Journal of Al-Nahrain University Vol.14 (2), June, 2011, pp.207-214 Science

A Lexical and Syntax Checker Tool for the Hyper Text Markup Language

Maisaa Ibrahem Abdul-Hussain
Department of Computer Science, College of Science, University of Baghdad-Irag.

Abstract

Hyper Text Markup Language (HTML) is one of the web sites design languages in the internet.
HTML language differs from programming languages in that any editor (e.g. notepad, WordPad)
can be used to write the code of the HTML language. On the other hand, and contrary to what one
familiar with the role of the compiler while translating the high-level written code, this editing
facility has a shortcoming of not being able to check the lexical and the syntax of the written HTML
code. While any compiler takes into its responsibility to check for any lexical and syntax error as a
part of its overal function, the interpreter of HTML provides the facility to translate the form of
HTML codes to the target representation to be executed only. For this, the main aim of this paper is
to propose and present an intermediate stage -semi compiler- to check the lexical and syntax of an
HTML code before delivering it to the interpreter.

Keywords: Compiler, HTML code, Interpreter, Lexical anayzer, Parser.

Introduction

A website is a collection of related web
pages, images, videos or other digital assets
that are addressed relative to a common
Uniform Resource Locator (URL), often
consisting of only the domain name, or the IP
address, and the root path (/') in an Internet
Protocol-based network. A web site is hosted
on at least one web server, accessible via a
network such as the Internet or a private local
areanetwork [1].

A web page is a document, typically
written in plan text interspersed with
formatting instructions of Hyper Text Markup
Language (HTML). It provides a means to
create structured documents by denoting
structural semantics for text such as headings,
paragraphs, lists etc. as well as for links,
guotes, and other items. It allows images and
objects to be embedded and can be used to
create interactive forms. It is written in the
form of HTML elements consisting of "tags"
surrounded by angle brackets within the web
page content. It can include or can load scripts
in languages such as JavaScript, which affect
the behaviour of HTML processors like Web
browsers to define the appearance and layout
of the text and other materia [2].

A web page may incorporate elements
from other websites with suitable markup
anchors. This smplifies the situation and
pretends that all web pages use only HTML
file format with extensions ".html" or ".htm".
A browser or similar software likes Windows

internet explorer, is used to view HTML
document. The browser opens the HTML
document in the background and "decodes" it
before showing it [1].

HTML documents are composed entirely
of HTML elements. An HTML element is
everything between and including the tags. A
tag is a keyword enclosed in angle brackets. A
common form of an HTML element is
<tag>content to be rendered</tag>. In fact,
many web designers prefer to use simple text
editors but HTML language dose not contain a
checker tool to check the lexical and the
syntax of the HTML language. By this, the
underling paper adopts an HTML semi-
compiler tool composed of two phases. lexical
checker and syntax checker to be as an
intermediate stage between the web page itself
and the interpreter. The reset of the paper is
organized as follows. Section 2 briefly
describes the background related to the lexical
and syntax meaning common to any
programming language with illustrated
examples. Section 3 demonstrates the lexical
and the syntax rules of the HTML together
with the steps of the proposed HTML semi-
compiler. In Section 4, experimental results of
the HTML lexical and syntax checker tool are
presented and the conclusion is drawn be in
section 5.

Background
A compiler is a computer program (or set
of programs) that transforms a source code

written in a programming language (the source
language) into another computer language (the
target language, often having a binary form
known as object code). The most common
reason for transforming the source code is to
create an executable program. A typical
compiler consists of lexical analyzer, syntax
anayzer, semantic anayzer and code
generation [3] [4]. The following paragraph
illustrates the general concepts of the lexica
anayzer and the syntax analyzer according to
the paper orientation.

A. Lexical analyzer

The lexical analysis or scanning process is
where the stream of characters making up the
source program is read from left-to-right and
grouped into tokens. Tokens are sequences of
characters with a collective meaning [3]. There
are usually only asmall number of tokensfor a
programming language: constants (integer,
double, char, string, etc), operators
(arithmetic, relational, logical), punctuation,
and reserved words [4]. Figurel [2] depicts an
example showing how the lexica anayzer
takes a source program as input, and produces
a stream of tokens as output. The scanner is
tasked with determining that the input stream
can be divided into vaid symbols in the
source language, but has no smarts about
which token should come where [3] [4].
From the depicted figure, one can see that the
lexical analyzer will produce twelve distinct
tokens for the input source code example. The
tokens varies from reserved words (e.g., while)
to operators (e.g., LESSTHAN, and EQUEL)
and constants (e.g., INTCONSTANT, and
REALCONSTANT).

T-WHILE

T-LPAREN

T-IDENTIFIER
T-LESSTHAN

T-INTCONSTANT

—p T-RPAREN
T-IDENTIFIER

Source token T-EQUALS

Language stream T-IDENTIFIER
T-MINUS
T-IDENTIFIER
T-REALCONSTAN
T-SEMICOLON

while (i>0) | Ledca
i=i-2.75;, —p| Analyzer

Fig.(1) Lexical Analyzer.

Maisaa |brahem Abdul-Huss

Few errors can be detected at the lexical
level alone because the scanner has a much
localized view of the source program without
any context. The scanner can report about
characters that are not valid tokens (e.g., an
illega or unrecognized symbol) and a few
other malformed entities (illega characters
within a string constant, unterminated
comments, etc.) [3] [4]. The lexica anayzer
can be a convenient place to carry out some
other chores like stripping out comments and
white space between tokens and perhaps even
some features like macros and conditiona
compilation (although often these are handled
by some sort of pre-processor which filters the
input before the compiler runs) [3]. The lexical
analyzer can store all the recognized tokensin
an intermediate file and give it to the parser as
an input. However it is more convenient to
have the lexical analyzer as a subroutine which
the parser calls whenever it requires a token
[4].

There are two primary methods for
implementing a scanner, the first is a program
that is hard-coded to perform the scanning
tasks the second uses regular expression and
finite automata theory to model the scanning
process [4] [9].

B. Syntax Analyzer

A term parsing comes from Latin pars
(orationis), meaning part (of speech) the
syntax analyzer or parser is a program, usually
part of a compiler, that receives input in the
form of sequential source program
instructions, interactive online commands,
mark-up tags, or some other defined interface
and breaks them up into parts (for example,
the nouns (objects), verbs (methods), and their
attributes or options) [5]. Parsing is also an
earlier term for the diagramming of sentences
of natural languages, and is still used for the
diagramming of inflected languages, such as
the Romance languages or Latin [6] [7]. The
parser will check whether the tokens produced
by the lexica analyzer form an alowable
expression. Thisis usually done with reference
to a context-free grammar which recursively
defines components that can make up an
expression and the order in which they must
appear. However, not al rules defining
programming languages can be expressed by

Journal of Al-Nahrain University

context-free grammars aone (for eg., type
validity and proper declaration of identifiers).
These rules were can be formally expressed
with attribute grammars [8 [9]. In parsing,
which is working out the implications of the
expression just validated and taking the
appropriate action In the case of a calculator or
interpreter, the action is to evauate the
expression or program; a compiler, on the
other hand, would generate some kind of code.
Attribute grammars can also be used to define
these actions. The task of the parser is
essentially to determine if and how the input
can be derived from the start symbol of the
grammar. This can be done in essentialy two
ways: [5] [10]

- Top-down parsing -Top-down parsing can
be viewed as an attempt to find left-most
derivations of an input-stream by searching
for parse trees using a top-down expansion
of the given formal grammar rules. Tokens
are consumed from left to right. Inclusive
choice is used to accommodate ambiguity
by expanding all aternative right-hand-sides
of grammar rules.

- Bottom-up parsing - A parser can start
with the input and attempt to rewrite it to
the start symbol. Intuitively, the parser
attempts to locate the most basic elements,
then the elements containing these, and so
on. LR parsers are examples of bottom-up
parsers.

The proposed HTML Semi-compiler Tool

This section presents the components of
the proposed HTML semi-compiler tool. It
mainly consists of two parts: lexical analyzer
and syntax analyzer, together used to check the
lexical and syntax of an HTML code before
delivering it to the interpreter (e.g. the internet
explorer, Netscape). Fig.(2) depicts the lexical
and syntax checker tool for HTML.

Vol.14 (2), June, 2011, pp.207-214 Science
HTML code
A 4
HTML Lexica » Lexica Error
analyzer Message
Syntax Error
HTML Syntax » Message
Anayzer
Interpreter
Out put (web page)

Fig.(2) HTML Checker Tool.

A. Lexical Analyzer

The proposed HTML lexica anadyzer is
similar to most of the scanners exist in the
compilers of other programming languages
(e.g., C, Java, and Perl).

The HTML lexica anayzer is used to
create tokens from the sequence of input
characters and can aso be used to carry out
some other chores like removing comments,
white space and al string between tokens.
Each token in HTML is enclosed with two
tags, a start-tag begins with “<~ followed by a
name, and an end with “>~ a end-tag is
similar, but begins with “</ ~and ends with “>
“such as <tag> or </tag>. Regular expression
for the various tokens exist in the HTML
(lexeme file) .Thus the various tokens
congtitute the whole HTML lexem can be
specified using the following regular
expressions shown in Table (1).

For example the regular expression of HTML
tag any
stringis

<WAS\W.* 2=\d\s\w.* 2="\w> * </ \w>

Table (1)
(HTML Regular Expr on).

Match open angle bracket

Whitespace

carriage return

Reserve words between 2 angle <>
[a.Z][A..Z][0..9]
like(html,head,body,h2,h6,font,...)

will match asingle digit from[0..9]

And anything up to

Equal
close angle brackets - with
attributes

close tag symbol (/)
Comment
first closing tag

The lexical anayzer will then compare
each token with origina correct token that
save in file name (lexeme file) contains al
HTML correct tags to check if its correct or
not, error messages appear if token not correct
Fig.(3) shows the diagram of HTML lexicd
analyzer

Error messages

<html> T-<html>
<head> <title> T-<head>
Welcome 1 T-<title>
</title> T-</title>
</head> E(;FX':AC; T <head>
<body><h1>hell6— Analyzer [—> T-<body>
</h1> HTML Token T-<h1>
</body> Cod Stream T-</hl>
</html> T-</body>
T</html>

Fig.(3) HTML Lexical Analyzer.

B. Syntax Analyzer

The proposed HTML syntax analyzer (i.e.,
Parser) is a program used to parse HTML code
written in both alinear and nested fashion (see
Fig.(4).The parser attempts to balance opening
tags with ending tags to present a correct
structure of the written HTML code. If the
application requires knowledge of the nested
structure of the page, for example processing
tables, will probably want to use the full

Maisaa |brahem Abdul-Huss

parser. The output from the parser would nest
the tags as children of the <html>, <head> and
other nodes here represented by Fig.(3) shows
how the parser balances opening tags with
ending tags of HTML code.

— <html>

—» <head>

> <title>
"Welcome"

—> </title>

—> </head>

» <body>
etc.

l, </body>

— </html>

Fig.(4) Syntax Analyzer Balance.

The proposed HTML checker tool uses
top-down parsing where tokens are consumed
from left to right. The HTML parser will
check whether the tokens produced by the
lexical analyzer form an allowable expression.
This is usualy done with reference to a
context-free grammar which recursively
defines components that can make up an
expression and the order in which they must
appear. The context-free grammar of an
HTML code represent in the following.

T _ptat*| bat
a —»R| RQw

Q —p=
W__yn|s

R —pr

t — >

b —p</

where(r(reserve tag),n([0..9]),s([a..z])

Experimental Results

This section presents the experimental
results using the proposed HTML checker
tool. First, an HTML code written in a text
editor of thistool or load any HTML code then
click on the button (checker) to check this
code from error. The following results are
obtained depend upon the HTML code file
content.

1. Figs.(5, 6 and 7) specify how the proposed
tool checks the errors and displays error
messages. Any error, warning or proposed

Journal of Al-Nahrain University

produces will be displayed in the "Error
Messages Window". Some errors, marked
with ared icon, may prevent "HTML” from
continuing to check the rest of the document
or producing a corrected version of the
HTML code. If this happens, examine the
"Messages Window", correct the errors and
invoke"HTML" again.

If HTML code contains error then the
error message is appeared “Lexica
error in line number 9 <p8> hello
</p8>" asshownin Fig.(5).

If HTML code contains error, then the
error message is appeared “Syntax
error in line number 13 tag </td> end
without begins” as shown in Fig.(6).

P WEkeasmee b HTWL Chasklr Taa

File run

Vol.14 (2), June, 2011, pp.207-214 Science

If HTML code contains error, then the
error message is appeared “Lexica
error in line number 10 no (tag
<picture src="ff.jpg”> in this name)”
as shown figure 7 and after the error is
corrected another error message
appears “Syntax error in line number
11 (tag <table> begin without end

tag)”.

2. If HTML code contains no errors then click
on the display button. The page will be
interpreted by the internet explorer which
were impeded as an object in this semi-
compiler tool and will display the web page
as shown in Fig.(8).

By ‘Whsbcares o H ML Checher Tool
Fie

<hamil>
<ml> -:::ad:—
<head> ha
Tesl page
~<fithe> <MK
hello in this web s
<flitle> <body>
<fhead> chixWelcome in A Cheoker Tool for
<body> m;a:;:d Syntae of Hyper Test Markig
<hGrcomputer science</hG> <IhE>
<pBrhello</p8= ctable>
<fbody> =ir=-id=omne-<fid>Googhs <fid><fir>
<fhimi= <tr>-chd>two-<pds = Vahoo sfids-<tre
stre-<id=three <fid> <td=Alta vista<id><firs
<ftable>
<fbody>
={htmi>
5. Vishey i ATV Emirs i l
x HTML Lexicd
. exIc
HTML Lexica it I
> <fipid= Anayzer i
Anayzer e
hiellin = B weal ahbmie
il chiade
v fiia Y s
<hoy> Fape
HTM L Syntax “hbtiscompules easnceshiis HTM L Wntax . m::'
“ptihuli Tt i
dip::: ; Ana|yze" ‘-:Emmukumu i A Cherchar Tool lee
And yzer it Leioal ared Synisie of Hypor Ted Markp
l T ERSIAGE deTRCTION i | v STy
cir e G o ghe <id= <firs
cir= it <l Yahoo <> <>
_ Interpreter e <o <Al k< <=
9 L et i) B ooz 5c ploe O O duit ——
Interpreter by
afhirrs
o Farey v i S o g
" Output (Web | @
ut ut Iy AT N N noS LY hateg o0 ees wihoet becin
Output (Web E ((a)
Pme) w L) Cared

Fig.(5) Experimental Result 1.

Fig.(6) Experimental Result 2.

Maisaa

B Walcans o HTML Checios

[Fte rum

<htmil><head>

<fille>

Test page

<ftitla>

<fhead>

=body=

<hG>Waelcome in A Chacker Toaol for F
Lexical and Syntax of Hyper Text Markup
Language <fhE>

<picture src="H.jpg~>

-<table>

<tr>-<td>one <jftd> <td > G oogle <ftd> <jtr>
<tr><td>two<ld><td>Yahoo<fld><lr>
<tr>-<td>three<fid><td=Ala vista<ftd >-<fir>
<fonl size=4 color="red">End of search
engines<flfont>

=jbody>

<fhimi>

N A T e e
i

[T g ——
==
Tualpaps
=i
clliauds

_’—\’mﬂy}
SHErwA o & Cliechan Tusl
1 rabzl and Sprdzo oF Hyper Do Workbngs
L sipa sl
T e) L R
vl wr
B T e T P L
i Al 22y plisc il < e
i3 ddalbe s rHA AR Rl cH gt
el viaw—d valer =Ml rEnd = avman
mnpnRcyIeels

Lzl

rantTi= i i

HTML Lexica
Analyzer

&

B e AT e T

HTML Byntax
Anayzer

T T
il

Tl pages
——

aihends

iy

shEsWelcoma in A Checke: Teal for
Lewiasl and Fywiae of Hyper Tod Markap
——

simg arc="E jpg"

Aabie>

S o

A\ 4 i
-
honl ke Sf coksiE rad " =End ol earch
mnginesaflsmis
by
il
7wt dnn g dwsasion,

-

WG rrom s g b Bim e e et

o | Swel

Fig.(7) Experimental Result 3.

I brahem Abdul-Huss

Journal of Al-Nahrain University Vol.14 (2), June, 2011, pp.207-214 Science

[Welzome 1o HTHIL Checieer Tool . e e S S s

| Film oun

<htmnl>-<head> <titlea> =
Test page
<Mitle><fhaad>
<body>
<h&>Welcome in A Checker Tool for
exical and Syntax of Hyper Text Markup
ag e-<hE>

<table=
<tr><td>one<fid>Lexical Analyzer<fld><fitr>
<tr>-<td >bhawo-<fid > <td > Syntax Analyzer<fid>
~<ftr>-
<tr><td>three <ftd><td>Semantic Anlyzer
<htd> <ftr>
<tr>-<td >fowr<jfid><td>Code Generation<ftd>
<fr>
~<ftable>
</fbody><fhiml>

\ 4
HTML Lexical Analyzer

Stream of tokens

HTML Syntax Analyzer

Interpreter

\ 4

Output (Web page)

Wekome A Checker Tool Bor Lewicnl sms] Svmtax
| o Hyper Tesd Markup Languape

L o g i s el gt
|

- -

-

o
e ie e e

Fig.(8) Experimental Result 4.

Conclusion

This paper proposed and presented an
intermediate stage -semi-compiler- to check
the lexical and syntax of an HTML code error
before delivering it to the interpreter. The
proposed tool makes the design of HTML
simple and helps the user to discover the
lexical and syntax errors as early as possible.
A future extension to this work can be done
for adopting an error recovery technique with
that checker to automatic recovery from the
lexical and syntax errors.

References

[1] Deborah H.Ray and Eric JRay 2000
“HTML Complete” 2" Edition sybex, San
Francisco

[2] Pual Hain Dec 2006 “HTML Mastery” 2™

Edition Amazon

[3] Aho, A.V., Sethi, R. and Ullman, J.D.
(1986) " Compilers: principles, techniques,
and tools" Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA.

[4] McGettrick, The Definition of
Programming Languages. Cambridge:
Cambridge University Press, 1980.

[5] Dick Grune and Ceriel J.H. Jacobs , 1990
“Parsing Techniques” published by Ellis
Horwood, Chichester, England ISBN 0 13
651431 6.

[6] L.Wexelblat, “History of Programming
Languages” London: Academic Press,
1981.

[7] J.P. Bennett,” Introduction to Compiling
Techniques”. Berkshire, England:
McGraw-Hill, 1990.

[8] D. Cohen, “Introduction to Computer
Theory”, New York: Wiley, 1986.

[9] Frost, R., Hafiz, R. and Callaghan, P.
(2007) “Modular and Efficient Top-Down
Parsing for Ambiguous Left-Recursive
Grammars." 10th International Workshop
on Parsing Technologies (IWPT), ACL-
SIGPARSE , Pages: 109 - 120, June 2007,
Prague.

[10] Tim Berners-Lee April 2009 “Syntax and
semantic”

Maisaa |brahem Abdul-Huss

-

AdAll
b lsal) aracai Cilal (g oaaly dpmiill Gatll dal
Gl e Galiad Aed)) el dal gy
Jie apai e gl S el
& sl ale ga@ ey . (notpad,wordpad)
Ll 5dll deajy sy g (COMpiler)aasiall
oasiy aajidl o (high-level) JW gl
el Ly dadhy e e3aS Agaelally el o UasY)
Caagll I Lpmial) a1l 585 (pa anfiy Ayl 4l a
Bed bV Candl Gl 1Y La danl)
SEMi-) aajie (e eia Aobans laje a5 Cnl
Ji dpednl) Gaill Aaly 4,98l 3,00l (asdl (compiler
.(interpreter) judall N Jusi o

