
Journal of Al-Nahrain University Vol.14 (2), June, 2011, pp.207-214 Science

 1

A Lexical and Syntax Checker Tool for the Hyper Text Markup Language

Maisaa Ibrahem Abdul-Hussain
Department of Computer Science, College of Science, University of Baghdad-Iraq.

Abstract

Hyper Text Markup Language (HTML) is one of the web sites design languages in the internet.
HTML language differs from programming languages in that any editor (e.g. notepad, WordPad)
can be used to write the code of the HTML language. On the other hand, and contrary to what one
familiar with the role of the compiler while translating the high-level written code, this editing
facility has a shortcoming of not being able to check the lexical and the syntax of the written HTML
code. While any compiler takes into its responsibility to check for any lexical and syntax error as a
part of its overall function, the interpreter of HTML provides the facility to translate the form of
HTML codes to the target representation to be executed only. For this, the main aim of this paper is
to propose and present an intermediate stage -semi compiler- to check the lexical and syntax of an
HTML code before delivering it to the interpreter.

Keywords: Compiler, HTML code, Interpreter, Lexical analyzer, Parser.

Introduction

A website is a collection of related web
pages, images, videos or other digital assets
that are addressed relative to a common
Uniform Resource Locator (URL), often
consisting of only the domain name, or the IP
address, and the root path ('/') in an Internet
Protocol-based network. A web site is hosted
on at least one web server, accessible via a
network such as the Internet or a private local
area network [1].

A web page is a document, typically
written in plain text interspersed with
formatting instructions of Hyper Text Markup
Language (HTML). It provides a means to
create structured documents by denoting
structural semantics for text such as headings,
paragraphs, lists etc. as well as for links,
quotes, and other items. It allows images and
objects to be embedded and can be used to
create interactive forms. It is written in the
form of HTML elements consisting of "tags"
surrounded by angle brackets within the web
page content. It can include or can load scripts
in languages such as JavaScript, which affect
the behaviour of HTML processors like Web
browsers to define the appearance and layout
of the text and other material [2].

A web page may incorporate elements
from other websites with suitable markup
anchors. This simplifies the situation and
pretends that all web pages use only HTML
file format with extensions ".html" or ".htm".
A browser or similar software likes Windows

internet explorer, is used to view HTML
document. The browser opens the HTML
document in the background and "decodes" it
before showing it [1].

HTML documents are composed entirely
of HTML elements. An HTML element is
everything between and including the tags. A
tag is a keyword enclosed in angle brackets. A
common form of an HTML element is
<tag>content to be rendered</tag>. In fact,
many web designers prefer to use simple text
editors but HTML language dose not contain a
checker tool to check the lexical and the
syntax of the HTML language. By this, the
underling paper adopts an HTML semi-
compiler tool composed of two phases: lexical
checker and syntax checker to be as an
intermediate stage between the web page itself
and the interpreter. The reset of the paper is
organized as follows. Section 2 briefly
describes the background related to the lexical
and syntax meaning common to any
programming language with illustrated
examples. Section 3 demonstrates the lexical
and the syntax rules of the HTML together
with the steps of the proposed HTML semi-
compiler. In Section 4, experimental results of
the HTML lexical and syntax checker tool are
presented and the conclusion is drawn be in
section 5.

Background
A compiler is a computer program (or set

of programs) that transforms a source code

Maisaa Ibrahem Abdul-Huss

 2

written in a programming language (the source
language) into another computer language (the
target language, often having a binary form
known as object code). The most common
reason for transforming the source code is to
create an executable program. A typical
compiler consists of lexical analyzer, syntax
analyzer, semantic analyzer and code
generation [3] [4]. The following paragraph
illustrates the general concepts of the lexical
analyzer and the syntax analyzer according to
the paper orientation.

A. Lexical analyzer

The lexical analysis or scanning process is
where the stream of characters making up the
source program is read from left-to-right and
grouped into tokens. Tokens are sequences of
characters with a collective meaning [3]. There
are usually only a small number of tokens for a
programming language: constants (integer,
double, char, string, etc.), operators
(arithmetic, relational, logical), punctuation,
and reserved words [4]. Figure1 [2] depicts an
example showing how the lexical analyzer
takes a source program as input, and produces
a stream of tokens as output. The scanner is
tasked with determining that the input stream
can be divided into valid symbols in the
source language, but has no smarts about
which token should come where [3] [4].
From the depicted figure, one can see that the
lexical analyzer will produce twelve distinct
tokens for the input source code example. The
tokens varies from reserved words (e.g., while)
to operators (e.g., LESSTHAN, and EQUEL)
and constants (e.g., INTCONSTANT, and
REALCONSTANT).

Few errors can be detected at the lexical
level alone because the scanner has a much
localized view of the source program without
any context. The scanner can report about
characters that are not valid tokens (e.g., an
illegal or unrecognized symbol) and a few
other malformed entities (illegal characters
within a string constant, unterminated
comments, etc.) [3] [4]. The lexical analyzer
can be a convenient place to carry out some
other chores like stripping out comments and
white space between tokens and perhaps even
some features like macros and conditional
compilation (although often these are handled
by some sort of pre-processor which filters the
input before the compiler runs) [3]. The lexical
analyzer can store all the recognized tokens in
an intermediate file and give it to the parser as
an input. However it is more convenient to
have the lexical analyzer as a subroutine which
the parser calls whenever it requires a token
[4].

There are two primary methods for
implementing a scanner, the first is a program
that is hard-coded to perform the scanning
tasks the second uses regular expression and
finite automata theory to model the scanning
process [4] [5].

B. Syntax Analyzer

A term parsing comes from Latin pars
(ōrātiōnis), meaning part (of speech) the
syntax analyzer or parser is a program, usually
part of a compiler, that receives input in the
form of sequential source program
instructions, interactive online commands,
mark-up tags, or some other defined interface
and breaks them up into parts (for example,
the nouns (objects), verbs (methods), and their
attributes or options) [5]. Parsing is also an
earlier term for the diagramming of sentences
of natural languages, and is still used for the
diagramming of inflected languages, such as
the Romance languages or Latin [6] [7]. The
parser will check whether the tokens produced
by the lexical analyzer form an allowable
expression. This is usually done with reference
to a context-free grammar which recursively
defines components that can make up an
expression and the order in which they must
appear. However, not all rules defining
programming languages can be expressed by

 T-WHILE
 T-LPAREN
 T-IDENTIFIER
 T-LESSTHAN
while (i > 0) T-INTCONSTANT
 i=i-2.75; T-RPAREN
 T-IDENTIFIER
 Source token T-EQUALS
 Language stream T-IDENTIFIER
 T-MINUS
 T-IDENTIFIER
 T-REALCONSTAN
 T-SEMICOLON

Lexical
Analyzer

Fig.(1) Lexical Analyzer.

Journal of Al-Nahrain University Vol.14 (2), June, 2011, pp.207-214 Science

 3

context-free grammars alone (for e.g., type
validity and proper declaration of identifiers).
These rules were can be formally expressed
with attribute grammars [8 [9]. In parsing,
which is working out the implications of the
expression just validated and taking the
appropriate action In the case of a calculator or
interpreter, the action is to evaluate the
expression or program; a compiler, on the
other hand, would generate some kind of code.
Attribute grammars can also be used to define
these actions. The task of the parser is
essentially to determine if and how the input
can be derived from the start symbol of the
grammar. This can be done in essentially two
ways: [5] [10]

• Top-down parsing -Top-down parsing can
be viewed as an attempt to find left-most
derivations of an input-stream by searching
for parse trees using a top-down expansion
of the given formal grammar rules. Tokens
are consumed from left to right. Inclusive
choice is used to accommodate ambiguity
by expanding all alternative right-hand-sides
of grammar rules.

• Bottom-up parsing - A parser can start
with the input and attempt to rewrite it to
the start symbol. Intuitively, the parser
attempts to locate the most basic elements,
then the elements containing these, and so
on. LR parsers are examples of bottom-up
parsers.

The proposed HTML Semi-compiler Tool

This section presents the components of
the proposed HTML semi-compiler tool. It
mainly consists of two parts: lexical analyzer
and syntax analyzer, together used to check the
lexical and syntax of an HTML code before
delivering it to the interpreter (e.g. the internet
explorer, Netscape). Fig.(2) depicts the lexical
and syntax checker tool for HTML.

Fig.(2) HTML Checker Tool.

A. Lexical Analyzer

The proposed HTML lexical analyzer is
similar to most of the scanners exist in the
compilers of other programming languages
(e.g., C, Java, and Perl).

The HTML lexical analyzer is used to
create tokens from the sequence of input
characters and can also be used to carry out
some other chores like removing comments,
white space and all string between tokens.
Each token in HTML is enclosed with two
tags, a start-tag begins with “<” followed by a
name, and an end with “>” a end-tag is
similar, but begins with “</”and ends with “>
“such as <tag> or </tag>. Regular expression
for the various tokens exist in the HTML
(lexeme file) .Thus the various tokens
constitute the whole HTML lexem can be
specified using the following regular
expressions shown in Table (1).

For example the regular expression of HTML
tag any
stringis
<\w\s\w.*?=\d\s\w.*?=”\w”>.*?</\w>

HTML Syntax
Analyzer

HTML Lexical
analyzer

Lexical Error
Message

Interpreter

Out put (web page)

HTML code

Syntax Error
Message

Maisaa Ibrahem Abdul-Huss

 4

Table (1)

(HTML Regular Expression).
 Symbol Meaning
1. <

Match open angle bracket

2. \s Whitespace

3. \r carriage return
4. \w Reserve words between 2 angle <>

[a..z][A..Z][0..9]
like(html,head,body,h2,h6,font,…)

5. \d will match a single digit from[0..9]

6. .*? And anything up to
7. = Equal
8. > close angle brackets - with

attributes
9. / close tag symbol (/)
10. ! Comment
11. > first closing tag

The lexical analyzer will then compare
each token with original correct token that
save in file name (lexeme file) contains all
HTML correct tags to check if its correct or
not, error messages appear if token not correct
Fig.(3) shows the diagram of HTML lexical
analyzer

999

B. Syntax Analyzer

The proposed HTML syntax analyzer (i.e.,
Parser) is a program used to parse HTML code
written in both a linear and nested fashion (see
Fig.(4).The parser attempts to balance opening
tags with ending tags to present a correct
structure of the written HTML code. If the
application requires knowledge of the nested
structure of the page, for example processing
tables, will probably want to use the full

parser. The output from the parser would nest
the tags as children of the <html>, <head> and
other nodes here represented by Fig.(3) shows
how the parser balances opening tags with
ending tags of HTML code.

Fig.(4) Syntax Analyzer Balance.

The proposed HTML checker tool uses
top-down parsing where tokens are consumed
from left to right. The HTML parser will
check whether the tokens produced by the
lexical analyzer form an allowable expression.
This is usually done with reference to a
context-free grammar which recursively
defines components that can make up an
expression and the order in which they must
appear. The context-free grammar of an
HTML code represent in the following.

 T tat*|bat
 a R|RQw
 Q =
 W n|s
 R r
 t <|>
 b </

where(r(reserve tag),n([0..9]),s([a..z])

Experimental Results

This section presents the experimental
results using the proposed HTML checker
tool. First, an HTML code written in a text
editor of this tool or load any HTML code then
click on the button (checker) to check this
code from error. The following results are
obtained depend upon the HTML code file
content.

1. Figs.(5, 6 and 7) specify how the proposed
tool checks the errors and displays error
messages. Any error, warning or proposed

 <html>
 <head>
 <title>
 "Welcome"
 </title>
 </head>
 <body>
 etc.
 </body>
 </html>

Fig.(3) HTML Lexical Analyzer.

 Error messages
 <html> T-<html>
 <head> <title> T-<head>
 Welcome T-<title>
 </title> T-</title>
 </head> T <head>
<body><h1>hello T-<body>
 </h1> HTML Token T-<h1>
</body> Code Stream T-</h1>
 </html> T-</body>
 T</html>
 T-

HTML
Lexical
Analyzer

Journal of Al-Nahrain University Vol.14 (2), June, 2011, pp.207-214 Science

 5

produces will be displayed in the "Error
Messages Window". Some errors, marked
with a red icon, may prevent "HTML” from
continuing to check the rest of the document
or producing a corrected version of the
HTML code. If this happens, examine the
"Messages Window", correct the errors and
invoke "HTML" again.

• If HTML code contains error then the
error message is appeared “Lexical
error in line number 9 <p8> hello
</p8>” as shown in Fig.(5).

• If HTML code contains error, then the
error message is appeared “Syntax
error in line number 13 tag </td> end
without begins” as shown in Fig.(6).

• If HTML code contains error, then the
error message is appeared “Lexical
error in line number 10 no (tag
<picture src=”ff.jpg”> in this name)”
as shown figure 7 and after the error is
corrected another error message
appears “Syntax error in line number
11 (tag <table> begin without end
tag)”.

2. If HTML code contains no errors then click
on the display button. The page will be
interpreted by the internet explorer which
were impeded as an object in this semi-
compiler tool and will display the web page
as shown in Fig.(8).

 Fig.(5) Experimental Result 1.

Output (Web
Page)

HTML Lexical
Analyzer

 Interpreter

HTML Syntax
Analyzer

 Interpreter

Fig.(6) Experimental Result 2.

Output (Web
Page)

HTML Lexical
Analyzer

HTML Syntax
Analyzer

Maisaa Ibrahem Abdul-Huss

 6

Fig.(7) Experimental Result 3.

HTML Lexical
Analyzer

HTML Syntax
Analyzer

 Interpreter

Output
(Web page)

Journal of Al-Nahrain University Vol.14 (2), June, 2011, pp.207-214 Science

 7

 Interpreter

Output (Web page)

Fig.(8) Experimental Result 4.

HTML Lexical Analyzer

HTML Syntax Analyzer

Stream of tokens

Maisaa Ibrahem Abdul-Huss

 8

Conclusion
This paper proposed and presented an

intermediate stage -semi-compiler- to check
the lexical and syntax of an HTML code error
before delivering it to the interpreter. The
proposed tool makes the design of HTML
simple and helps the user to discover the
lexical and syntax errors as early as possible.
A future extension to this work can be done
for adopting an error recovery technique with
that checker to automatic recovery from the
lexical and syntax errors.

References
[1] Deborah H.Ray and Eric J.Ray 2000

“HTML Complete” 2nd Edition sybex, San
Francisco

[2] Pual Hain Dec 2006 “HTML Mastery” 2nd
Edition Amazon
[3] Aho, A.V., Sethi, R. and Ullman, J.D.

(1986) " Compilers: principles, techniques,
and tools." Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA.

[4] McGettrick, The Definition of
Programming Languages. Cambridge:
Cambridge University Press, 1980.

[5] Dick Grune and Ceriel J.H. Jacobs , 1990
“Parsing Techniques” published by Ellis
Horwood, Chichester, England ISBN 0 13
651431 6.

[6] L.Wexelblat, “History of Programming
Languages” London: Academic Press,
1981.

[7] J.P. Bennett,” Introduction to Compiling
Techniques”. Berkshire, England:
McGraw-Hill, 1990.

[8] D. Cohen, “Introduction to Computer
Theory”, New York: Wiley, 1986.

[9] Frost, R., Hafiz, R. and Callaghan, P.
(2007) “Modular and Efficient Top-Down
Parsing for Ambiguous Left-Recursive
Grammars." 10th International Workshop
on Parsing Technologies (IWPT), ACL-
SIGPARSE , Pages: 109 - 120, June 2007,
Prague.

[10] Tim Berners-Lee April 2009 “Syntax and
semantic”

 خلاصةال
لغة النص التشعبیة واحده من لغات تصمیم المواقع في

 لغة النص التشعبیة تختلف عن اللغات .الانترنیت

 یه بأنها تكتب في أي محرر نصوص مثلالبرمج

)notpad,wordpad .(وعلى نقیض ماهو مألوف في
الذي یقوم بترجمة الشفرة المكتوبة) compiler(المترجم

یقوم المترجم بفحص) high-level(بالمستوى العالي
الاخطاء اللغویة والقواعدیة كجزء من وظیفتة بینما المفسر

ن شفرة اللغة التشعبیة الى الهدف في اللغة التشعبیة یترجم م
 لغرض التنفیذ فقط لذا فأن الهدف الاساسي لهذا

-semi(البحث أقتراح وتقدیم مرحله وسطیة جزء من مترجم

compiler (لفحص الشفرة المكتوبة بلغة النص التشعبیة قبل
).interpreter(ان تصل الى المفسر

