# On Pre-Proper Functions 

Sabiha I.Mahmood<br>Department of Mathematics, College of Science, Al-Mustansiriyah University Baghdad-Iraq.


#### Abstract

In this paper we introduce new type of functions called pre-proper functions as generalization of proper functions. Also, we study the characterizations and basic properties of pre-proper and preclosed functions. Moreover we study the relation between the pre-proper functions and each of proper functions, pre-closed functions and closed functions respectively and we give an example when the converse may not be true.


## 1.Introduction

The concept of a proper functions was first introduced by N. Bourbaki.[1], by using closed functions. The purpose of this paper is to generalize the concept of proper functions [1] to the concept of pre-proper functions. We give the definition by depending on the definition of pre-closed functions which is introduced by S.N. El-Deeb and etal.,[2] which itself depends on the concept of pre-closed set which is introduced by A.S. Mashhour and etal.,[3]. Also, we study the characterizations and basic properties of pre-proper and pre-closed functions. Moreover we study the relation between the pre-proper functions and each of proper functions, pre-closed functions and closed functions resp. and we give an example when the converse may not be true in general. Recall that a subset A of a topological space X is called pre-open if $\mathrm{A} \subseteq \operatorname{int}(\operatorname{cl}(\mathrm{A}))$ where $\mathrm{cl}(\mathrm{A})$ and $\operatorname{int}(\mathrm{cl}(\mathrm{A}))$ denotes the closure of A and interior of $\operatorname{cl}(\mathrm{A})$ resp.[3]. The complement of a pre-open set is called a pre-closed set [3] or equivalently a subset A of a topological space X is pre-closed iff $\mathrm{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A}[4]$. The family of all pre-open sets of a topological space X is denoted by $\mathrm{PO}(\mathrm{X})$ [5] .The intersection of all pre-closed sets containing a set A is pre-closed which is called the pre-closure of A and is denoted by $\operatorname{pcl}(A)$ [5]. A subset $A$ of a topological space $X$ is pre-closed iff $A=\operatorname{pcl}(A)$ [6].A function $f: X \rightarrow Y$ is called proper if (i) $f$ is continuous (ii) $f \times I_{Z}: X \times Z \rightarrow Y \times Z$ is closed, for every topological space $Z$, where $I_{Z}$ denotes the identity function on Z [1]. Also, a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called pre-irresolute if the inverse image of every pre-open subset of Y is
an pre-open set in X [7].If A is a subset of $\mathrm{Y} \subseteq \mathrm{X}$, the closure of A and the interior of A with respect to Y is denoted by $\mathrm{cl}_{\mathrm{y}}(\mathrm{A})$ and int $_{\mathrm{y}}(\mathrm{A})$ resp..

## 2. Preliminaries

### 2.1. Definition [8]:

Let $\left(x_{d}\right)_{d \in D}$ be a net in a topological space $X$. Then $\left(x_{d}\right)_{d \in D}$ is said to have $x \in X$ as an pre-cluster point (written $X_{d} \propto x$ ) iff for each pre-neighborhood $U$ of $x$ and for each $d \in D$,there is some $d_{0} \geq d$ such that $\mathrm{x}_{\mathrm{d}_{0}} \in \mathrm{U}$. This is sometimes said $\left(\mathrm{x}_{\mathrm{d}}\right)_{\mathrm{d} \in \mathrm{D}}$ has $x$ as an pre-cluster point iff $\left(x_{d}\right)_{d \in D}$ is frequently in every pre-neighborhood of $x$.

### 2.2. Theorem [8]:

Let X be a topological space and $\mathrm{A} \subseteq \mathrm{X}$, $x \in X$. Then $x \in \operatorname{pcl}(A)$ if and only if there exists a net $\left(\mathrm{X}_{\mathrm{d}}\right)_{\mathrm{d} \in \mathrm{D}}$ in A such that $\mathrm{X}_{\mathrm{d}} \stackrel{\mathrm{p}}{\propto} \mathrm{x}$.

### 2.3. Proposition:

If X is topological space, Y is an open subset of $X$ and $A$ is pre-closed in $X$, then Al Y is pre-closed in Y .

## Proof:

To prove that $\mathrm{cl}_{\mathrm{y}}\left(\operatorname{int}_{\mathrm{y}}(\mathrm{A} \mid \mathrm{Y})\right) \subset \mathrm{Al} \mathrm{Y}$.
$\mathrm{Q} \operatorname{cl}_{\mathrm{y}}\left(\operatorname{int}_{\mathrm{y}}(\mathrm{A} \mid \mathrm{Y})\right)=\operatorname{cl}\left(\operatorname{int}_{\mathrm{y}}(\mathrm{A} \mid \mathrm{Y})\right) \mathrm{I}$.
And since $Y$ is an open subset of $X$, then $\operatorname{cl}\left(\operatorname{int}_{\mathrm{y}}(\mathrm{A} \mid \mathrm{Y})\right) \mathrm{I} \mathrm{Y} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A})|\operatorname{cl}(\mathrm{Y})| \mathrm{Y}$. $\subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))|\mathrm{Y} \subseteq \mathrm{A}| \mathrm{Y}, \quad$ since A is pre-closed in X . Thus AI Y is pre-closed in Y.

## 3. Pre-closed functions

### 3.1. Definition [2],[9]:

Let X and Y be two topological spaces. A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called an pre-closed (pre-open) function if the image of every closed (open) subset of X is an pre-closed (pre-open) set in Y.

### 3.2.Examples:

1) Let $f:(\Re, \mu) \rightarrow(\Re, \mu)$ be a function which is defined by :
$\mathrm{f}(\mathrm{x})=0, \forall \mathrm{x} \in \mathfrak{R}$. Then f is an pre-closed function.
2) An inclusion function i:F $\rightarrow X$ is pre-closed iff $F$ is an pre-closed set in $X$.

Since every closed set is an pre-closed set, then we have the following theorem.

### 3.3.Theorem:

Every closed function is an pre-closed function.

### 3.4.Remark:

The converse of (3.3) may not be true in general.

## Example:

If F is an pre-closed set in X , then the inclusion function $\mathrm{i}: \mathrm{F} \rightarrow \mathrm{X}$ is pre-closed, but not closed function.

### 3.5. Theorem:

Let X and Y be two topological spaces. A function $f: X \rightarrow Y$ is pre-irresolute iff the inverse image of every pre-closed subset of Y is an pre-closed set in X .

## Proof:

The proof of 3.5 is obvious.

### 3.6. Theorem:

Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be three topological spaces, and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two functions. Then:-

1) If $f$ is closed and $g$ is pre-closed, then $g$ of is pre-closed.
2) If $g$ of is pre-closed and $f$ is continuous and onto, then $g$ is pre-closed.
3) If $g$ of is pre-closed and $g$ is one-to-one and pre-irresolute, then $f$ is pre-closed.

## Proof:

1) To prove that $g$ of : $X \rightarrow Z$ is pre-closed. Let F be a closed subset of X . Since f is closed, then $f(F)$ is a closed set in Y. But $g$ is an pre-closed function, then $g(f(F))$ is an pre-closed set in Z , hence $(\mathrm{g}$ of $)(\mathrm{F})$ is an pre-closed set in Z.Thus g of : $\mathrm{X} \rightarrow \mathrm{Z}$ is an pre-closed function.
2) To prove that $g: Y \rightarrow Z$ is pre-closed. Let A be a closed subset of $Y$, since $f$ is continuous, then $\mathrm{f}^{-1}(\mathrm{~A})$ is a closed set in X , since $g$ of is pre-closed, then $(\mathrm{g}$ of $)\left(\mathrm{f}^{-1}(\mathrm{~A})\right)=\mathrm{g}\left(\mathrm{f}^{\circ} \mathrm{f}^{-1}(\mathrm{~A})\right)$ is pre-closed in $Z$. Since $f$ is onto, then $g(A)$ is pre-closed in Z . Thus $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is an pre-closed function.
3)To prove that $f: X \rightarrow Y$ is pre-closed. Let A be a closed subset of $X$, since $g$ of is pre-closed, then ( g of $)(\mathrm{A})$ is pre-closed in Z. Since $g$ is pre-irresolute, then $\mathrm{g}^{-1}(\mathrm{~g}$ of $(\mathrm{A}))=\left(\mathrm{g}^{-1} \mathrm{Og}\right)(\mathrm{f}(\mathrm{A}))$ is pre-closed in $Y$. Since $g$ is one-to-one, then $f(A)$ is pre-closed in Y . Thus $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is an pre-closed function.

### 3.7. Theorem:

Let X and Y be two topological spaces and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an pre-closed function. Then for each open subset $T$ of $Y, f_{T}: f^{-1}(T) \rightarrow T$ which is defined by $f_{T}(x)=f(x)$, $\forall \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~T})$ is also pre-closed.

## Proof:

Let $F$ be a closed subset of $f^{-1}(T)$, then there is a closed subset $F_{1}$ of $X$ such that $F=F_{1} I f^{-1}(T)$. Since $f_{T}(F)=f\left(F_{1}\right) \mid T$ and $f\left(F_{1}\right)$ is pre-closed in $Y$ and $T$ is open in $Y$, then by (2.3) $f\left(F_{1}\right) \mid T$ is pre-closed in $T$.Thus $f_{T}$ is an pre-closed function.

### 3.8. Theorem:

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an pre-closed Function and let F be a closed subset of X , then the restriction function $\backslash \mathrm{F}: \mathrm{F} \rightarrow \mathrm{Y}$ is an pre-closed function.

## Proof:

Since $F$ is a closed set in $X$, then the inclusion function $\mathrm{i}: \mathrm{F} \rightarrow \mathrm{X}$ is a closed function. Since $f: X \rightarrow Y$ is an pre-closed function, then by (3.6) $\mathrm{foi}: \mathrm{F} \rightarrow \mathrm{Y}$ is an pre-closed function. But f Oi $=\mathrm{f} \backslash \mathrm{F}$, thus the restriction function $f \backslash F: F \rightarrow Y$ is an pre-closed function.

### 3.9. Remark:

If $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ are two pre-closed functions. Then $\mathrm{f}_{1} \times \mathrm{f}_{2}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}$ is not necessarily an pre-closed function.

## Example:

Let $\mathrm{f}_{1}:(\Re, \mu) \rightarrow(\Re, \mu)$ be a function which is defined by: $\mathrm{f}_{1}(\mathrm{x})=0, \forall \mathrm{x} \in \mathfrak{R}$. And Let $\mathrm{f}_{2}:(\Re, \mu) \rightarrow(\Re, \mu)$ be a function which is defined by: $\mathrm{f}_{2}(\mathrm{x})=\mathrm{x}, \forall \mathrm{x} \in \mathfrak{R}$. Where $\mathrm{f}_{2}$ is the identity function on $\Re$.
Clearly $f_{1}$ and $f_{2}$ are pre-closed functions, but $\mathrm{f}_{1} \times \mathrm{f}_{2}: \mathfrak{R} \times \mathfrak{R} \rightarrow \Re \times \Re$, Such that
$\left(\mathrm{f}_{1} \times \mathrm{f}_{2}\right)(\mathrm{x}, \mathrm{y})=(0, \mathrm{y}), \forall(\mathrm{x}, \mathrm{y}) \in \mathfrak{R} \times \mathfrak{R}$ is not an pre-closed function, since the set $\mathrm{A}=\{(\mathrm{x}, \mathrm{y}) \in \mathfrak{R} \times \mathfrak{R}: \mathrm{x} \mathrm{y}=1\}$ is closed in $\mathfrak{R} \times \mathfrak{R}$, but $\left(\mathrm{f}_{1} \times \mathrm{f}_{2}\right)(\mathrm{A})=\mathfrak{R}-\{0\}$ is not pre-closed in $\Re \times \Re$.

Now, we introduce the following theorem:

### 3.10. Theorem:

Let $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ be two functions and if $f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ is pre-closed, then $f_{1}$ and $f_{2}$ are also pre-closed functions.

## Proof:

Suppose that $f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ is an pre-closed function. To prove that $\mathrm{f}_{1}: \mathrm{X}_{1} \rightarrow \mathrm{Y}_{1}$ is an pre-closed function. Let F be a closed subset of $X_{1}$, to prove that $f_{1}(F)$ is pre-closed in $\mathrm{Y}_{1}$.

Suppose that $G=f_{1}(F) \Rightarrow F \times X_{2}$ is closed in $X_{1} \times X_{2}$. Since $f_{1} \times f_{2}$ is pre-closed $\Rightarrow\left(\mathrm{f}_{1} \times \mathrm{f}_{2}\right)\left(\mathrm{F} \times \mathrm{X}_{2}\right)=\mathrm{f}_{1}(\mathrm{~F}) \times \mathrm{f}_{2}\left(\mathrm{X}_{2}\right)$ $=G \times f_{2}\left(X_{2}\right)$ is pre-closed in $Y_{1} \times Y_{2}$.
i.e. $\operatorname{cl}\left(\operatorname{int}\left(G \times f_{2}\left(X_{2}\right)\right)\right) \subseteq G \times f_{2}\left(X_{2}\right)$
$\Rightarrow \operatorname{cl}(\operatorname{int}(\mathrm{G})) \times \operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}_{2}\left(\mathrm{X}_{2}\right)\right)\right) \subseteq \mathrm{G} \times \mathrm{f}_{2}\left(\mathrm{X}_{2}\right)$
$\Rightarrow \operatorname{cl}(\operatorname{int}(\mathrm{G})) \subseteq \mathrm{G} \& \operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}_{2}\left(\mathrm{X}_{2}\right)\right)\right) \subseteq \mathrm{f}_{2}\left(\mathrm{X}_{2}\right)$.
Thus $G=f_{1}(F)$ is an pre-closed set in $Y_{1}$ Hence $f_{1}: X_{1} \rightarrow Y_{1}$ is an pre-closed function. By the same way we can prove that $f_{2}$ is an pre-closed function. Thus $f_{1}$ and $f_{2}$ are pre-closed functions.

## 4. Pre-proper functions

Here we introduce functions, which we call them pre-proper functions, which is weaker than proper functions, with some examples and theorems.

### 4.1. Definition:

Let X and Y be two topological spaces, and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then f is called an pr-proper function if :-
i) $f$ is continuous .
ii) $f \times I_{Z}: X \times Z \rightarrow Y \times Z$ is pre-closed, for every topological space $Z$.

### 4.2. Examples:

1) Let $\mathrm{f}:(\Re, \mu) \rightarrow(\Re, \mu)$ be a function which is defined by: $\mathrm{f}(\mathrm{x})=0, \forall \mathrm{x} \in \mathfrak{R}$. Notice that f is an pre-closed function, but f is not an pre- proper function, since for the usual topological
space $(\Re, \mu)$, the function
$\mathrm{f} \times \mathrm{I}_{\mathfrak{R}}: \mathfrak{R} \times \mathfrak{R} \rightarrow \Re \times \Re$, such that
$\left(\mathrm{f} \times \mathrm{I}_{\mathfrak{R}}\right)(\mathrm{x}, \mathrm{y})=(0, \mathrm{y}), \forall(\mathrm{x}, \mathrm{y}) \in \mathfrak{R} \times \mathfrak{R}$
is not an pre-closed function.
2) An inclusion function $i: F \rightarrow X$ is preproper iff $F$ is an pre-closed set in $X$.

Since every closed function is an pre-closed function, then we have the following theorem.

### 4.3. Theorem:

Every proper function is an pre-proper function.

### 4.4. Remark:

The converse of (4.3) may not be true in general.

## Example:

If $F$ is pre-closed in $X$, then $i: F \rightarrow X$ is an pre-proper function ,but not a proper function.

### 4.5. Theorem:

Every pre-proper function is an pre-closed function.

## Proof:

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an pre-proper function, then $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}: \mathrm{X} \times \mathrm{Z} \rightarrow \mathrm{Y} \times \mathrm{Z}$ is pre-closed for every topological space $Z$. Let $Z=\{t\}$, then $X \times Z=X \times\{t\} \cong X$
and $\mathrm{Y} \times \mathrm{Z}=\mathrm{Y} \times\{\mathrm{t}\} \cong \mathrm{Y}$ and we can replace $f \times I_{Z}$ by $f$.Thus $f: X \rightarrow Y$ is an pre-closed function.

### 4.6. Remark:

The converse of (4.5) may not be true in general.

## Example:

In $(4.2) \mathrm{f}:(\Re, \mu) \rightarrow(\Re, \mu)$ is an pre-closed function, but not an pre-proper function.

Now, we introduce the following definition.

### 4.7. Definition:

Let X and Y be two topological spaces. A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called an pre-homeomorphism if :
i) f is continuous.
ii) $f$ is one-to-one and onto.
iii) f is pre-closed (pre-open ).

### 4.8. Theorem:

Let X and Y be two topological spaces, and $f: X \rightarrow Y$ be a continuous, one-to-one function. Then the following statements are equivalent:
i) f is pre-proper.
ii) f is pre-closed.
iii) $f$ is an pre-homeomorphism of $X$ onto an pre-closed subset of Y.

## Proof:

By (4.5), ( $\mathrm{i} \Rightarrow \mathrm{ii}$ ).
(ii $\Rightarrow$ iii).Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is an pre-closed function. Since $X$ is a closed set in $X$, then $f(X)$ is an pre-closed set in Y. Since f is continuous and one-to-one, then f is an pre-homeomorphism of X onto an pre-closed subset $f(X)$ of $Y$.
(iii $\Rightarrow \mathrm{i}$ ).Assume that f is an pre-homeomorphism of X onto an pre-closed subset U of Y . Now, let Z be any topological
space, and W be any closed set in $\mathrm{X} \times \mathrm{Z}$, then $\mathrm{W}=\mathrm{W}_{1} \times \mathrm{W}_{2}$, where $\mathrm{W}_{1}$ is closed in X and $\mathrm{W}_{2}$ is closed in Z . Since $\left(\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}\right)(\mathrm{W})=\left(\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}\right)\left(\mathrm{W}_{1} \times \mathrm{W}_{2}\right)$
$=\mathrm{f}\left(\mathrm{W}_{1}\right) \times \mathrm{W}_{2}$ and f is an pre-homeomorphism, then $f\left(W_{1}\right)$ is an pre-closed set in $U$, thus $f\left(W_{1}\right) \times W_{2}$ is an pre-closed in $U \times Z$. Since $U \times Z$ is an pre-closed set in $Y \times Z$,then by [10] $\left(f \times I_{Z}\right)(W)$ is pre-closed in $Y \times Z$. Hence $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}: \mathrm{X} \times \mathrm{Z} \rightarrow \mathrm{Y} \times \mathrm{Z} \quad$ is an pre-closed function. Thus $f: X \rightarrow Y$ is an pre-proper function.

### 4.9. Corollary:

Every pre-homeomorphism is an pre-proper function.

### 4.10.Remark:

The converse of (4.9) may not be true in general by the following example:-

## Example:

Let $\mathrm{f}:\left([0,1], \mu^{\prime}\right) \rightarrow(\Re, \mu)$ be a function which is defined by:
$\mathrm{f}(\mathrm{x})=\mathrm{x}, \forall \mathrm{x} \in[0,1]$, where $\mu^{\prime}$ is the relative usual topology on $[0,1]$.
Clearly that f is an pre-proper function, but not pre-homeomorphism.

### 4.11. Theorem:

Let X and Y be two topological spaces and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an pre-proper function. Let T be any open subset of Y , then $\mathrm{f}_{\mathrm{T}}: \mathrm{f}^{-1}(\mathrm{~T}) \rightarrow \mathrm{T}$ is an pre-proper function.

## Proof:

Since $f: X \rightarrow Y$ is continuous, then so is $f_{T}$. To prove that $f_{T} \times I_{Z}: f^{-1}(T) \times Z \rightarrow T \times Z$ is pre-closed for every topological space $Z$. Since $f$ is pre-proper, then $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}: \mathrm{X} \times \mathrm{Z} \rightarrow \mathrm{Y} \times \mathrm{Z}$ is pre-closed for every topological space $Z$. Since $f_{T} \times I_{Z}=\left(f \times I_{Z}\right)_{T \times Z}$ and $\mathrm{T} \times \mathrm{Z}$ is open in $\mathrm{Y} \times \mathrm{Z}$, then by (3.7) $f_{T} \times I_{Z}$ is pre-closed. Thus $f_{T}: f^{-1}(T) \rightarrow T$ is an pre-proper function.

### 4.12. Theorem:

Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be three topological spaces, and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two continuous functions. Then:-
i) If $f$ is proper and $g$ is pre-proper, then $g$ of is pre-proper.
ii)If $g$ of is pre-proper and $f$ is onto, then $g$ is pre-proper.
iii)Ifg of is pre-proper and $g$ is one-to-one and pre-irresolute, then $f$ is pre- proper.

## Proof:

i) It is clear that $g$ of : $X \rightarrow Z$ is continuous.

Let $Z_{1}$ be any topological space, we have : (g of ) $\times I_{Z_{1}}=\left(g \times I_{Z_{1}}\right) O\left(f \times I_{Z_{1}}\right)$. Since $f$ is proper, then $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}_{1}}: \mathrm{X} \times \mathrm{Z}_{1} \rightarrow \mathrm{Y} \times \mathrm{Z}_{1} \quad$ is Closed. Since $g$ is pre-proper, then $\mathrm{g} \times \mathrm{I}_{\mathrm{Z}_{1}}: \mathrm{Y} \times \mathrm{Z}_{1} \rightarrow \mathrm{Z} \times \mathrm{Z}_{1} \quad$ is pre-closed. Hence by (3.6) ( g of ) $\times \mathrm{I}_{\mathrm{Z}_{1}}: \mathrm{X} \times \mathrm{Z}_{1} \rightarrow \mathrm{Z} \times \mathrm{Z}_{1}$ is pre-closed. Thus g of : $\mathrm{X} \rightarrow \mathrm{Z}$ is an pre-proper function.
ii) Let $Z_{1}$ be any topological space. To prove that $\mathrm{g} \times \mathrm{I}_{\mathrm{Z}_{1}}: \mathrm{Y} \times \mathrm{Z}_{1} \rightarrow \mathrm{Z} \times \mathrm{Z}_{1}$ is pre-closed. Since $g$ of is pre-proper, then:
( g of ) $\times \mathrm{I}_{\mathrm{Z}_{1}}=\left(\mathrm{g} \times \mathrm{I}_{\mathrm{Z}_{1}}\right) O\left(\mathrm{f} \times \mathrm{I}_{\mathrm{Z}_{1}}\right)$
is pre-closed. Since $f$ is continuous and onto, then so is $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}_{1}}$, hence by (3.6) $\mathrm{g} \times \mathrm{I}_{\mathrm{Z}_{1}}$ is pre-closed. Thus $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is an pre-proper function.
iii) Let $Z_{1}$ be any topological space. To prove that $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}_{1}}: \mathrm{X} \times \mathrm{Z}_{1} \rightarrow \mathrm{Y} \times \mathrm{Z}_{1} \quad$ is pre-closed. Since g of is pre-proper, then $\quad(\mathrm{g}$ of $) \times \mathrm{I}_{\mathrm{Z}_{1}}=\left(\mathrm{g} \times \mathrm{I}_{\mathrm{Z}_{1}}\right) O\left(\mathrm{f} \times \mathrm{I}_{\mathrm{Z}_{1}}\right) \quad$ is pre-closed. Since $g$ is one-to-one and pre-irresolute, then so is $\mathrm{g} \times \mathrm{I}_{\mathrm{Z}_{1}}$, hence by (3.6) $f \times I_{Z_{1}}$ is pre-closed. Thus $f: X \rightarrow Y$ is an pre-proper function.

### 4.13. Theorem:

Let X and Y be two topological spaces. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is an pre-proper function, then the restriction of f to a closed subset F of X is an pre-proper function of F into Y .

## Proof:

Since $F$ is a closed set in $X$, then the inclusion function $\mathrm{i}: \mathrm{F} \rightarrow \mathrm{X}$ is a proper function .Since $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is an pre-proper function, then by (4.12) foi:F $\rightarrow \mathrm{Y}$ is an pre-proper function. But $\mathrm{f} \mathrm{Oi}=\mathrm{f} \backslash \mathrm{F}$, thus the
restriction function $\mathrm{f} \backslash \mathrm{F}: \mathrm{F} \rightarrow \mathrm{Y}$ is an pre-proper function.

### 4.14. Theorem:

If $f_{1}: X_{1} \rightarrow Y_{1}$ is a proper function and $f_{2}: X_{2} \rightarrow Y_{2}$ is an pre-proper function .Then $\mathrm{f}_{1} \times \mathrm{f}_{2}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}$ is an pre-proper function.

## Proof:

Let Z be any topological space.
We can write $\mathrm{f}_{1} \times \mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}$ by the composition of $I_{Y_{1}} \times f_{2} \times I_{Z}$ and $f_{1} \times I_{X_{2}} \times I_{Z}$. Since $f_{1}$ is proper, then $f_{1} \times I_{X_{2}} \times I_{Z}$ is closed. Since $f_{2}$ is pre-proper, then $I_{Y_{1}} \times f_{2} \times I_{Z}$ is preclosed, hence by (3.6)

$$
\left(\mathrm{I}_{\mathrm{Y}_{1}} \times \mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}\right) \mathrm{O}\left(\mathrm{f}_{1} \times \mathrm{I}_{\mathrm{X}_{2}} \times \mathrm{I}_{\mathrm{Z}}\right)
$$

is pre-closed. But
$\mathrm{f}_{1} \times \mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}=\left(\mathrm{I}_{\mathrm{Y}_{1}} \times \mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}\right) \mathrm{O}\left(\mathrm{f}_{1} \times \mathrm{I}_{\mathrm{X}_{2}} \times \mathrm{I}_{\mathrm{Z}}\right)$
$\Rightarrow \mathrm{f}_{1} \times \mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}$ is pre-closed. Thus
$\mathrm{f}_{1} \times \mathrm{f}_{2}: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}$ is an pre-proper function.

### 4.15. Theorem:

Let $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ be two functions such that $f_{1} \times f_{2}$ is pre-proper. Then:

1) If $X_{1} \neq \phi$, then $f_{2}$ is pre-proper.
2) If $X_{2} \neq \phi$, then $f_{1}$ is pre-proper.
3) If $X_{1} \neq \phi$ and $X_{2} \neq \phi$, then both $f_{1}$ and $f_{2}$ are pre-proper.

## Proof:

1) Let $Z$ be any topological space.

To Prove that $f_{2} \times I_{Z}: X_{2} \times Z \rightarrow Y_{2} \times Z$ is pre-closed. Let F be a closed set in $\mathrm{X}_{2} \times \mathrm{Z}$ and $G=\left(f_{2} \times I_{Z}\right)(F)$. To prove that $G$ is pre-closed in $Y_{2} \times Z$. Since $X_{1} \neq \phi$, then $\mathrm{X}_{1} \times \mathrm{F}$ is closed in $\mathrm{X}_{1} \times \mathrm{X}_{2} \times \mathrm{Z}$. Since $\mathrm{f}_{1} \times \mathrm{f}_{2} \quad$ is pre-proper, then $\left(\mathrm{f}_{1} \times \mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}\right)\left(\mathrm{X}_{1} \times \mathrm{F}\right)=\mathrm{f}_{1}\left(\mathrm{X}_{1}\right) \times \mathrm{G}$ is pre-closed in $\mathrm{Y}_{1} \times \mathrm{Y}_{2} \times \mathrm{Z}$.
i.e $\operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}_{1}\left(\mathrm{X}_{1}\right) \times G\right)\right) \subseteq \mathrm{f}_{1}\left(\mathrm{X}_{1}\right) \times \mathrm{G}$.
$\Rightarrow \operatorname{cl}(\operatorname{int}(\mathrm{G})) \subseteq$ G. Hence $\mathrm{G}=\left(\mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}\right)(\mathrm{F})$ is
pre-closed in $\mathrm{Y}_{2} \times \mathrm{Z}$. Therefore $\mathrm{f}_{2} \times \mathrm{I}_{\mathrm{Z}}$ is pre-closed. Thus $f_{2}$ is an pre-proper function.
2) Similar to (1).
3) Clear.

### 4.16. Theorem:

Let $X$ and $Y$ be two topological spaces, and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a continuous function. Then the following statements are equivalent:
i) f is an pre-proper function.
ii) If $\left(x_{d}\right)_{d \in D}$ is a net in $X$ and $y \in Y$ is an pre-cluster point of $\left(f\left(x_{d}\right)\right)_{d \in D}$, then there is a cluster point $x \in X$ of $\left(x_{d}\right)_{d \in D}$ such that $f(x)=y$.

## Proof:

(i $\Rightarrow$ ii). $\operatorname{Claim~}^{-1}(\mathrm{y}) \neq \phi, \quad$ if $\mathrm{f}^{-1}(\mathrm{y})=\phi$, then $y \notin f(X) \Rightarrow y \in(f(X))^{c}$, since $X$ is a closed set in $X$ and $f$ is pre-closed, then $f(X)$ is an pre-closed set in Y. Thus $(\mathrm{f}(\mathrm{X}))^{\mathrm{c}}$ is an pre-open set in Y. Therefore $\left(f\left(X_{d}\right)\right)_{d \in D}$ is frequently in $(\mathrm{f}(\mathrm{X}))^{\mathrm{c}}$. But $\mathrm{f}\left(\mathrm{x}_{\mathrm{d}}\right) \in \mathrm{f}(\mathrm{X}), \forall \mathrm{d}$ Then $f(X) \mid(f(X))^{c} \neq \phi$, and this is a contradiction. Thus $\mathrm{f}^{-1}(\mathrm{y}) \neq \phi$.

Now, suppose that the statement (ii) is not true, that means for all $x_{i} \in f^{-1}(y)$ there exists an open set $U_{x_{i}}$ in $X$ contains $x_{i}$ such that $\left(x_{d}\right)_{d \in D}$ is not frequently in $U_{x_{i}}$. Notice that $\mathrm{f}^{-1}(\mathrm{y})=\bigcup_{\mathrm{x}_{\mathrm{i}} \in \mathrm{f}^{-1}(\mathrm{y})}\left\{\mathrm{x}_{\mathrm{i}}\right\} \subseteq \bigcup_{\mathrm{i} \in \mathrm{I}} \mathrm{U}_{\mathrm{x}_{\mathrm{i}}}$. But $\left(\mathrm{x}_{\mathrm{d}}\right)_{\mathrm{d} \in \mathrm{D}}$ is not frequently in $U_{x_{i}}, \forall i \in I$.Thus $\left(x_{d}\right)_{d \in D}$ is not frequently in $\bigcup_{i \in I} U_{x_{i}}$, but $\bigcup_{i \in I} U_{x_{i}}$ is an open set in $X$, then $\left.\right|_{i \in I} U_{x_{i}}{ }^{c}$ is a closed set in $X$. Thus $f\left(\|_{i \in I} U_{x_{i}}{ }^{c}\right)$ is an pre-closed set in $Y$.

Claim $y \notin f\left(\|_{i \in I} U_{x_{i}}{ }^{c}\right)$, if $y \in f\left(\|_{i \in I} U_{x_{i}}{ }^{c}\right)$, then there exists $x \in \|_{i \in I} U_{x_{i}}{ }^{c}$ such that $f(x)=y$, thus $x \notin \bigcup_{i \in I} U_{x_{i}}$, but $x \in f^{-1}(y)$, therefore $f^{-1}(y)$ is not a subset of $\bigcup_{i \in I} U_{x_{i}}$, and this is a contradiction. Hence $y \notin f\left(\| U_{x_{i}}{ }^{c}\right)$ and by [8] there is an pre-open set A in Y such that $y \in A$ and $A I f\left(\| U_{X_{i}}{ }^{c}\right)=\phi$.
$\Rightarrow \mathrm{f}^{-1}(\mathrm{~A}) \mid \mathrm{f}^{-1}\left(\mathrm{f}\left(\|_{\mathrm{i} \in \mathrm{I}} \mathrm{U}_{\mathrm{x}_{\mathrm{i}}}{ }^{\mathrm{c}}\right)\right)=\phi$.
$\Rightarrow \mathrm{f}^{-1}(\mathrm{~A}) \mathrm{I}\left(\|_{\mathrm{i} \in \mathrm{I}} \mathrm{U}_{\mathrm{x}_{\mathrm{i}}}{ }^{\mathrm{c}}\right)=\phi \Rightarrow \mathrm{f}^{-1}(\mathrm{~A}) \subseteq \bigcup_{\mathrm{i} \in \mathrm{I}} \mathrm{U}_{\mathrm{x}_{\mathrm{i}}}$
But $\left(f\left(x_{d}\right)\right)_{d \in D}$ is frequently in A, then $\left(x_{d}\right)_{d \in D}$ is frequently in $f^{-1}(A)$ and then $\left(x_{d}\right)_{d \in D}$ is frequently in $\bigcup_{i \in I} U_{x_{i}}$, this is a contradiction. Thus there is a cluster point $x \in X$ of $\left(X_{d}\right)_{d \in D}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$.
(ii $\Rightarrow \mathrm{i}$ ), to prove that $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}$ : $\mathrm{X} \times \mathrm{Z} \rightarrow \mathrm{Y} \times \mathrm{Z}$ is an pre-closed function for every topological space $Z$.Let $F$ be a closed subset of $\mathrm{X} \times \mathrm{Z}$ and $\left(\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}\right)(\mathrm{F})=\mathrm{G}$. To prove that $G$ is an pre-closed set in $\mathrm{Y} \times \mathrm{Z}$.Let $(\mathrm{y}, \mathrm{z}) \in \operatorname{pcl}(\mathrm{G})$, then by (2.2) there is a net $\left\{\left(\mathrm{y}_{\mathrm{d}}, \mathrm{z}_{\mathrm{d}}\right)\right\}$ in $G$ such that $\left(y_{d}, z_{d}\right) \stackrel{p}{\propto}(\mathrm{y}, \mathrm{z})$.Thus there is a net $\left\{\left(\mathrm{x}_{\mathrm{d}}, \mathrm{z}_{\mathrm{d}}\right)\right\}$ in $F$ such that

$$
\left(\mathrm{f} \times \mathrm{I}_{\mathrm{z}}\right)\left(\mathrm{x}_{\mathrm{d}}, \mathrm{z}_{\mathrm{d}}\right)=\left(\mathrm{y}_{\mathrm{d}}, \mathrm{z}_{\mathrm{d}}\right), \forall \mathrm{d} \in \mathrm{D}
$$

Since $\left(y_{d}, z_{d}\right) \stackrel{p}{\propto}(y, z)$,then by [8] $y_{d} \stackrel{p}{\propto} y$ and $z_{d} \stackrel{p}{\propto} \mathrm{z}$, hence there is $\mathrm{x} \in \mathrm{X}$ such that $x_{d} \propto x \& f(x)=y$. Since $z_{d} \propto z$, then by [8] $\mathrm{z}_{\mathrm{d}} \propto \mathrm{z}$. Therefore $\mathrm{x}_{\mathrm{d}_{\mathrm{u}}} \rightarrow \mathrm{x} \& \mathrm{z}_{\mathrm{d}_{\mathrm{u}}} \rightarrow \mathrm{z}$. $\Rightarrow\left(\mathrm{x}_{\mathrm{d}_{\mathrm{u}}}, \mathrm{z}_{\mathrm{d}_{\mathrm{u}}}\right) \rightarrow(\mathrm{x}, \mathrm{z})$. Since $\left\{\left(\mathrm{x}_{\mathrm{d}_{\mathrm{u}}}, \mathrm{z}_{\mathrm{d}_{\mathrm{u}}}\right)\right\}$ is a net in $F$ and $F$ is closed, thus $(\mathrm{x}, \mathrm{z}) \in \overline{\mathrm{F}}=\mathrm{F} \Rightarrow(\mathrm{y}, \mathrm{z})=\left(\mathrm{f} \times \mathrm{I}_{\mathrm{z}}\right)(\mathrm{x}, \mathrm{z}) \in \mathrm{G} \Rightarrow$ $\operatorname{pcl}(\mathrm{G}) \subseteq \mathrm{G}$. Since $G \subseteq \operatorname{pcl}(\mathrm{G}) \Rightarrow \mathrm{G}=\operatorname{pcl}(\mathrm{G})$ Hence $G$ is an pre-closed set in $Y \times Z$. Therefore $\mathrm{f} \times \mathrm{I}_{\mathrm{Z}}: \mathrm{X} \times \mathrm{Z} \rightarrow \mathrm{Y} \times \mathrm{Z}$ is an pre-closed function for every topological space $Z$. Thus $f: X \rightarrow Y$ is an pre-proper function.

### 4.17. Theorem:

Let $X$ be a topological space and $\{p\}$ be a space consisting of a single point. Then a function $f: X \rightarrow\{p\}$ is pre-proper if and only if X is compact.

## Proof:

If $X$ is compact, then by [1], $f: X \rightarrow\{p\}$ is proper, therefore by (4.3) $\mathrm{f}: \mathrm{X} \rightarrow\{\mathrm{p}\}$ is pre-proper.

Conversely, let $f: X \rightarrow\{p\}$ be an pre-proper function and $\left(\mathrm{x}_{\mathrm{d}}\right)_{\mathrm{d} \in \mathrm{D}}$ be a net in X , then $\mathrm{f}\left(\mathrm{x}_{\mathrm{d}}\right)=\mathrm{p}, \forall \mathrm{d} \in \mathrm{D} \Rightarrow \mathrm{f}\left(\mathrm{x}_{\mathrm{d}}\right) \stackrel{\mathrm{p}}{\propto} \mathrm{p}$, since f is pre-proper ,then by (4.16) there is $x \in X$ such that $x_{d} \propto x$ and $f(x)=p$.Thus $X$ is a compact space.

### 4.18. Theorem:

If $f: X \rightarrow Y$ is a proper function and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Z}$ is an pre-proper function, where X is Hausdorff .Then the diagonal function f $\Delta \mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y} \times \mathrm{Z}$ is an pre-proper function.

## Proof:

First we have $\mathrm{f} \Delta \mathrm{g}=(\mathrm{f} \times \mathrm{g})$ Od, where $\mathrm{d}: \mathrm{X} \rightarrow \mathrm{X} \times \mathrm{X}$ such that $\mathrm{d}(\mathrm{x})=(\mathrm{x}, \mathrm{x})$, $\forall x \in X$.Since $X$ is Hausdorff, then by [1] $d(X)$ is closed in $X \times X$, hence $d$ is a homeomorphism of X onto closed subset of $X \times X$, then by [1] $d: X \rightarrow X \times X$ is proper. Also, since $f$ is proper and $g$ is pre-proper, then by (4.14) $f \times g$ is pre-proper. Hence ( $\mathrm{f} \times \mathrm{g}$ ) od is pre-proper. Thus the diagonal function $\mathrm{f} \Delta \mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y} \times \mathrm{Z}$ is an pre-proper function.

### 4.19. Theorem:

If X is any compact topological space and Y is any topological space, then the projection $\mathrm{pr}_{2}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{Y}$ is an pre-proper function.

## Proof:

Since X is a compact space, then by [1]
$f: X \rightarrow\{p\}$ is proper, since $I_{Y}: Y \rightarrow Y$ is pre-proper, then by (4.14)
$\mathrm{f} \times \mathrm{I}_{\mathrm{Y}}: \mathrm{X} \times \mathrm{Y} \rightarrow\{\mathrm{p}\} \times \mathrm{Y} \cong \mathrm{Y}$
is pre-proper. But $\mathrm{pr}_{2}=\mathrm{f} \times \mathrm{I}_{\mathrm{Y}}$. Thus $\mathrm{pr}_{2}: \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{Y}$ is an pre-proper function.

## References

[1] N. Bourbaki, Elements of Mathematics, "General Topology", Chapter1-4, Springerverlog, Berlin,Heidelberg, New-york, London, Paris, Tokyo, $2^{\text {nd }}$ Edition 1989, pp.50-105.
[2] S.N. El-Deeb, I.A. Hasanien, A.S. Mashhour and T. Noiri, "On p-regular spaces", Bull. Mathe. Soc.Sci. Math.R.S.R., Vol.75, No.27, 1983, pp.311315.
[3] A.S. Mashhour, M.E.Abd El-Monsef and I.A.Hasanein,"On pretopological spaces", Bull.Math.Soc.Sci.R.S.R., Vol.76, No.28, 1984, pp.39-45.
[4] J. Dontchev, "Survey on preopen sets", Vol.1, 1998, pp.1-18.
[5] M.Caldas and G.Navalagi, "On weak forms of preopen and preclosed functions", Archivum Mathematicum Tomus, Vol.40, 2004, pp.119-128.
[6] G.B.Navalagi, "Definition Bank in General Topology", internet 54 G1991.
[7] I.L.Reilly and M.K.Vamanmurthy," On $\alpha$-Continuity in topological spaces", Acta. Math. Hungar.Vol.1-2, No.45, 1985, pp.27-32.
[8] Bassam Jabbar and Sabiha I. Mahmood, "On pre-convergence nets and filters", J.of Al-Nahrain University for Science, 2008, pp.1-8.
[9] A.S.Mashhour, M.E. Abd El-Monsef and S.N.El-Deeb, "On precontinuous and weak precontinuous functions", Proc.Math.Phys. Soc.Egypt, No.53, 1982, pp.47-53.
[10] M.H.Al-Badairy, "On Feebly proper actions", M.SC. thesis, college of science, Al-Mustansiriya University, 2005, pp.7.

## الخلاصـة

في هذا البحث قدمنا نوع جديد من الدوال أسميناها
بالدو ال السديدة من النمط-pre-proper functions) (pre) كتعميم للاو ال السديدة (proper functions).كذلك نحن درسنا الدكافئات والخواص الاساسية للاوال السديدة من النمط-pre-proper functions ) pre) و الاو ال المغلقة من النمط - pre-closed functions ) pre) بالاضافه إلى ذلك
درسنا العلاقة بين الدو ال السديد من النمط -pre وكل من
 المغلقة (closed functions) على النو الي مع أعطاء مثال

للاتجاة الغير صحيح.

