rightarrow Y \times Z$ is an pre-closed function. Thus $f : X \rightarrow Y$ is an pre-proper function.

4.9. Corollary:

Every pre-homeomorphism is an pre-proper function.

4.10.Remark:

The converse of (4.9) may not be true in general by the following example:-

Example:

Let $f:([0,1],\mu') \to (\mathfrak{R},\mu)$ be a function which is defined by:

f(x) = x, $\forall x \in [0,1]$, where μ' is the relative usual topology on [0,1].

Clearly that f is an pre-proper function, but not pre-homeomorphism.

4.11. Theorem:

Let X and Y be two topological spaces and $f: X \to Y$ be an pre-proper function. Let T be any open subset of Y, then $f_T: f^{-1}(T) \to T$ is an pre-proper function.

Proof:

Since $f: X \to Y$ is continuous, then so is f_T . To prove that $f_T \times I_Z : f^{-1}(T) \times Z \to T \times Z$ is pre-closed for every topological space Z. Since f is pre-proper, then $f \times I_Z : X \times Z \to Y \times Z$ is pre-closed for every topological space Z. Since $f_T \times I_Z = (f \times I_Z)_{T \times Z}$ and $T \times Z$ is open in $Y \times Z$, then by (3.7) $f_T \times I_Z$ is pre-closed. Thus $f_T : f^{-1}(T) \to T$ is an pre-proper function.

4.12. Theorem:

Let X, Y, Z be three topological spaces, and $f: X \rightarrow Y, g: Y \rightarrow Z$ be two continuous functions. Then:-

- i) I f f is proper and g is pre-proper, then g of is pre-proper.
- **ii**)If gof is pre-proper and f is onto, then g is pre-proper.
- **iii**)If g **o** f is pre-proper and g is one-to-one and pre-irresolute, then f is pre- proper.

Proof:

- i) It is clear that $g o f : X \to Z$ is continuous. Let Z_1 be any topological space, we have : $(g o f) \times I_{Z_1} = (g \times I_{Z_1}) o (f \times I_{Z_1})$. Since f is proper, then $f \times I_{Z_1} : X \times Z_1 \to Y \times Z_1$ is Closed. Since g is pre-proper, then $g \times I_{Z_1} : Y \times Z_1 \to Z \times Z_1$ is pre-closed. Hence by (3.6) $(g o f) \times I_{Z_1} : X \times Z_1 \to Z \times Z_1$ is pre-closed. Thus $g o f : X \to Z$ is an pre-proper function.
- ii) Let Z_1 be any topological space. To prove that $g \times I_{Z_1} : Y \times Z_1 \to Z \times Z_1$ is pre-closed. Since $g \circ f$ is pre-proper, then: $(g \circ f) \times I_{Z_1} = (g \times I_{Z_1}) \circ (f \times I_{Z_1})$

is pre-closed. Since f is continuous and onto, then so is $f \times I_{Z_1}$, hence by (3.6) $g \times I_{Z_1}$ is pre-closed. Thus $g : Y \to Z$ is an pre-proper function.

iii) Let Z_1 be any topological space. To prove that $f \times I_{Z_1} : X \times Z_1 \to Y \times Z_1$ is pre-closed. Since $g \circ f$ is pre-proper, then $(g \circ f) \times I_{Z_1} = (g \times I_{Z_1}) \circ (f \times I_{Z_1})$ is pre-closed. Since g is one-to-one and pre-irresolute, then so is $g \times I_{Z_1}$, hence by $(3.6) f \times I_{Z_1}$ is pre-closed. Thus $f : X \to Y$ is an pre-proper function.

4.13. Theorem:

Let X and Y be two topological spaces. If $f: X \to Y$ is an pre-proper function, then the restriction of f to a closed subset F of X is an pre-proper function of F into Y.

Proof:

Since F is a closed set in X, then the inclusion function $i:F \to X$ is a proper function .Since $f:X \to Y$ is an pre-proper function, then by (4.12) $f \, \textbf{o} i:F \to Y$ is an pre-proper function. But $f \, \textbf{o} i = f \setminus F$, thus the

restriction function $f \setminus F : F \to Y$ is an pre-proper function.

<u>4.14. Theorem:</u>

If $f_1: X_1 \to Y_1$ is a proper function and $f_2: X_2 \to Y_2$ is an pre-proper function .Then $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ is an pre-proper function.

Proof:

Let Z be any topological space.

We can write $f_1 \times f_2 \times I_Z$ by the composition of $I_{Y_1} \times f_2 \times I_Z$ and $f_1 \times I_{X_2} \times I_Z$. Since f_1 is proper, then $f_1 \times I_{X_2} \times I_Z$ is closed. Since f_2 is pre-proper, then $I_{Y_1} \times f_2 \times I_Z$ is preclosed, hence by (3.6)

 $(\mathbf{I}_{\mathbf{Y}_{1}} \times \mathbf{f}_{2} \times \mathbf{I}_{Z}) \mathbf{0}(\mathbf{f}_{1} \times \mathbf{I}_{\mathbf{X}_{2}} \times \mathbf{I}_{Z})$

is pre-closed. But

 $\mathbf{f}_1 \times \mathbf{f}_2 \times \mathbf{I}_Z = (\mathbf{I}_{\mathbf{Y}_1} \times \mathbf{f}_2 \times \mathbf{I}_Z) \mathbf{0} (\mathbf{f}_1 \times \mathbf{I}_{\mathbf{X}_2} \times \mathbf{I}_Z)$

 \Rightarrow f₁×f₂×I_z is pre-closed. Thus

 $f_1 \!\times\! f_2 :\! X_1 \!\times\! X_2 \to Y_1 \!\times\! Y_2 \quad \text{is an pre-proper function.}$

4.15. Theorem:

Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be two functions such that $f_1 \times f_2$ is pre-proper. Then: 1) If $X_1 \neq \phi$, then f_2 is pre-proper.

- **2**) If $X_2 \neq \phi$, then f_1 is pre-proper.
- **3)** If $X_1 \neq \phi$ and $X_2 \neq \phi$, then both f_1 and f_2 are pre-proper.

Proof:

- 1) Let Z be any topological space.
 - To Prove that $f_2 \times I_Z : X_2 \times Z \rightarrow Y_2 \times Z$ is pre-closed. Let F be a closed set in $X_2 \times Z$ and $G = (f_2 \times I_Z)(F)$. To prove that G is pre-closed in $Y_2 \times Z$. Since $X_1 \neq \phi$, then $X_1 \times F$ is closed in $X_1 \times X_2 \times Z$.Since $f_1 \times f_2$ is pre-proper, then $(f_1 \times f_2 \times I_Z)(X_1 \times F) = f_1(X_1) \times G$ is pre-closed in $Y_1 \times Y_2 \times Z$.

i.e $cl(int(f_1(X_1) \times G)) \subseteq f_1(X_1) \times G$.

 $\Rightarrow cl(int(G)) \subseteq G.Hence \quad G = (f_2 \times I_Z)(F) \text{ is}$ pre-closed in $Y_2 \times Z$.Therefore $f_2 \times I_Z$ is pre-closed. Thus f_2 is an pre-proper function. 2) Similar to (1).3) Clear.

4.16. Theorem:

Let X and Y be two topological spaces, and $f: X \rightarrow Y$ be a continuous function .Then the following statements are equivalent: i) f is an proper function

i) f is an pre-proper function.

ii) If (x_d)_{d∈D} is a net in X and y∈ Y is an pre-cluster point of (f(x_d))_{d∈D}, then there is a cluster point x∈ X of (x_d)_{d∈D} such that f(x) = y.

Proof:

 $(i \Rightarrow ii)$.Claim $f^{-1}(y) \neq \phi$, if $f^{-1}(y) = \phi$, then $y \notin f(X) \Rightarrow y \in (f(X))^c$, since X is a closed set in X and f is pre-closed, then f(X)is an pre-closed set in Y. Thus $(f(X))^c$ is an pre-open set in Y. Therefore $(f(x_d))_{d\in D}$ is frequently in $(f(X))^c$.But $f(x_d) \in f(X), \forall d$ Then $f(X) \mathbf{I} (f(X))^c \neq \phi$, and this is a contradiction. Thus $f^{-1}(y) \neq \phi$.

Now, suppose that the statement (ii) is not true, that means for all $x_i \in f^{-1}(y)$ there exists an open set U_{x_i} in X contains x_i such that $(x_d)_{d\in D}$ is not frequently in U_{x_i} . Notice that $f^{-1}(y) = \bigcup_{x_i \in f^{-1}(y)} \{x_i\} \subseteq \bigcup_{i \in I} U_{x_i}$. But $(x_d)_{d\in D}$ is not frequently in $U_{x_i}, \forall i \in I$. Thus $(x_d)_{d\in D}$ is not frequently in $\bigcup_{i \in I} U_{x_i}$, but $\bigcup_{i \in I} U_{x_i}$ is an open set in X, then $\prod_{i \in I} U_{x_i}^c$ is a closed set in X. Thus $f(\prod_{i \in I} U_{x_i}^c)$ is an pre-closed set in Y. Claim $y \notin f(\prod_{i \in I} U_{x_i}^c)$, if $y \in f(\prod_{i \in I} U_{x_i}^c)$, then there exists $x \in \prod_{i \in I} U_{x_i}^c$ such that f(x)=y, thus $x \notin \bigcup_{i \in I} U_{x_i}$, but $x \in f^{-1}(y)$, therefore $f^{-1}(y)$ is not a subset of $\bigcup_{i \in I} U_{x_i}$, and this is a

contradiction. Hence $y \notin f(\prod_{i \in I} U_{x_i}^{c})$ and by [8] there is an pre-open set A in Y such that $y \in A$ and A I $f(\prod_{i \in I} U_{x_i}^{c}) = \phi$. $\Rightarrow f^{-1}(A) \mathbf{I} f^{-1}(f(\mathbf{I}_{x_i} U_{x_i}^{c})) = \phi.$ $\Rightarrow f^{-1}(A) \mathbf{I} (\mathbf{I}_{i \in I} U_{x_i}^{c}) = \phi \Rightarrow f^{-1}(A) \subseteq \mathbf{U}_{i \in I} U_{x_i}$

But $(f(x_d))_{d\in D}$ is frequently in A, then $(x_d)_{d\in D}$ is frequently in $f^{-1}(A)$ and then $(x_d)_{d\in D}$ is frequently in $\bigcup_{i\in I} U_{x_i}$, this is a contradiction. Thus there is a cluster point $x \in X$ of $(x_d)_{d\in D}$ such that f(x)=y.

 $(ii \Rightarrow i)$, $f \times I_7$: to prove that $X \times Z \rightarrow Y \times Z$ is an pre-closed function for every topological space Z.Let F be a closed subset of X×Z and $(f \times I_z)(F) = G$. To prove pre-closed is an set that G in $Y \times Z$.Let $(y, z) \in pcl(G)$, then by (2.2) there is a net $\{(y_d, z_d)\}$ in G such that $(y_d, z_d) \stackrel{r}{\propto} (y, z)$. Thus there is a net $\{(x_d, z_d)\}$ in F such that

$$(\mathbf{f} \times \mathbf{I}_Z)(\mathbf{x}_d, \mathbf{z}_d) = (\mathbf{y}_d, \mathbf{z}_d), \forall d \in \mathbf{D}.$$

Since $(y_d, z_d)^p (y, z)$, then by [8] $y_d \stackrel{p}{\propto} y$ and $z_d \stackrel{p}{\propto} z$, hence there is $x \in X$ such that $x_d \propto x \& f(x) = y$. Since $z_d \stackrel{p}{\propto} z$, then by [8] $z_d \propto z$. Therefore $x_{d_u} \rightarrow x \& z_{d_u} \rightarrow z$. $\Rightarrow (x_{d_u}, z_{d_u}) \rightarrow (x, z)$. Since $\{(x_{d_u}, z_{d_u})\}$ is a net in F and F is closed, thus $(x, z) \in \overline{F} = F \Rightarrow (y, z) = (f \times I_z)(x, z) \in G \Rightarrow$ $pcl(G) \subseteq G$. Since $G \subseteq pcl(G) \Rightarrow G = pcl(G)$ Hence G is an pre-closed set in $Y \times Z$. Therefore $f \times I_z : X \times Z \rightarrow Y \times Z$ is an pre-closed function for every topological space Z. Thus $f : X \rightarrow Y$ is an pre-proper function.

4.17. Theorem:

Let X be a topological space and $\{p\}$ be a space consisting of a single point. Then a function $f: X \rightarrow \{p\}$ is pre-proper if and only if X is compact.

Proof:

If X is compact, then by [1], $f: X \to \{p\}$ is proper, therefore by (4.3) $f: X \to \{p\}$ is pre-proper.

Conversely, let $f: X \to \{p\}$ be an pre-proper function and $(x_d)_{d\in D}$ be a net in X, then $f(x_d) = p$, $\forall d \in D \Rightarrow f(x_d) \stackrel{p}{\propto} p$, since f is pre-proper, then by (4.16) there is $x \in X$ such that $x_d \propto x$ and f(x) = p. Thus X is a compact space.

4.18. Theorem:

If $f: X \to Y$ is a proper function and $g: X \to Z$ is an pre-proper function, where X is Hausdorff .Then the diagonal function $f \Delta g: X \to Y \times Z$ is an pre-proper function.

Proof:

First we have $f \Delta g = (f \times g) \mathbf{0} d$, where $d: X \to X \times X$ such that d(x) = (x, x), $\forall x \in X$.Since X is Hausdorff, then by [1] d(X) is closed in $X \times X$, hence d is a homeomorphism of X onto closed subset of $X \times X$, then by [1] $d: X \to X \times X$ is proper. Also, since f is proper and g is pre-proper, then by (4.14) $f \times g$ is pre-proper. Hence $(f \times g) \mathbf{0} d$ is pre-proper. Thus the diagonal function $f \Delta g: X \to Y \times Z$ is an pre-proper function.

4.19. Theorem:

If X is any compact topological space and Y is any topological space, then the projection $pr_2: X \times Y \rightarrow Y$ is an pre-proper function.

Proof:

Since X is a compact space, then by [1]

 $f: X \to \{p\}$ is proper, since $I_Y: Y \to Y$ is pre-proper, then by (4.14)

 $f \times I_Y : X \times Y \to \{p\} \times Y \cong Y$

is pre-proper. But $pr_2 = f \times I_Y$. Thus $pr_2 : X \times Y \rightarrow Y$ is an pre-proper function.

References

 N. Bourbaki, Elements of Mathematics, "General Topology", Chapter1-4, Springerverlog, Berlin, Heidelberg, New-york, London, Paris, Tokyo, 2nd Edition 1989, pp.50-105.

- [2] S.N. El-Deeb, I.A. Hasanien, A.S. Mashhour and T. Noiri, "On p-regular spaces", Bull. Mathe. Soc.Sci. Math.R.S.R., Vol.75, No.27, 1983, pp.311-315.
- [3] A.S. Mashhour, M.E.Abd El-Monsef and I.A.Hasanein,"On pretopological spaces", Bull.Math.Soc.Sci.R.S.R., Vol.76, No.28, 1984, pp.39-45.
- [4] J. Dontchev, "Survey on preopen sets", Vol.1, 1998, pp.1-18.
- [5] M.Caldas and G.Navalagi, "On weak forms of preopen and preclosed functions", Archivum Mathematicum Tomus, Vol.40, 2004, pp.119-128.
- [6] G.B.Navalagi, "Definition Bank in General Topology", internet 54 G1991.
- [7] I.L.Reilly and M.K.Vamanmurthy," On α-Continuity in topological spaces", Acta. Math. Hungar.Vol.1-2, No.45, 1985, pp.27-32.
- [8] Bassam Jabbar and Sabiha I. Mahmood, "On pre-convergence nets and filters", J.of Al-Nahrain University for Science, 2008, pp.1-8.
- [9] A.S.Mashhour, M.E. Abd El-Monsef and S.N.El-Deeb, "On precontinuous and weak precontinuous functions", Proc.Math.Phys. Soc.Egypt, No.53, 1982, pp.47-53.
- [10] M.H.Al-Badairy, "On Feebly proper actions", M.SC. thesis, college of science, Al-Mustansiriya University, 2005, pp.7.

الخلاصة

في هذا البحث قدمنا نوع جديد من الدوال أسميناها بالدوال السديدة من النمط-proper functions) كذلك نحن كتعميم للدوال السديدة (proper functions) كذلك نحن درسنا المكافئات والخواص الاساسية للدوال السديدة من النمط-pre (pre-proper functions) والدوال المغلقة من النمط -pre (pre-closed functions) بالاضافه إلى ذلك درسنا العلاقة بين الدوال السديد من النمط -pre وكل من الدوال السديدة والدوال المغلقة من النمط -pre والدوال الدوال السديدة والدوال مغلقة من النمط -pre والدوال الدوال السديدة والدوال المغلقة من النمط -pre مثال