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Abstract

The demand for effective internet security is increasing exponentially day by day. Businesses
have an obligation to protect sensitive data from loss or theft. Such sensitive data can be potentially
damaging if it is atered, destroyed or if it falls into the wrong hands. So they need to develop a
scheme that guarantees to protect the information from attacker. Cryptology which is the science
and study of systems for secret communication is at the heart of providing such guarantee. Breaking
knapsack cipher using Population Based Incremental Learning (PBIL) is suggested in this paper.
Results of this implementation are compared with results of Poonam Grag, Aditya Shastri, and D.C.
Agarwal (2006) which had made an enhancement on the efficiency of genetic agorithm attack on
knapsack cipher suggested by Spillman in 1993. The result of comparison shows that Population
Based Incremental Learning has less complexity and enjoys high speed (i.e. correct results will be
generated with less number of generation compared to that generated using genetic algorithm) also
the overhead for genetic agorithm operations is significantly higher than for Population Based

Incremental Learning.

1. Introduction

Cryptology is the science of building and
anayzing different encryption and decryption
methods. Cryptology consists of two subfields;
Cryptography and Cryptanalysis. The basic
am of Cryptography is to alow the intended
recipients of a message to receive the message
properly while preventing eavesdroppers from
understanding the message. Cryptanaysis is
the science and study of method of breaking
cryptographic techniques i.e. ciphers. In other
words it can be described as the process of
searching for flaws or oversights in the design
of ciphers[1],[2].

The application of genetic algorithms in the
cryptanalysis of knapsack ciphers is suggested
by Spillman [3] in 1993. The efficiency of
genetic algorithm attack on knapsack cipher is
then enhanced and re-implemented with
variation of initial assumption by Poonam
Grag, Aditya Shastri, and D.C. Agarwal [2] in
2006.

One of first knapsack cipher was proposed
by Markle and Hellman in 1975 which utilized
a NP_Complete problem for its security. The
Markle-Hellman knapsack cipher encrypts a
message as a knapsack problem. The plaintext
block transforms into binary string (the length
of block is equal to the number of elements in
knapsack sequence). One value determines
that an element will be in the target sum. This

sum is a ciphered message [2]. Table 1 shows
an example of solving knapsack problem for
the entry numbers sequence: 1 3 6 13 27 and
52.

Table (1)
Example of Knapsack Encryption.

Plaintext

Ciphertext

111001 | 136132752 | 1+3+6+52=62

010110 | 136132752 | 3+13+27 =43

000001 | 136132752 | 52 = 52

The public/private key aspect of this
approach liesin the fact that there are actually
two different knapsack problems referred to as
the easy knapsack and hard knapsack. The
Markle-Hellman algorithm is based on this
property. The private key is a sequence of
numbers for a superincreasing knapsack
problem. The public key is a sequence of
numbers for a normal knapsack problem with
the same solution [1], [2].

Easy knapsacks have a sequence of
numbers that are superincreasing- that is, each
number is greater than the sum of previous
numbers in the sequence. The knapsack
solution with the superincreasing sequence
proceeds as follows. The target sum is
compared with a greatest number in the
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sequence. If the target sum is smaller than this
number, the knapsack will not fill, otherwise it
will. Then the smaller element is subtracted
from the target sum, and the result of
subtraction is compared with next element.
Such operation is done until the smallest
element of sequence is reached. If the target
sum is reduced to O value, then solution exists.
In the other case solution does not exists. The
sequence of O and 1 resulting from this
operation gives the plaintext. The
superincreasing knapsack is easy to decode,
which means that it does not protect the data.
Anyone can recover the bit pattern from the
target sum for a superincreasing knapsack if
the elements of the superincreasing knapsack
are known.

Markle and Hellman suggested that such a
simple knapsack be converted into a trapdoor
knapsack which is difficult to break. The
algorithm works as follows:
1.Select a smple knapsack sequence.

Elements make a  superincreasing

A =(a,a,,....a,).

2. Select an integer value u greater than sum of
all elements of superincreasing sequence.

3. Select another integer w that the
gcd(u,w)=1, that is number u and w are
reciprocally prime.

4. Find the inverse of wmodu- w'.

5. Construct the hard knapsack sequence
A=wA'modu i.e.a =wa modu.

The trapdoor sequence A could be
published as a public key (encryption key).
The private (secret) key for this cipher consists
of a smple knapsack sequence A', so-called
trapdoor, values u,w,w*.

The encoding is done as follows. The
message divides into n bits blocks (each block
contains as many elements as simple knapsack
sequence). Vaues in the message block shows
that the element will be in the target sum. The
target sum of each block is ciphertext [2].

This paper suggests the application of

Population Based Incremental Learning
(PBIL) in the cryptanalysis of knapsack
ciphers.

This section: introduced an overview of the
problem, the field of science that we will work
on it, ams and objectives to be achieved.
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Section 2: introduces an overview of PBIL
together with the process of updating the
probability vector and its control parameters.
Section 3: details PBIL algorithm used for the
cryptanalysis process.
Section 4: presents a comparison between
experimental results obtained using PBIL and
results obtained from [2] together with a
discussion. Also examines the effects of
changing control parameters of the PBIL
algorithm.
Section 5: discusses the applicability of the
results reported in section 4 and concludes
with a discussion of the benefits of using PBIL
in comparison to standard genetic algorithms
for breaking knapsack cipher.
2.Introduction  to Based
Incremental Learning

Population Based Incremental Learning
(PBIL) isasimple version of the estimation of
distribution algorithm (EDA), the method was
first proposed by by Bauja [4] around 1994
for single objective optimization [5]. It is a
technique derived by combining aspects of
genetic algorithms and competitive learning.
This algorithm and its variants have been
shown by Baluja to significantly outperform
standard GA approaches on a variety of
stationary optimization problems ranging from
toy problems designed specifically for GA’s to
NP-complete problems. It has aso been
applied to various rea-world applications
including autonomous highway vehicle
navigation. PBIL’s most significant difference
from standard genetic agorithms is the
removal of the population found in GA’s [6].
[7] PBIL is a datistical approach to
evolutionary computation in which a solution
is represented by a fixed length binary vector
and a probability vector is maintained to
sample the new solutions. PBIL is a genetic
algorithm that can be used to perform a guided
random search. The guided random/stochastic
search method is a randomized search in
which attention is adaptively increased to
focus on the band combinations that return
promising results. PBIL is a combination of
iterary and evolutionary optimization methods.
This agorithm is based on Genetic Algorithm
(GA) mechanisms along with weight updating
rules in supervised competitive learning.

Population
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Generally speaking, PBIL combines the
elements of Genetic Algorithms and
Reinforcement Learning [8]. Unlike, GAs
where operations are applied on the population
itself, in PBIL the operations are applied on
the probability vector. The basic representation
of a solution can be the same as in a GA but
instead of storing each possibility explicitly
the population is replaced by a probability
distribution. The essence of PBIL is to
represent different solutions with a single
probability vector and hence maintain the
diversity in the population to some extent. It is
evident that after successive generations the
probability vector either converges to 0 or 1
and hence agorithm may trap in local optima
as the similarity in the vectors generated
increases- a similar dilemma faced by the
simple evolutionary algorithms. But the good
feature of the PBIL isthat it can be controlled
explicitly by a learning rate which can greatly
affect the speed of convergence [9]. During
each generation, sampling the vector generates
a number of potential solutions. Every one of
these solutions is then evaluated according to
the fitness function. The probability vector is
pushed towards the solution vector with
highest fitness; it is also pushed towards the
complement of the solution with lowest
(worst) fitness. After updating the probability
vector, a new set of solution vectors is
produced, and the cycle continues [4].
Furthermore, a special mutation operation is
used when updating the vector: each position
in the probability vector is shifted to a random
direction with asmall probability. Asin simple
evolutionary algorithms mutation plays an
important role in the later stages to maintain
the diversity in the population [9]. For PBIL,
there are two ways of defining a mutation
operator. The first is to perform the mutation
directly on the vectors generated. The second
method is to peform a mutation on the
probability vector; this mutation can be
defined as a small probability of perturbation
on each of the positions in the probability
vector. Both of these forms of mutation have
the same effect as mutation in standard genetic
algorithms: to help preserve diversity. For the
experiments conducted in this paper, the
second form of mutation is implemented [4].
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Features of PBIL can be summarized as
follows[10]:
- It has no crossover and

proportional operators.
It works with probability vector (number
in range 0-1). This probability controls
the random bitstrings generated by PBIL.
The probability vector is used to create
other individuals through learning.
There is no need to store al solutions in
the population. Only two solutions, the
current best solution and the solution
being evaluated, and the probability
vector are stored.

fitness

2.1. Probability Vector Updating

The probability vector used in PBIL can be
assumed as a template for generating solution
vectors. Initidly every eement of this
probability vector is set to 0.5 and then on the
basis of selected promising solutions, the
probability vector is modified according to the
Hebbian rule by using the fittest population
member. Since, PBIL uses the fittest
individual of a population to update the
probability vector therefore, it is expected that
after a number of generations the probability
vector will be shifted towards good solutions
[9]. [4] The process of updating the probability
vector in PBIL algorithm is summarized in the
following equation [11]:

PED =Pt (1L0- 1)+ SV IF e, 1)

wherelr , the learning rate, is 0 < Ir < 1,

SV'issdlected individual.

It should be noted that the probability
vector not only specifies the prototype based
upon the high evauations of the sample
solutions, but aso guides the search, which
produces the next sample point from which to
“learn”.

The classes of problems to be addressed by
PBIL are unlike many other problems for
which competitive learning (CL) is often
employed. In many domains to which CL is
applied, one of the largest difficulties in
training the CL-network is the lack of
available training data. However, there is an
abundance of training data in the class of
problems attempted here. Training data is



available through the evaluation of potentia
solution vectors. Nonetheless, to be efficient,
the algorithm must minimize the number of
function evaluations performed. Therefore, as
information regarding the characterization of
high evaluation vectors becomes available, it
is incorporated into the search; the updated
probability vector is used to generate the next
population of sample points [4].

2.2. Control Parameters

There are four parameters which can be
adjusted in a PBIL agorithm. These include
population size, learning rate, mutation rate
and mutation shift. There are some variants of
PBIL which aso use learning from negative
samples and hence negative learning rate also
becomes an important parameter. Settings of
these parameters have a significant impact on
the performance of a PBIL algorithm and
normally these parameters are set empiricaly.
In PBIL, “the learning rate has a direct impact
on the trade-off between exploration of the
function space and exploitation of the
exploration aready conducted”. Population
Size is a critical control parameter in any
evolutionary algorithm. A large population
size implies a slow convergence and vice-
versa.  In most evolutionary agorithms
population size is determined heuristicaly and
is kept constant throughout the evolution
process. Mutation operator helps in
maintaining the diversity in the population at
later stages of an Evolutionary Computation
agorithm and guarantees (a least
theoretically) to explore the whole population
in order to discover the globa optimum. The
mutation shift is the magnitude of the effect of
mutation on the probability vector and its
value is normally kept small enough to provide
small perturbation.

Mutation of the probability vector will be
according to the following equation [9],[11]:
If random (0,1] <

pt+) — pt - (1_ m)+random(0|1)' m...... 2

where, B is probability of mutation occurring
in each position and nr is the mutation rate.
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3. Cryptanalysis of Knapsack Cipher

The cryptanalysis starts from cipher text,
which has an integer form. Each number
represents a target sum of hard knapsack
problem. The goa of the PBIL algorithm isto
translate each number into the correct
knapsack, which represents the ASCII code for
the plaintext characters.

Encoding
There are certain restrictions on the
encoding algorithm:

- Only the ASCII code will be encrypted.

- The superincreasing sequence will have 8
elements, these number of elements
guarantee that each character has a unique
encoding (there are 256 ASCII codes and 8
elements length will alow to encrypt

2® characters).

Initialization

Initially every element of probability
vector is set to 0.5 to ensure uniformly-random
bitstrings. The number of bits in the
probability vector is equal to the number of
elementskey (i.e., 8).

Generate Samples

Generate a population of uniformly-
random bitstrings then generate solution
vectors according to probabilities in the
probability vector.

Evaluation
Spillman proposed the fitness measure
given in equation (3) below [3].

2 ..

- sumo . u
. - ae:arget—su+ if sum<= targetj
Fitnesss = & target 4 i

y
,1/6 =
- ?&dﬁmg if sum> target Ib
maxdadil [
................................. (3)

Lee M =(m,m,..,m)mi{0be an
arbitrary solution and the public key

A=(a,a,,....,a,)
Sum= g am

i=1

FullSum= é a

i=1
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MaxDiff= max(Target, FullSum-Target).

The fitness of the solution vectors will be
evaluated according to the above objective
function. The fitness value evaluates how the
given sum is close to the target value for the
knapsack. If the value of sum is greater than
targets then it will produce the infeasible
solutions else it will produce a high fitness
value and produce feasible solutions. Feasible
solutions have a greater chance of being
followed by the algorithm.

Selection

Find the fittest solution. The “best”
individual is used to update the probability
vector so that the probability of producing
solutions similar to the current best individuals
is increased. Optimal solutions resulted when
the number of best individuals used to update
the probability vector decreases.

Update probability vector
Update the probability vector by using the
fittest solution according to equation (1).

Mutation

Mutate the probability vector according to
equation (2). The mutation process moves
between two random points. It helpsto prevent
the algorithm from being stuck in a local
optimal point.

Stop condition

A new generation is created and the steps
are repeated until a satisfactory solution is
found or 200 generation is performed.

Example:
This example shows results obtained from

the execution of part of cryptanalysis knapsack
cipher using PBIL. Starting from ciphertext,
Ciphertext: 128821, Character: 'O,
Generation Size (number of samples): 4

Initialize Probability Vector P:
[05,05,05,05,05,05,05,05]

Generate Random Samples:
08147 09580 01270 09134 06324 00975 02785 0546¢

09575 09640 01576 09706 09572 04854 08003 0141¢
04218 09157 07922 0959506557 00357 08491 0.934C
06787 0.7577 0.7431 03922 06555 01712 0.7060 0031€
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Solution Vectors Generated According to
Probabilitiesin P:

001001
100
00O
010

o O O -
= O+ O

00
10
00

e

Evaluate Fitness for Solution Vectors:
[ 04620 0.6688-0.19131 0.3818 0.8187]

Then vector with the fittest solution which
is the fourth solution vector in our example
with fitness (0.8187) will be chosen to update
P according to equation (1), then mutation will
be done on P according to equation (2), and
the steps are repeated until the correct
knapsack, which represents the ASCII code for
character 'O' is obtained or 200 generation is
performed..

4. Results and Discussion

An experimental result for PBIL was
generated with 5 runs per data point using
MATLAB. PBIL is run with the mentioned
algorithm for each target sum mentioned
in Table (2). Each attack is run 5 times
with constant entry parameters as shown in
Table (2) and then results are averaged.

Table (2)

Samplesin each generation
Learning Rate

Mutation Probability
Mutation Shift (Mutation Rate)

The 8-element sequence of hard knapsack
problem (21031 63093 15371 11711 23422
58555 16615 54322) is used to encode 8 hit
ASCII code. This sequence has been created
from superincreasing sequence (1 37 13 26 65
119 267), u is equa to 65423 and w integer

equal 21031 (w ' =5363). The MACRO word
has been encrypted. Table 3 shows the result
of encoding.
Table(3)
Encryption By Knapsack.
Target Sum
(Ciphertext)
65728
37646
100739
103130
128821

Character | ASCII Code

10110010
10000010
11000010
01001010
11110010




By using the same parameters as in [2],
Table (4) shows the experimental results
generated by PBIL; AvgGen is the average of
number of generation needed after 5 runs.

Table (4)
Experimental results obtained using
PBIL.

Character

Table (5)
Experimental results obtained from [2].

Table (4) shows that on an average of 12.1
generations is enough for reaching to the
correct results. These results are analyzed and
compared with resultsin [2]. [2] Gives aways
correct results similar to results as obtained by
us on an average of 115 populations (i.e. 115
generation) as illustrated in table 4 above. The
area of possible resultsin [2] and in our work
is2®.

Now a discussion to the effect of control
parameters on producing correct results will be
presented here by changing one of the
parameters of Table (2) and leave the others
constant:

Changing the learning rate have been
shown in tables6 and 7:

Table (6)
Experimental results obtained at
Ir=0.3.

| Character | Expl | Exp2 | Exp3 | Exp4 | EXpS5 |
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Table (7)
Experimental results obtained at
Ir =0.03.

| Character | Expl | Exp2 | Exp3 | Exp4 | Exp5]
54 | 48

50 60

60 63
70 55
65 58

It is obvious that increasing the learning
will lead to correct results in less number of
generations than results generated in Table (4),
while more number of generations than in
Table (4) will be required to produce the same
results when learning rate decreases.

Table (8) will present the effect of decreasing
generation size:
Table (8)
Experimental results obtained when
generation size (i.e. number of samples) = 25.

| Character | Expl | Exp2 | Exp3 | Expd | ExpS |

Results in Table (8) above show that
results became worse when generation size
decreases.

Tables (9) and (10) present the effect of
changing the mutation shift control parameter:

Table (9)
Experimental results obtained at
mutation shift = 0.3.

| Character | Expl | Exp2 | Exp3 | Exp4 | EXp5]|
91 184 62
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Table (10)
Experimental results obtained at mutation
shift = 0.03.

| Character | Expl | Exp2 | Exp3 | Exp4 | Expb|

Results in Tables (9) and (10) show that
better results will be obtained by reducing
mutation shift control parameter.

The effect of changing the mutation
probability control parameter is shown in
Tables (11) and (12):

Table (11)
Experimental results obtained at mutation
probability = 0.8.

_Character | Expl | Exp2 | Exp3 | Exp4 | Exp5|

Table (12)
Experimental results obtained at mutation
probability = 0.01.

| Character | Expl | Exp2 | Exp3 | Exp4 | Exp5 |

Tables (11) and (12) show that decreasing

Mutation probability will produce correct
results in less number of generations than
results generated in Table (4).

The above results indicate that compared
to GA, PBIL has less complexity and enjoys
high speed (i.e. less number of generations
required to produce correct results) also the
overhead for genetic algorithm operations is
significantly higher than for PBIL.

5. Conclusion

Population Based Incremental Learning is
presented in this paper for breaking knapsack
cipher. This paper indicates that the use of
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PBIL instead of genetic algorithm gave us an
efficient results (less number of generations
required to produce correct results). Large
generation number, large generation size,
decreasing the number of selected individuals
used for updating the probability vector, high
learning rate, small mutation probability and
small mutation shift are the factors for
producing an efficient solutions. The results
became worse when learning rate, number and
size of generation decrease and when the
coefficient mutation and the number of
selected individuas increase. In  our
experiments average of 12.1 generations gives
the correct result. In [2,,8] an average of 115
generation gives the correct result. PBIL
accelerates the speed of the algorithm forward
the correct solution and are attained faster than
genetic agorithm, both in terms of the number
of evaluations performed and the clock speed.
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