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Abstract 
The demand for effective internet security is increasing exponentially day by day. Businesses 

have an obligation to protect sensitive data from loss or theft. Such sensitive data can be potentially 
damaging if it is altered, destroyed or if it falls into the wrong hands. So they need to develop a 
scheme that guarantees to protect the information from attacker. Cryptology which is the science 
and study of systems for secret communication is at the heart of providing such guarantee. Breaking 
knapsack cipher using Population Based Incremental Learning (PBIL) is suggested in this paper. 
Results of this implementation are compared with results of Poonam Grag, Aditya Shastri, and D.C. 
Agarwal (2006) which had made an enhancement on the efficiency of genetic algorithm attack on 
knapsack cipher suggested by Spillman in 1993. The result of comparison shows that Population 
Based Incremental Learning has less complexity and enjoys high speed (i.e. correct results will be 
generated with less number of generation compared to that generated using genetic algorithm) also 
the overhead for genetic algorithm operations is significantly higher than for Population Based 
Incremental Learning. 
 
1. Introduction 

Cryptology is the science of building and 
analyzing different encryption and decryption 
methods. Cryptology consists of two subfields; 
Cryptography and Cryptanalysis. The basic 
aim of Cryptography is to allow the intended 
recipients of a message to receive the message 
properly while preventing eavesdroppers from 
understanding the message. Cryptanalysis is 
the science and study of method of breaking 
cryptographic techniques i.e. ciphers. In other 
words it can be described as the process of 
searching for flaws or oversights in the design 
of ciphers [1],[2].  
   The application of genetic algorithms in the 
cryptanalysis of knapsack ciphers is suggested 
by Spillman [3] in 1993. The efficiency of 
genetic algorithm attack on knapsack cipher is 
then enhanced and re-implemented with 
variation of initial assumption by Poonam 
Grag, Aditya Shastri, and D.C. Agarwal [2] in 
2006. 

One of first knapsack cipher was proposed 
by Markle and Hellman in 1975 which utilized 
a NP_Complete problem for its security. The 
Markle-Hellman knapsack cipher encrypts a 
message as a knapsack problem. The plaintext 
block transforms into binary string (the length 
of block is equal to the number of elements in 
knapsack sequence). One value determines 
that an element will be in the target sum. This 

sum is a ciphered message [2]. Table 1 shows 
an example of solving knapsack problem for 
the entry numbers sequence: 1 3 6 13 27 and 
52. 
 

Table (1) 
Example of Knapsack Encryption. 

 

Plaintext Knapsack 
sequence Ciphertext 

111001 1 3 6 13 27 52 1+3+6+52= 62 
010110 1 3 6 13 27 52 3+13+27   = 43 
000001 1 3 6 13 27 52 52             =  52 

 
The public/private key aspect of this 

approach lies in the fact that there are actually 
two different knapsack problems referred to as 
the easy knapsack and hard knapsack. The 
Markle-Hellman algorithm is based on this 
property. The private key is a sequence of 
numbers for a superincreasing knapsack 
problem. The public key is a sequence of 
numbers for a normal knapsack problem with 
the same solution [1], [2]. 

Easy knapsacks have a sequence of 
numbers that are superincreasing- that is, each 
number is greater than the sum of previous 
numbers in the sequence. The knapsack 
solution with the superincreasing sequence 
proceeds as follows: The target sum is 
compared with a greatest number in the 
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sequence. If the target sum is smaller than this 
number, the knapsack will not fill, otherwise it 
will. Then the smaller element is subtracted 
from the target sum, and the result of 
subtraction is compared with next element. 
Such operation is done until the smallest 
element of sequence is reached. If the target 
sum is reduced to 0 value, then solution exists. 
In the other case solution does not exists. The 
sequence of 0 and 1 resulting from this 
operation gives the plaintext. The 
superincreasing knapsack is easy to decode, 
which means that it does not protect the data. 
Anyone can recover the bit pattern from the 
target sum for a superincreasing knapsack if 
the elements of the superincreasing knapsack 
are known. 

Markle and Hellman suggested that such a 
simple knapsack be converted into a trapdoor 
knapsack which is difficult to break. The 
algorithm works as follows: 
1. Select a simple knapsack sequence. 

Elements make a superincreasing  
),.....,,( ''

2
'
1

'
naaaA = . 

2. Select an integer value u greater than sum of 
all elements of superincreasing sequence. 

3. Select another integer w that the 
gcd(u,w)=1, that is number u and w are 
reciprocally prime. 

4. Find the inverse of 1mod −− wuw . 
5. Construct the hard knapsack sequence 

uwAA mod'=  i.e. uwaa ii mod'= . 
The trapdoor sequence A could be 

published as a public key (encryption key). 
The private (secret) key for this cipher consists 
of a simple knapsack sequence A', so-called 
trapdoor, values 1,, −wwu . 

The encoding is done as follows: The 
message divides into n bits blocks (each block 
contains as many elements as simple knapsack 
sequence). Values in the message block shows 
that the element will be in the target sum. The 
target sum of each block is ciphertext [2]. 

This paper suggests the application of 
Population Based Incremental Learning 
(PBIL) in the cryptanalysis of knapsack 
ciphers. 

This section: introduced an overview of the 
problem, the field of science that we will work 
on it, aims and objectives to be achieved. 

Section 2: introduces an overview of PBIL 
together with the process of updating the 
probability vector and its control parameters. 
Section 3: details PBIL algorithm used for the 
cryptanalysis process. 
Section 4: presents a comparison between 
experimental results obtained using PBIL and 
results obtained from [2] together with a 
discussion. Also examines the effects of 
changing control parameters of the PBIL 
algorithm. 
Section 5: discusses the applicability of the 
results reported in section 4 and concludes 
with a discussion of the benefits of using PBIL 
in comparison to standard genetic algorithms 
for breaking knapsack cipher. 
 
2.Introduction to Population Based 

Incremental Learning 
Population Based Incremental Learning 

(PBIL) is a simple version of the estimation of 
distribution algorithm (EDA), the method was 
first proposed by by Baluja [4] around 1994 
for single objective optimization [5]. It is a 
technique derived by combining aspects of 
genetic algorithms and competitive learning. 
This algorithm and its variants have been 
shown by Baluja to significantly outperform 
standard GA approaches on a variety of 
stationary optimization problems ranging from 
toy problems designed specifically for GA’s to 
NP-complete problems. It has also been 
applied to various real-world applications 
including autonomous highway vehicle 
navigation. PBIL’s most significant difference 
from standard genetic algorithms is the 
removal of the population found in GA’s [6]. 
[7] PBIL is a statistical approach to 
evolutionary computation in which a solution 
is represented by a fixed length binary vector 
and a probability vector is maintained to 
sample the new solutions. PBIL is a genetic 
algorithm that can be used to perform a guided 
random search. The guided random/stochastic 
search method is a randomized search in 
which attention is adaptively increased to 
focus on the band combinations that return 
promising results. PBIL is a combination of 
iterary and evolutionary optimization methods. 
This algorithm is based on Genetic Algorithm 
(GA) mechanisms along with weight updating 
rules in supervised competitive learning. 
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Generally speaking, PBIL combines the 
elements of Genetic Algorithms and 
Reinforcement Learning [8]. Unlike, GAs 
where operations are applied on the population 
itself, in PBIL the operations are applied on 
the probability vector. The basic representation 
of a solution can be the same as in a GA but 
instead of storing each possibility explicitly 
the population is replaced by a probability 
distribution. The essence of PBIL is to 
represent different solutions with a single 
probability vector and hence maintain the 
diversity in the population to some extent. It is 
evident that after successive generations the 
probability vector either converges to 0 or 1 
and hence algorithm may trap in local optima 
as the similarity in the vectors generated 
increases- a similar dilemma faced by the 
simple evolutionary algorithms. But the good 
feature of the PBIL is that it can be controlled 
explicitly by a learning rate which can greatly 
affect the speed of convergence [9]. During 
each generation, sampling the vector generates 
a number of potential solutions. Every one of 
these solutions is then evaluated according to 
the fitness function. The probability vector is 
pushed towards the solution vector with 
highest fitness; it is also pushed towards the 
complement of the solution with lowest 
(worst) fitness. After updating the probability 
vector, a new set of solution vectors is 
produced, and the cycle continues [4]. 
Furthermore, a special mutation operation is 
used when updating the vector: each position 
in the probability vector is shifted to a random 
direction with a small probability. As in simple 
evolutionary algorithms mutation plays an 
important role in the later stages to maintain 
the diversity in the population [9]. For PBIL, 
there are two ways of defining a mutation 
operator. The first is to perform the mutation 
directly on the vectors generated. The second 
method is to perform a mutation on the 
probability vector; this mutation can be 
defined as a small probability of perturbation 
on each of the positions in the probability 
vector. Both of these forms of mutation have 
the same effect as mutation in standard genetic 
algorithms: to help preserve diversity. For the 
experiments conducted in this paper, the 
second form of mutation is implemented [4].  

Features of PBIL can be summarized as 
follows [10]: 
• It has no crossover and fitness 

proportional operators. 
• It works with probability vector (number 

in range 0-1). This probability controls 
the random bitstrings generated by PBIL. 

• The probability vector is used to create 
other individuals through learning. 

• There is no need to store all solutions in 
the population. Only two solutions, the 
current best solution and the solution 
being evaluated, and the probability 
vector are stored. 

 
2.1. Probability Vector Updating 

The probability vector used in PBIL can be 
assumed as a template for generating solution 
vectors. Initially every element of this 
probability vector is set to 0.5 and then on the 
basis of selected promising solutions, the 
probability vector is modified according to the 
Hebbian rule by using the fittest population 
member. Since, PBIL uses the fittest 
individual of a population to update the 
probability vector therefore, it is expected that 
after a number of generations the probability 
vector will be shifted towards good solutions 
[9]. [4] The process of updating the probability 
vector in PBIL algorithm is summarized in the 
following equation [11]: 
 

( ) lrSVlrPP ttt   0.1)1( ×+−×=+   ................. (1) 
 
where lr , the learning rate, is 0 < lr ≤ 1; 

tSV is selected individual. 
It should be noted that the probability 

vector not only specifies the prototype based 
upon the high evaluations of the sample 
solutions, but also guides the search, which 
produces the next sample point from which to 
“learn”. 

The classes of problems to be addressed by 
PBIL are unlike many other problems for 
which competitive learning (CL) is often 
employed. In many domains to which CL is 
applied, one of the largest difficulties in 
training the CL-network is the lack of 
available training data. However, there is an 
abundance of training data in the class of 
problems attempted here. Training data is 
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available through the evaluation of potential 
solution vectors. Nonetheless, to be efficient, 
the algorithm must minimize the number of 
function evaluations performed. Therefore, as 
information regarding the characterization of 
high evaluation vectors becomes available, it 
is incorporated into the search; the updated 
probability vector is used to generate the next 
population of sample points [4]. 
 
2.2. Control Parameters 

There are four parameters which can be 
adjusted in a PBIL algorithm. These include 
population size, learning rate, mutation rate 
and mutation shift. There are some variants of 
PBIL which also use learning from negative 
samples and hence negative learning rate also 
becomes an important parameter. Settings of 
these parameters have a significant impact on 
the performance of a PBIL algorithm and 
normally these parameters are set empirically. 
In PBIL, “the learning rate has a direct impact 
on the trade-off between exploration of the 
function space and exploitation of the 
exploration already conducted”. Population 
size is a critical control parameter in any 
evolutionary algorithm. A large population 
size implies a slow convergence and vice-
versa. In most evolutionary algorithms 
population size is determined heuristically and 
is kept constant throughout the evolution 
process. Mutation operator helps in 
maintaining the diversity in the population at 
later stages of an Evolutionary Computation 
algorithm and guarantees (at least 
theoretically) to explore the whole population 
in order to discover the global optimum. The 
mutation shift is the magnitude of the effect of 
mutation on the probability vector and its 
value is normally kept small enough to provide 
small perturbation. 

Mutation of the probability vector will be 
according to the following equation [9],[11]: 
If random (0,1] < β 
 

( ) ( ) µµ ×+−×=+ 1|01)1( randomPP tt   ....... (2) 
 
where, β is probability of mutation occurring 
in each position and µ is the mutation rate. 
 
 
 

3. Cryptanalysis of Knapsack Cipher 
The cryptanalysis starts from cipher text, 

which has an integer form. Each number 
represents a target sum of hard knapsack 
problem. The goal of the PBIL algorithm  is to 
translate each number into the correct 
knapsack, which represents the ASCII code for 
the plaintext characters. 
 
Encoding 

There are certain restrictions on the 
encoding algorithm: 
• Only the ASCII code will be encrypted. 
• The superincreasing sequence will have 8 
elements, these number of elements 
guarantee that each character has a unique 
encoding (there are 256 ASCII codes and 8 
elements length will allow to encrypt 

82 characters). 
 
Initialization 

Initially every element of probability 
vector is set to 0.5 to ensure uniformly-random 
bitstrings. The number of bits in the 
probability vector is equal to the number of 
elements key (i.e., 8). 
 
Generate Samples 

Generate a population of uniformly-
random bitstrings then generate solution 
vectors according to probabilities in the 
probability vector. 
 
Evaluation 

Spillman proposed the fitness measure 
given in equation (3) below [3]. 
 

Fitness= 

1/2

1/6

target  sum1 if sum  target
target

target  sum1  if sum  target
maxdiff

 −
− <=    


− − >    

  

 .................................(3)  
 
Let in mmmmM ),,......,,( 21= { }1,0∈ be an 
arbitrary solution and the public key 

),.....,,( 21 naaaA=  

Sum= ∑
=

n

i
iima

1

 

FullSum= ∑
=

n

i
ia

1
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MaxDiff= max(Target, FullSum-Target).  
 

The fitness of the solution vectors will be 
evaluated according to the above objective 
function. The fitness value evaluates how the 
given sum is close to the target value for the 
knapsack. If the value of sum is greater than 
targets then it will produce the infeasible 
solutions else it will produce a high fitness 
value and produce feasible solutions. Feasible 
solutions have a greater chance of being 
followed by the algorithm. 
 
Selection 

Find the fittest solution. The “best” 
individual is used to update the probability 
vector so that the probability of producing 
solutions similar to the current best individuals 
is increased. Optimal solutions resulted when 
the number of best individuals used to update 
the probability vector decreases.  
 

Update probability vector 
Update the probability vector by using the 

fittest solution according to equation (1). 
 

Mutation 
Mutate the probability vector according to 

equation (2). The mutation process moves 
between two random points. It helps to prevent 
the algorithm from being stuck in a local 
optimal point. 
 

Stop condition 
A new generation is created and the steps 

are repeated until a satisfactory solution is 
found or 200 generation is performed. 
 

Example: 
This example shows results obtained from 

the execution of part of cryptanalysis knapsack 
cipher using PBIL. Starting from ciphertext, 
Ciphertext: 128821, Character: 'O', 
Generation Size (number of samples): 4 
 

Initialize Probability Vector P: 
[ ]0.5 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, ,5.0  
Generate Random Samples : 

0318.07060.01712.06555.0
9340.08491.00357.06557.0
1419.08003.04854.09572.0
5469.02785.00975.06324.0

3922.07431.07577.06787.0
9595.07922.09157.04218.0
9706.01576.09640.09575.0
9134.01270.09580.08147.0

    

 

Solution Vectors Generated According to 
Probabilities in P: 

1010
0010
1010
0110

1000
0001
0100
0100

    

 

Evaluate Fitness for Solution Vectors: 
[ ]8187.03818.019131.06688.04620.0 −  

Then vector with the fittest solution which 
is the fourth solution vector in our example 
with fitness (0.8187) will be chosen to update 
P according to equation (1), then mutation will 
be done on P according to equation (2), and 
the steps are repeated until the correct 
knapsack, which represents the ASCII code for 
character 'O' is obtained or 200 generation is 
performed.. 
 

4. Results and Discussion 
An experimental result for PBIL was 

generated with 5 runs per data point using 
MATLAB. PBIL is run with the mentioned 
algorithm for each target sum mentioned  
in Table (2). Each attack is run 5 times  
with constant entry parameters as shown in 
Table (2) and then results are averaged. 
 

Table (2) 
 

Samples in each generation 75 
Learning Rate  0.1 
Mutation Probability 0.11 
Mutation Shift (Mutation Rate) 0.02 

 

The 8-element sequence of hard knapsack 
problem (21031 63093 15371 11711 23422 
58555 16615 54322) is used to encode 8 bit 
ASCII code. This sequence has been created 
from superincreasing sequence (1 3 7 13 26 65 
119 267), u is equal to 65423 and w integer 
equal 21031 ( 53631 =−w ). The MACRO word 
has been encrypted. Table 3 shows the result 
of encoding. 

Table(3) 
Encryption By Knapsack. 

Character ASCII Code Target Sum 
(Ciphertext) 

M 10110010 65728 
A 10000010 37646 
C 11000010 100739 
R 01001010 103130 
O 11110010 128821 
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By using the same parameters as in [2], 
Table (4) shows the experimental results 
generated by PBIL; AvgGen is the average of 
number of generation needed after 5 runs. 

 

Table (4) 
Experimental results obtained using  

PBIL. 
Character Exp

1 
Exp

2 
Exp

3 
Exp

4 
Exp

5 AvgGen 

M 15 16 10 15 10 13.2 
A 11 10 18 12 12 12.6 
C 11 9 11 11 12 10.8 
R 17 12 11 12 11 12.6 
O 14 11 9 13 10 11.4 

Sum      12.1 

 
Table (5)  

Experimental results obtained from [2]. 

Character Exp
1 

Exp
2 

Exp
3 

Exp
4 

Exp
5 AvgGen 

M 13 2 68 1 1 17 
A 226 67 1 1 265 112 
C 173 48 1 279 853 271 
R 290 4 108 44 1 89.4 
O 2 1 210 1 222 87.2 

Sum      115 
 

Table (4) shows that on an average of 12.1 
generations is enough for reaching to the 
correct results. These results are analyzed and 
compared with results in [2]. [2] Gives always 
correct results similar to results as obtained by 
us on an average of 115 populations (i.e. 115 
generation) as illustrated in table 4 above. The 
area of possible results in [2] and in our work 
is 82 . 

Now a discussion to the effect of control 
parameters on producing correct results will be 
presented here by changing one of the 
parameters of Table (2) and leave the others 
constant: 

Changing the learning rate have been 
shown in tables 6 and 7: 

Table (6) 
Experimental results obtained at  

lr = 0.3. 
Character Exp1 Exp2 Exp3 Exp4 Exp5 

M 2 2 4 2 2 
A 2 6 4 5 2 
C 4 2 4 2 4 
R 5 2 6 5 2 
O 5 2 2 2 4 

Table (7) 
Experimental results obtained at  

lr = 0.03. 
Character Exp1 Exp2 Exp3 Exp4 Exp5 

M 49 54 48 57 46 
A 52 50 60 43 46 
C 42 60 63 48 52 
R 45 70 55 55 53 
O 74 65 58 61 59 

 

It is obvious that increasing the learning 
will lead to correct results in less number of 
generations than results generated in Table (4), 
while more number of generations than in 
Table (4) will be required to produce the same 
results when learning rate decreases. 
 

Table (8) will present the effect of decreasing 
generation size: 

Table (8) 
Experimental results obtained when 

generation size (i.e. number of samples) = 25. 
Character Exp1 Exp2 Exp3 Exp4 Exp5 

M 22 42 23 22 26 
A 29 30 32 24 20 
C 20 27 27 20 42 
R 20 18 27 32 15 
O 29 27 32 32 23 

 

Results in Table (8) above show that 
results became worse when generation size 
decreases. 
 

Tables (9) and (10) present the effect of 
changing the mutation shift control parameter:  

 
Table (9) 

Experimental results obtained at  
mutation shift = 0.3. 

Character Exp1 Exp2 Exp3 Exp4 Exp5 
M 69 186 91 184 62 
A 41 29 40 55 56 
C 50 86 28 107 74 
R 31 169 40 53 40 
O 49 64 110 57 77 
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Table (10) 
Experimental results obtained at mutation 

shift = 0.03. 
Character Exp1 Exp2 Exp3 Exp4 Exp5 

M 12 10 13 11 8 
A 12 11 12 13 11 
C 12 8 12 10 10 
R 10 12 12 10 13 
O 10 10 12 13 8 

 

Results in Tables (9) and (10) show that 
better results will be obtained by reducing 
mutation shift control parameter. 

The effect of changing the mutation 
probability control parameter is shown in 
Tables (11) and (12): 

Table (11) 
Experimental results obtained at mutation 

probability = 0.8. 
Character Exp1 Exp2 Exp3 Exp4 Exp5 

M 21 16 21 25 23 
A 21 19 23 22 25 
C 24 22 21 25 35 
R 41 24 19 23 24 
O 23 26 20 29 47 

 
Table (12) 

Experimental results obtained at mutation 
probability = 0.01. 

Character Exp1 Exp2 Exp3 Exp4 Exp5 
M 10 10 12 10 12 
A 10 13 12 10 10 
C 10 10 13 10 12 
R 10 8 10 10 10 
O 8 12 10 13 8 

 

Tables (11) and (12) show that decreasing 
Mutation probability will produce correct 
results in less number of generations than 
results generated in Table (4). 

The above results indicate that compared 
to GA, PBIL has less complexity and enjoys 
high speed (i.e. less number of generations 
required to produce correct results) also the 
overhead for genetic algorithm operations is 
significantly higher than for PBIL. 
 

5. Conclusion 
Population Based Incremental Learning is 

presented in this paper for breaking knapsack 
cipher. This paper indicates that the use of 

PBIL instead of genetic algorithm gave us an 
efficient results (less number of generations 
required to produce correct results). Large 
generation number, large generation size, 
decreasing the number of selected individuals 
used for updating the probability vector, high 
learning rate, small mutation probability and 
small mutation shift are the factors for 
producing an efficient solutions. The results 
became worse when learning rate, number and 
size of generation decrease and when the 
coefficient mutation and the number of 
selected individuals increase. In our 
experiments average of 12.1 generations gives 
the correct result. In [2,,8] an average of 115 
generation gives the correct result. PBIL 
accelerates the speed of the algorithm forward 
the correct solution and are attained faster than 
genetic algorithm, both in terms of the number 
of evaluations performed and the clock speed. 
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  الخلاصة
یــزداد الطلــب یومـــا بعــد یـــوم علــى شـــبكة معلومــات عالیـــة 

ـــة الأمنیـــة كمـــا أن  ـــات كاف ـــزام لحمایـــة البیان الأعمـــال علیهـــا الت
مثــل هــذه البیانــات الحساســة . الحساســة مــن الســرقة أو الفقــدان

یـدي الخاطئـة ممكن أن تـدمر اذا تـم تغییرهـا أو أن تقـع فـي الأ
ــــــة هــــــذه  ــــــذلك هــــــم بحاجــــــة لتطــــــویر اســــــلوب یضــــــمن حمای ول

مثل هذا الضمان ممكن أن یتحقـق . المعلومات من المقتحمین
 حیــــث أن علـــم التشــــفیر هـــو العلــــم. عـــن طریـــق علــــم التشـــفیر

. الذي یعمل على دراسة الأنظمة الخاصـة بامنیـة الأتصـالات 
 الـــــــــتعلم المتنـــــــــامي المســـــــــتند فـــــــــي بحثنـــــــــا هـــــــــذا تـــــــــم اقتـــــــــراح 

ـــــة  علـــــى عـــــدد الســـــكان  لكســـــر شـــــفرة نابســـــاك ثـــــم تمـــــت مقارن

ــــــــــــــــــــــائج  بحــــــــــــــــــــــث نتــــــــــــــــــــــائج هــــــــــــــــــــــذا البحــــــــــــــــــــــث مــــــــــــــــــــــع نت
  Poonam Grag, Aditya Shastri, D.C. Agarwal 

فـي  تحسین كفاءة الخوارزمیـات الجینیـةوالذي تم فیه  (2006)
مـــــــن قبـــــــل  والمقتـــــــرح عملیـــــــة تحلیـــــــل الشـــــــفرة لشـــــــفرة نابســـــــاك

Spillman  نتــائج التجــارب التــي تمــت تأدیتهــا  (1993).فــي
الـتعلم المتنـامي المسـتند علـى في هذا البحـث سـوف تظهـر أن 

ــــل  عــــدد الســــكان ــــد أق ــــه تعقی ــــة فی ــــات الجینی ــــة بالخوارزمی مقارن
أي مـــن الممكـــن الحصـــول علـــى نتـــائج ( عالیـــة ویتمتـــع بســـرعة

ــــل ممــــا فــــي ال ــــال أق ــــةصــــحیحة بعــــدد أجی ــــات الجینی  )خوارزمی
ن الســقف لعملیـــات الخوارزمیــات الجینیــة هــو أعلـــى وكــذلك فــأ

المتنــــامي المســــتند علــــى عــــدد  الــــتعلمبشــــكل مــــؤثر ممــــا فــــي 
 .السكان

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


