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Abstract

In this paper we give some definitions related to spectral theory of a linear operator T defined
on a fuzzy normed space and we prove that spectrum s(T) and resolvent set r (T) are nonempty for
a fuzzy bounded linear operator defined on certain fuzzy normed spaces. Moreover, we show r (T)

ist -open and s(T) ist -closed.
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1.Introduction

In 1965, Zadeh [6] defined a fuzzy set as a
class of objects with a continuum of grades of
membership. Such a set in characterized by a
membership function which assigns to each
object a grade of membership ranging between
zero and one. The notions of inclusion union,
intersection, complement, relation, etc. are
extended to such sets. This concept has been
studied intensively by many authors [1], [2],
[3], [4], [7], etc.. The purpose of this paper is
to generalized the concept of spectral theory
[5] to the concept of fuzzy theory. To do this,
we need to recall the following definitions. Let
X be a linear space over a field K. A fuzzy
subset N of X" A is said to be a fuzzy norm on
a linear space X in case for each x, yl X and
cl K, thefollowing conditions hold
(N1) N(x,t)=0 for each t£O.
(N2) N(x,t)=1 for each t>0 if and only if

x=0.
t (')'
(N3)If O ¢l K then N(cx,t)= Né
| c|
for each t>0
(Ng) N(x+y,s+t)3 N(x, ) UN(y,t) for
each s, tl A.

(Ns) N(x,% isanon-decreasing function of
A and lim N(x,t)=1.
t® ¥

The pair (X,N) will be referred to as a fuzzy
normed space [9]. Also, recall that a subsetU
of afuzzy normed space (X,N) issaid to be he
closure of a subset V of X in case for any

xI U, there exists a sequence {x,} in V such

that lim N(x, - x,T) =1 for each t>0. We
n® ¥

denote the set U by V, [9]. On the other hand
a subset U of a fuzzy normed space (X,N)

is said to be dense in case U=X , [9].
Also, recall that a linear operator
T:(X,N) 38® (X,N) is sad to be fuzzy
bounded on X in case there exists D>0 such
that for each xi X and tI A, N(T(X),t) )

3 N?(%g (8.

2. TheMain Results

We dstart this section by giving the
following two propostions give the relation
between the ordinary closure and the closure
in the fuzzy sense in case the fuzzy norm N.
Proposition (2.1):

Let (X,[ %)) be anormed space and let N
be the fuzzy norm defined by

:; for t>0
Nt =it+ x| (2.1)

1o for t£0
for each xI X. Then the closure of a subset U
of X with respect to | .| is equal to the closure
of U with respect to N.
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Proof :
Suppose V is the closure of U with respect

to|.||. Then for each xi V, there exists a

sequence  {Xn} in U such that

lim | xp- x||=0. Hence, for each >0,
n® ¥

lim N(xp- x,t) =1. Thus each element of
n® ¥

V belongs to the closure of U with respect to
N.

Conversely, suppose U is the closure of U

with respect to N. Then for each xI U these
exists a sequence {x,} in U such that for each
t>0, lim N(xp- x,t) =1. Hence

n® ¥

lim ||xp- X || =0. Thus each element of U
¥

n®
belongsto V. ThereforeV =U.

Proposition (2.2):
Let (X,|.]|) be a normed space and let N

be the fuzzy norm defined by
0 for tE] x|

N(x,t) =i
COZ o 15 x|

for each xI X and tI A. Then the closure of a
subset U of X with respect to |.|| is equal to
the closure of U with respect to N.

Proof :
Suppose V be the closure of U with respect

to |.| then for esch xi V there exists a

sequence  {Xn} in U such that

lim |xn- x|=0. That is for each €>0, there
n® ¥

existss a podstive integer ny such that
X, - X|<e for each rmno. Therefore

N(xr-x,€)=1 for each nmng. Thus

lim N(x,-x,e)=1 for each €>0.
n® ¥

Therefore, each element of V belong to the
closure of U with respect to N.

Conversely, suppose U is the closure of U
with respect to N. Then for each xI U there
exists a sequence {x,} in U such that for each
t>0,

lim N(xp- xt) =1.
n® ¥

lim N(xp- x,t) =1>a, for each t>0. That is
n® ¥

Fix al (0,1), thus
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for each t>0, there exists ng, such that
N(x-xt)>a for each rfn.. So [x,, - x| <t

for each i no. Hence lim |x, - x| = 0. Thus,
n® ¥

each element of U belong to V. Therefore
u=V.

Definition (2.3):

Let (X,N) be a fuzzy normed space over
the field € where X1 {0} and T:X 3%4® X be
a linear operator. A regular value | of T is a
complex number such that
(1) R (T) exists.

(2) R(T) is fuzzy bounded linear operator
onR(Ty).
(3) R (T) is defined on a set which is dense in

X.

where R(M=Ty =T - 1D cal it the
resolvent operator of T and R (T,) the range of
T .

Definition (2.4):

Let (X,N) be a fuzzy normed space over
the field € where X1 {0} and T:X 3%4® X be
a linear operator. The resolvent set of T,
denoted by r (T) is the set of all regular values
| of T.

Example (2.5):

Let (X,N) be a fuzzy normed space over
the field € where X* {0}. It is easy to check
that r (I)=C-{1} and r (O)=C- {0}, wherel is
the identity operator and O isthe.

The following propositions show that the
resolvent operator R, (T) of a fuzzy bounded
linear operator T defined on certain fuzzy
normed spaces is fuzzy bounded on it.

Proposition (2.6):
Let (X,|.|) be a complete normed space

over the field € where X1 {0}, T:X 3%4® X
be a linear operator, N be the fuzzy norm
defined by eg.(2.1) and let 11 r(T) with
respect to (X,N). If T is fuzzy bounded on X
then R, (T) isfuzzy bounded on (X,N).

Proof :
Suppose T is fuzzy bounded on X. Then

there exists D>0 such that for each xI X and



th A, N(T(X),t)3 N%(,ig. Hence for each
e Dg
t 3
t+[T)|  t+[Dx|
each xI X, [T(x)|£D|x|. Therefore T is

bounded linear operator. Moreover, since
ITr(T) with respect to (X,N) then R (T)
exists, R/ (T) is bounded on R (T;) and by
using proposition (2.1) one can prove R (T;) is
dense in (X, .[), thus I belongs to resolvent

set of bounded linear operator T. By [5]
one can get R/ (T) is bounded linear

operator on (X,|.[). then there exists D>0
such that for each xI X, |R; (T)(x)||£ D|X.

Then for each t>0 and for each Xl X,
t+|R; (T)(X)|£t+D|x|. Then there exists

D>0 such that for each xI X and tl A,

xI X and t>0, implies for

N(R (T)(X).1)° N@%Q Therefore, R (T) is
e g
fuzzy bounded on (X,N).

Proposition (2.7):
Let (X,|.[) be a complete normed space

over the field €, where X1 {0}, T:X 3%4® X
be a linear operator, N is the fuzzy norm
defined by eq.(2.2) and let 11 r(T) with
respect to (X,N), if T is fuzzy bounded on X
then R, (T) fuzzy bounded on X.

Proof :

Suppose T is fuzzy bounded on X. Then
there exists D*>0 such that for each xi X and
for eachtl A,

N(T(x).t)° N&X,
e

LQ. Assume for the
D*g
contrary there exists x*1 0 such that
[TOe*)|>D* | x*|. Let |[T(x*)|=to. Hence
N(T(x*),t5)=0 but N(D*x*,tg) =1 thisis a
contradiction. Then for each xI X there exists
D*>0 such that |T(x)|£D*|x|. Hence T is
bounded linear operator. Moreover, since
I Tr(T) with respect to (X,N) then R/ (T)
exists, R, (T) is bounded on R(T;) and by using
proposition (2.2) one can prove R (T|) is dense
in (X,|.|), thus I belongs to resolvent set of
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bounded linear operator T. By [5] one can get

R (T) is bounded linear operator on (X,||.||).

then there exists D>0 such that for each xI X,

IR (T)(X)|£D|x|. Let xI X and tl A then we

have two cases:-

(D If t>|R; (M) then N(R (T)(x),t)=1.
Since |R; (T)(x)|£|Dx| Then either
tE[Dx| or [Dx|<t. If tE|Dx| then
N(Dx,t)=0. Hence

N(R (T)(X) ,H)=1>N(Dx,t)= N@,%on. If
e (%]

|Dx| <t then N(Dx,t)=1. Thus for each
xI X, N(R; (T)(x),,t)=N(Dx,t)
=N&, L 0=1.
e Dg
2 If || R| (T)(X)||3tthen N(R (T)(x),,t)=0.
Since|[R; (T)(x)| £ D|x| then
N(Dx,t)=0. Hence

N(R (T)(X) 1)= N?,%EZO.

Therefore R (T) is fuzzy bounded on(X,N).

Proposition (2.8):

Let (X,N) be a fuzzy normed space over
the field € where X1{0} satisfying the
following conditions
(1) For each a, O<a<l and for each

sequence{ Xn} in X satisfying the condition

lim N(Xwp-Xn,t)®a for each t>0,
n® ¥

p=1,2,..., implies there exists xI X such
that for eacht>0, lim N(X- x,t)>a.
n® ¥

(2) For each t>0, N(x,t)>0 implies x=0.

(3) For x* 0, N(x,% is a continuous function of
A and srictly increasing on the subset
{t:0<N(x,t)<1} of A.

Let T:X 384® X be a linear operator and let

ITr(T). If T is fuzzy bounded on X then

R (T) fuzzy bounded on X.

Proof :

Since (X,N) satisfied condition (1) one can
get X is a complete normed space with respect
to ||.|,for each al (0,1). Since T is fuzzy
bounded on X then:
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T:(X,||.| ) %#® (X[ ., ) is bounded for

each al (0,1). Moreover, since | 1 r(T) then
R (T) exists, R/ (T) is bounded on R (T;) and
R (T)) is dense with respect to | .||, for each

al (0,1). Thus | belongs to resolvent set of T
with respect to | .||a for each al (0,1). Hence

R (M:(X,[.] ) %#® (X,].|,) is bounded

linear operator for each al (0,1) follows from
[5]. Therefore R (T) is fuzzy bounded on
(X,N).

Remark (2.9) [9]:

Let (X,N) be a fuzzy normed space. Then
the set
t ={ Gl XYl G iff there exist t>0 and al (0,1)
such that B(x,a,t)l G}
where B(x,a,t)={y¥N(x-y,t)>1-a} and for
O<a<1, isatopology on X.

The following propositions show that r (T)
iS nonempty set and t -open where t is the
topology induced by the fuzzy norm defined

by eq.(2.2).
Proposition (2.10):

Let (X,||.[) be a complete normed space
over the field €, where Xt{0} and let

T:(X,N) 3%2® (X,N) be fuzzy bounded linear

operator on X where N be the fuzzy norm

defined in eg.(2.1). Then

(2) r (T) is nonempty Set.

(2) r(T) is t-open where tis the topology
induced by the fuzzy norm defined by
eq.(2.2).

Proof :

(1) By following the same first steps in
proposition (2.6) one can get T is a
bounded linear operator on (X,||.| ) then
the resolvent set of T is nonempty [5], sO
there exists | T € such that R, (T) exists,
R/ (T) isbounded on R (T}) and R (T) is
dense in (X, [ .||). By [5] one can get R (T)
is bounded on (X,||.||). By following the
same last steps in proposition (2.6) one can
get R (T) exists and fuzzy bounded on X.
Thusr (T) is nonempty set.
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(2) To show that r (T) belongs to the topology
t induced by the fuzzy norm N defined
by eq.(2.2). we shal prove that for all
cl €, for each t>0 and for each a where
O<a<l, the set B(c,at) t. Fix cil C,
t1>0 and O<ai<l. Let CzT B(Cl,al,tl) this
means that N(c;- C,,t1)>1- a;1. This implies
lc1 - Cp|<t1. To prove
B(Cz,al,tl- |C1- C2|)i B(Cl,al,tl), let
csl B(cz,awti- [cp - Co|) hence
N(cz- Cata- [c1 - €5[)>1- a1 then
Ic2 - c3|<ti- |c1 - ¢| and hence
lc1 - cg|<t1 thus N(ci- Cs, t1)=1>1-a; and
hence csl B(c1,a1,t1). Therefore
B(c,at)l t foreachcl €, t>0, O<a<l.
Moreover, we can see that B(c,a,t)=B(c,t)
for each al (0,1), t>0 and ¢l ¢, where
BcH)={dl C|c- d<t}.Fixcid €,
O<ai<l and t;>0. Let c,l B(cy,as,ty) then
N(ci- Ca,t1)>1-as1. Hence [cp - cp|<ts thus
CZT B(Cl,tl).

Conversely, suppose cCol B(cyt;) then
[ci- ¢ <t;. Hence
N(Cl- C2,t1)>1- ai. So CzT B(Cl,al,tl).
Therefore, B(c,a,t)=B(c,t), for each
al (0,1), ¢l C, t>0. Then one can easily
check the topologies induced by N and | |

are the same. Then r(T) is subset of
resolvent set of T. Hence, r (T) ist -open.

Proposition (2.11):
Let (X,|.|) be a complete normed space
over the fildC, where X1{0} and let

T:(X,N) 3%2® (X,N) be fuzzy bounded linear
operator on X where N be the fuzzy norm
defined by eg.(2.2). Then

(2) r (T) is nonempty set.

(2) r (T) ist -open where t isthe topology
induced by the fuzzy norm defined by eq.(2.2).

Proof:
(1) By following the same first steps in
proposition (2.7) onecan get T is bounded

linear operator on (X,|.|) then the
resolvent set of T is nonempty [5],



so there exists | T € such that R (T) exists,
R (T) isbounded on R (T;) and R (T, ) is dense
in (X,||.||). By [5] one can get R (T) is
bounded on (X,||.||). By following the same
last steps in proposition (2.7) one can get
R (T) exists and fuzzy bounded on X. Thus
r (T) isnonempty set.

The proof of (2) is smilar to that in
proposition (2.10).

Next, we give the definition of the

gpectrum of a linear operator on a fuzzy
normed space over thefield C.

Definition (2.12):
Let (X,N) be a fuzzy normed space over

the field € where Xt {0} and T: X 34® X
be a linear operator. The spectrum of T
denoted by s(T) is the complement of r (T) in
the complex plane. Each | T s(T) is caled a
spectral value of T.

Remarks (2.13):
Let (X,N) be a fuzzy normed space over

the field € where X1 {0} and T:X 384® X be

a linear operator the spectrum of T s

partitioned into three digoint sets as follows:-

(1) The point spectrum sp(T) is the set such
that R (T) does  not exists.
| T sy(T) is called an eigenvalue of T.

(2) The continuous spectrum s¢(T) is the set
such that R, (T) exists and satisfying the
condition (3) but not the condition (2) in
definition (2.3).

(3 The resdua spectrum s(T) is the set
such that R, (T) exists (and may be fuzzy
bounded or not) but does not satisfy the
condition (3) in definition (2.3).

To illustrate the definition of the pectrum
of alinear operator defined on a fuzzy normed
gpace over €, consider the following
examples.

Examples(2.14):

(1) Let (X,N) be a fuzzy normed space over
the field € where X1{0}. Then
sp()={1}=s(l) where | is the identity
operator defined on X. On the other hand,
Sp(0) = {0} =s (O), where O is the zero
operator defined on X.

(2) Let X=1,(C), that is
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¥
15(T) = {x=(x1.x2,K) & [xi|® <¥.xiT €}

i=1
For eachxi 1,(C), defined
1
1 393‘,‘ 29E
M= <xx>% = €3 x 2 Let

N:1,(C)" A 38,® [0,1] be the fuzzy norm
defined by eq.(2.2). Consider

TX1, X2, ...) = (0, X3 , X2, ...) , where
xI 15(C). We shall show that O s/(T). To do
this, it is clear T is bounded linear operator
with respect to ||.|. Moreover by using the
same last steps in proposition (2.7) one can get
T is fuzzy bounded onl,(C). On the other
hand,

T: 1,(C) 3%® 1,(C) is one to one. Then
T 1:R(T) 3%® 1,(C) exists. Next, we show
that

R (T)={xI 1,(C) | x = (0OX1,X, ...)} is not
densein 1,(C). Todothis, let xI 1,(C)

such that x= (4,0,0, ...) and let t=0.3>0 and
{xn} be any sequence in rang(T), that is,
%= (0, X7, X5, ...).Since [|(0,X{ , X5, ...) -
(40,0, . )=l (-4, X{, X3, ...)

= (16 + |X{ P + [X5 +...)"2, for each n then
0.3<| (-4, X{, X3, ...) || for any choose for

X{,X5,.... Hence
N(x:- (4,0,0,...),0.3)=
N((-4,X{,X5,...),0.3)=0 for each n. So

lim N(xp-x,03)= 0. Thus for any
n® ¥

sequence {x,} in R (T) there exists t=0.3>0

such that lim N(x,-x ,0.3)= 0 so x not
n® ¥

belong to the closure of R (T). Hence R (T) is
not densein 1,(C). Then| =01 s(T).

Next, we give the definition of eigenspace
of linear operator in afuzzy normed space.

Definition (2.15):
Let (X,N) be a fuzzy normed space over

the field € where X1 {0} and T:X 384® X be
a linear operator and | T s,(T). The subspace
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of X consisting of 0 and all eigenvectors of T
corresponding to an eigenvalue | of T is sad
to be the eigenspace of T corresponding to that
eigenvalue | .

The following propositions shows that
S(T)=sp(T) and s(T) ist -closed for a linear
operator defined on a finite dimentiona
normed space.

Proposition (2.16):

Let (X,|.|) be afinite dimensional normed
gpace over the field € where X* {0} and
T:(X,N) 3%® (X,N) be a linear operator
where N be the fuzzy norm defined by eg.(2.1)
then s(T)=sp(T) and s(T) ist -closed where t
is the topology defined in remark (2.9) which
is induced by the fuzzy norm defined by
eq.(2.2).

Proof:

It is easy to check that the s(T) is
nonempty. Suppose | T s(T) and | | s,(T) that
is T-1 I:(X,N) 3%® (X,N) is one to one. On
the other hand, by [5] and the same last steps
in  proposition (26) one can Qet
R (T):(X,N) 3%4® (X,N) is fuzzy bounded on
X. This means that | T r(T) not I T s(T) and
this is a contradiction. Hence I 1 s,(T) and
S(T)=sp(T). Moreover from proposition (2.10)
one can prove s(T) is
t -closed.

Proposition (2.17):
Let (X, .|) be afinite dimensional normed
space over the field € where X1{0},

T:(X,N) 3%® (X,N) be a linear operator
where N be the fuzzy norm defined by eg.(2.2)
then s(T)=sy(T) and s(T) ist -closed wheret
is the topology defined in remark (2.9) which
is induced by the fuzzy norm defined by
eq.(2.2).
Proof:

It is easy to check that the spectrum of

T:(X,N) 3%® (X,N) is nonempty. Suppose
ITs(T) and Il sp(T) that is

T-11:(X,N) 3%® (X,N) is one to one. On the

other hand, R (T):(X,N) 38® (X,N) is fuzzy
bounded on X. This means that | T r (T) not
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ITs(T) and this is a contradiction. Hence
ITsy(T) and s(T)=sy(T). Moreover, s(T)
ist -closed follows from proposition (2.11).

The following propositions show that s(T)
nonempty and it is t -closed with respect to
fuzzy bounded linear operators defined on the
certain fuzzy normed spaces.

Proposition (2.18):

Let (X,[.[) be infinite dimensional
complete normed space over the field €, and
let T:(X,N)3%® (X,N) be fuzzy bounded
linear operator on X where N be the fuzzy
norm defined by eqg(2.1). Then is s(T)
nonempty and it is t -closed wheret is the

topology defined in remark (2.9) which is
induced by the fuzzy norm defined by eq.(2.2).

Proof:
By following the same first steps in
proposition (2.6) one can get T is bounded

linear operator on (X, .| ). Then the spectrum

of T is nonempty [5]. So there exists | belong
to spectrum of T. Then we have three cases.-
If | belong to the point spectrum of T, then
T-11:(X,[.|) 336® (X,|.[) is not one to one.
Hencel T sy(T).

If | belong to the continuous spectrum of

T then T-11:(X, | .||) 386® (X,|.[) is one to

one, R (T): (R (T1).|.|) %#a® (X,|.|)) is not
bounded and R (T,) isdensein X. ThenT-1I:
(X,N) 3%® (X,N) is one to one, by the
proof of propostion (2.6), R (T):(R
(T1),N) 3%® (X,N) is not fuzzy bounded and
by the proposition (2.1) one can prove, R (T))
isdensein X. Hence | T s¢(T).

If | belong to the residual spectrum of T then
T-11: (X, |) 3® x[.|)

isoneto one and R(T;) isnot densein X.

Then T-11: (X,N) 3%® (X,N) is one to one
and by proposition (2.1) one can get

R (T)) is not dense in X. Hence |1 s«(T).
Therefore s(T) with respect to N is nonempty.
Also s(T) ist -closed.



Proposition (2.19):

Let (X,[.[) be infinite dimensional
complete normed space over the fieldC and let
T:(X,N) 3%2® (X,N) be fuzzy bounded linear
operator on X, where N be the fuzzy norm
defined by eg.(2.2) and let. Then s(T) is
nonempty and it ist -closed wheret is the

topology defined in remark (2.9) which is
induced by the fuzzy norm defined by eq.(2.2).

Proof:
By following the same first steps in
proposition (2.7) one can get T is bounded

linear operator on (X, .| ). Then the spectrum
of T is nonempty [5]. So there exists | belong

to spectrum of T. Then we have three cases.-
If | belong to the point spectrum of T, then

T-11: (X,[.[|) 336® (X,|.]) isnot one to one.

Hencel T sy(T).
If | belong to the continuous spectrum of T
then

T-11: (X,[.]) %#® (X,[.]) is one to one,

R(M:R (T).[.|)%® X,|.[) is not
bounded and R(T,) isdensein X. Then T-1I:

(X,N) 3%® (X,N) is one to one, by the proof
of proposition (2.7), R (T):(R

(T1),N) 38® (X,N) is not fuzzy bounded and
by the proposition(2.2) one can prove, R (T|)
is dense in X. Hence | T s¢(T). If | belong to
the residual spectrum of T then

T-11: (X,|.]) 336® (X,].]) is one to one
and R (T;) is not dense in X. Then

T-11:(X,N) 3%® (X,N) is one to one and by
proposition (2.2) one an get

R (T)) is not dense in X. Hence |1 s(T).
Therefore s(T) is nonempty. Also s(T) is t -
closed.

Proposition (2.20):

Let (X,N) fuzzy normed space over the
field € where X* {0} satisfying the following
conditions
(1) For each a, O<a<l and for each

sequence{ Xn} in X satisfying the condition

lim N(Xwp-Xn,t)®a for each t>0,
n® ¥
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p=1.2,..., implies there exists xi X such
that for each t>0,

l[im N(x.- x,t)>a.
n® ¥

(2) For each t>0, N(x,t)>0 implies x=0.

(3) For x* 0, N(x,% is a continuous function of
A and drictly increasing on the subset
{t:0<N(x,t)<1} of A.

Let T:(X,N)3%® (X,N) is fuzzy bounded,
Then s(T) is nonempty.

Proof:

If T=1 or T=0 then s(T)*f*s(O) follows
from examples(2.14)(1). Suppose 11 T O and
s(T)=f. Then r (T)=C hence for each |1 C,

T-11:(X,N) 3%® (X,N) is one to one and by

proposition (2.8), R (T):(X,N) 384® (X,N) is
fuzzy bounded Then

(T-11): (X[ ],) %® (X,].],) is one

to one and R (T): (X, .[ ) #® (X,||.|,) is

a bounded linear operator for each al (0,1).
Then | belong to resolvent set of bounded
linear operator T defined on complete normed

space (X, .||a), for

each al (0,1). So the resolvent set of T with
respect to ||. |, is €, for eachal (0,1). Hence
the spectrum of T is empty with respect to
|.|l,, for each al(01) and this is
contradiction. So s(T)u*f.
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