Lie Ideals and Jordan q-Centralizers of Prime Rings

Abdulrahman H. Majeed^{*} and Mushreq I. Meften^{**} Department of Mathematic, College of Science, Baghdad University, Baghdad –Iraq. ^{*}E-mail: <u>ahmajeed6@yahoo.com</u>. ^{**}E-mail: <u>mushreq.meften@yahoo.com</u>.

Abstract

The main purpose of this paper is to extend the result of B.Zalar about centralizers to θ -centralizers on Lie ideals.

Keywords : Prime ring, left (right) centralizer, centralizer, Jordan centralizer , left (right) θ - centralizer, θ - centralizer, Jordan θ - centralizer.

Introduction

Throughout this paper, R will represent an associative ring with the center Z. For any $x,y \in R$, the symbol [x,y] will represent the commutator xy-yx , R is called prime if aRb = (0) implies a = 0 or b = 0 [6:p47], and semiprime if aRa = (0) implies a = 0 [12]. R is called 2-torsion free in case 2x=0, $x \in R$ implies x=0 [6:p47]. A mapping D: $R \rightarrow R$ is called derivation if D(xy) = D(x)y+xD(y)holds for all $x, y \in R$ [5]. A left (right) centralizer of R is an additive mapping T: $R \rightarrow R$ which satisfies T(xy) = T(x)y (T(xy) =xT(y) for all $x, y \in R$. A centralizer of R is an additive mapping which is both left and right centralizer[12]. If $a \in R$, then La(x) = ax is a left centralizer and Ra(x) = xa is a right centralizer[12].

A mapping D :R \rightarrow R is called (θ,θ) derivation if D(xy) = D(x) $\theta(y)$ + $\theta(x)D(y)$ holds for all x,y \in R[11]. A left (right) θ -centralizer of R is an additive mapping T: R \rightarrow R which satisfies T(xy) = T(x) $\theta(y)$ (T(xy) = $\theta(x)T(y)$) for all x,y \in R. A θ centralizer of R is an additive mapping which is both left and right θ -centralizer[4]. If $a \in$ R, then La(x) = $a\theta(x)$ is a left θ -centralizer and Ra(x) = $\theta(x)a$ is a right θ -centralizer[4].

A mapping D: $R \rightarrow R$ is called Jordan (θ , θ)-derivation if $D(x^2) = D(x)\theta(x) + \theta(x)D(x)$ holds for all $x \in R[11]$. A Jordan left (right) θ -centralizer of R is an additive mapping T: $R \rightarrow R$ which satisfies $T(x^2) = T(x)\theta(x)$ ($T(x^2) = \theta(x)T(x)$) for all $x \in R[4]$. A Jordan θ -centralizer of R is an additive mapping which is Jordan both left and right θ -centralizer [4].

If R is a ring with involution *, then every additive mapping E: $R \rightarrow R$ which satisfies $E(x^2) = E(x)x^* + xE(x)$ for all $x \in R$ is called Jordan *-derivation[12]. These mappings are closely connected with a question of representability of quadratic forms by bilinear forms. Some algebraic properties of Jordan *-derivations are considered in [2], where further references can be found. For quadratic forms see [10].

In [3] M. BreŠar and B. Zalar obtained a representation of Jordan *-derivations in terms of left and right centralizers on the algebra of compact operators on a Hilbert space. They arrived at a problem whether an additive mapping T which satisfies a weaker condition $T(x^2) = T(x)x$ is automatically a left centralizer. They proved in [3] that this is in fact so if R is a prime ring (generally without involution). In [12] B. Zalar generalized this result on semiprime rings. In [7] A.H.Majeed and H.A.Shaker extended the results of B.Zalar [12]. We generalized results of Zalar[12] and A.H.Majeed and H.A.Shaker [7] to left θ -centralizer in [8],[9].

An easy computation shows that every centralizer T is satisfies T(xoy)=T(x)oy=xoT(y). B.Zalar in [12] proved that every additive mapping T: $R \rightarrow R$ which satisfies T(xoy)=T(x)oy= xoT(y) of a semiprime ring is a centralizer.

An easy computation shows that every θ -centralizer T is satisfies T(xoy)=T(x) $\theta(y)$ = $\theta(x)\sigma(y)$. In [8] we proved that every additive mapping T:R \rightarrow R which satisfies T(xoy)=T(x)o θ (y)= θ (x)oT(y) is θ -centralizer.

In the present paper we generalize our results in [8] to lie ideal where R is 2-torsion free prime ring.

1. The First Result

To prove our first result, we need two lemmas which we now state.

<u>Lemma 1.1 [1]:</u>

If $U \not\subset Z$ is Lie ideal of a 2-torsion free prime ring R and a, b \in R such that $aUb = \{0\}$, then a=0 or b=0.

<u>Lemma 1.2 :</u>

Let R be 2-torsion free prime ring and U be a Lie ideal of R. Suppose that $A,B:R\times R \rightarrow R$ biadditive mappings. If A(x,y)w B(x,y) = 0 for all x, y, $w \in U$, then A(x,y) w B(u,v) = 0 for all x, y, u, v, $w \in U$.

Proof:

 $A(x,y) \le B(x,y) = 0$, for all $x,y,w \in U$

Replace x with x + u, we have

A(x + u, y)wB(x + u, y)=0 for all $x,y,w,u \in U$

 $A(x,y) \le B(u,y) = -A(u,y) \le B(x,y)$

We used the biadditivity of A and B

 $2^{4}(A(x,y) \le B(u,y)) \ge (A(x,y) \le B(u,y)) =$

 $-2^{4}A(u,y) \le B(u,y) \ge A(x,y) \le B(x,y) = 0$

 $2^{4}(A(x,y) \le B(u,y)) \ge (A(x,y) \le B(u,y)) = 0,$

for all x, y, u, z, $w \in U$ (*)

If $U \not\subset Z(R)$, by Lemma 1.1, we get

 $A(x,y) \le B(u,y) = 0$ for all x, y, u, $w \in U$

If U⊂Z(R), right multiplication of relation (*) by r z , where $r \in R$, we get

 $2^{4}A(x,y)wB(u,y)z r A(x,y)wB(u,y)z = 0$, for

all x, y,u,z,w \in U, r \in R

By primness of R, we have

 $2^{4}A(x,y)wB(u,y)z = 0$ for all x, y, u, z, w $\in U$

Right multiplication of the above relation by r, where $r \in R$, and since R is prime, we get

 $2^{2}A(x,y) \le B(u,y) = 0$ for all x, y, u, w $\in U$

Now, we replace y by y + v and obtain the assertion of the lemma with a similar approach as above.

<u> Theorem 1.3 :</u>

Let R be 2-torsion free prime ring, and U a square closed Lie ideal of R, θ ,T: R \rightarrow R are additive mappings, if $T(x^2) = T(x)\theta(x)$ ($T(x^2) =$ $\theta(x)T(x)$) for all $x \in U$, then $T(xy) = T(x)\theta(y)$ ($T(xy) = \theta(x)T(y)$) for all $x,y \in U$, where θ be surjective endomorphism of U, and $T(u) \in U$ for all $u \in U$.

Proof :

 $T(x^{2}) = T(x) \theta(x) \quad \text{ for all } x \in U \dots \dots \dots \dots (1)$

If we replace x by x + y, we get

 $T(xy+yx)=T(x)\theta(y)+T(y)\theta(x)$ for all $x,y \in U$

.....(2)

By replacing y with xy + yx and using (2), we arrive at

$$T(x(xy+yx)+(xy+yx)x)=T(x)\theta(xy)+2T(x)\theta(yx)$$
$$+T(y)\theta(x^{2}) \qquad (3)$$

But this can also be calculated in a different way.

Comparing (3) and (4), we obtain

 $T(xyx) = T(x) \theta(yx)$ for all $x, y \in U$ (5)

If we linearize (5), we get

 $T(xyz + zyx) = T(x) \theta(yz) + T(z) \theta(yx)$ for all

 $x, y \in U \dots \dots \dots (6)$

Now we shall compute $j = 2^4T(xyzyx + yxzxy)$ in two different ways. Using (5), we have

$j = 2^{2}$	T(x)	θ(yzyx)	+	2^{4}	T(y)	θ(xzxy)
for all $x, y, z \in U$ (7)						
Using (6), we have						
$j = 2^4 T(xy) \theta(zyx) + 2^4 T(yx) \theta(zxy) \dots$						
for all x	x,y,z∈U		•••••	•••••		(8)

Journal of Al-Nahrain University

Comparing (7) and (8) and introducing a biadditive mapping $B(x,y) = T(xy) - T(x) \theta(y)$, we arrive at

 $B(x,y) \theta(zyx) + B(y,x) \theta(zxy) = 0,$

for all
$$x, y, z \in U$$
(9)

Equality (2) can be rewritten in this notation as B(x, y) = -B(y, x). Using this fact and equality (9), we obtain

 $B(x,y)\theta(z)[\theta(x),\theta(y)]=0$, for all $x,y,z\in U$... (10)

Using Lemma 1.2, we have

$$B(x,y)\theta(z)[\theta(u),\theta(v)]=0,$$

for all $x, y, z, u, v \in U$ (11)

(i) If U is a non commutative Lie ideal

Using θ is onto and Lemma 1.1, we have

$$B(x,y) = 0 \qquad \qquad \text{for all } x,y \in U$$

(ii) If U is a commutative Lie ideal and $U \not\subset Z(R)$

Now, we shall compute $N = 2^4T(xyzyx)$ in two different ways. Using (5), we have

 $N=2^{4}T(x) \theta(yzyx) \text{ for all } x, y, z \in U \dots \dots (12)$

 $N=2^{4}T(xy) \theta(zxy)$ for all $x, y, z \in U$ (13)

Comparing (12) and (13), we arrive at

B(x,y) $\theta(z) \theta(yx) = 0$ for all x,y,z \in U (14)

Let $\Phi(x,y)=\theta(x)\theta(y)$, it's clear that Φ is a biadditive mapping, therefore

 $B(x, y) \theta(z) \Phi(y,x) = 0$, for all $x,y,z \in U$

Using θ is onto and Lemma 1.2, we have

B(x, y) $\theta(z) \Phi(u,v) = 0$, for all x,y,z,u,v $\in U$

Implies that

B(x,y) $\theta(z) \theta(uv) = 0$, or all x,y,z,u,v $\in U$

Using θ is onto, replacing $\theta(v)$ with 4B(x,y) $\theta(z)$, and Lemma 1.1, we have $B(x,y) \theta(z) = 0$, for all $x,y,z \in U$ (16)

Using θ is onto and Lemma 1.1, we have B(x,y) = 0, for all $x,y \in U$ (iii) If $U \subset Z(R)$ Right multiplication of relation (15) by r, where $r \in R$, and since R is prime, we get B(x,y) = 0 for all $x, y \in U$

If $T(x^2) = \theta(x)T(x)$, we obtain the assertion of the theorem with similar approach as above, the proof is complete.

2. The Second Result.

We again divide the proof in few lemmas.

Lemma 2.1:

Let R be 2-torsion free prime ring, U be a square closed Lie ideal of R, θ ,D: R \rightarrow R are additive mappings, such that $D(x^2) = D(x)\theta(x) + \theta(x)D(x)$ for all $x \in U$, and $a \in U$ some fixed element , where θ be surjective endomorphism of U

(i) D(x)D(y) = 0 for all x, y ∈ U implies D = 0.
(ii) aθ(x) - θ(x)a ∈ Z(U) for all x ∈ U implies a ∈ Z(U).

Proof:

(i)D(x) θ (y)D(x)=D(x)D(yx)-D(x)D(y) θ (x) = 0

If $U \not\subset Z(R)$, using θ is onto and Lemma 1.1.

we have D = 0 on U

If $U \subset Z(R)$, we get

 $D(x) \le D(y) = 0, \qquad \text{for all } x, y \in \ U \ , \ w \in \ R$

By primness of R we have D = 0 on U

(ii) Define $D(x) = a\theta(x) - \theta(x)a$. It is easy to see that D is a (θ, θ) -derivation. Since $D(x) \in Z(U)$, for all $x \in U$, we have $D(y)\theta(x) = \theta(x)D(y)$ and also $2D(yz)\theta(x) = 2\theta(x)D(yz)$.

Hence

$$D(y)\theta(zx)+\theta(y)D(z)\theta(x)=\theta(x)D(y)\theta(z)+$$

$$\theta(xy)D(z)$$

 $D(y)[\theta(z),\theta(x)] = D(z)[\theta(x),\theta(y)]$

Since θ is surjective take $a=\theta(z)$. Obviously D(z) = 0, so we obtain

 $0 = D(y)[a, \theta(x)] = D(y)D(x)$

From (i) we get D = 0 and hence $a \in Z(U)$.

Lemma 2.2 :

Let R be 2-torsion free prime ring, U be a square closed Lie ideal of R, θ ,T: R \rightarrow R are

additive mappings, and $a \in U$ some fixed element. If $T(x) = a\theta(x) + \theta(x)a$, and $T(xoy) = T(x)o\theta(y) = \theta(x)oT(y)$ for all x, $y \in U$, then $a \in Z(U)$, where θ be surjective endomorphism of U

Proof:

 $T(xy + yx) = T(x)\theta(y) + \theta(y)T(x)$

gives us

$$a\theta(xy) + a\theta(yx) + \theta(xy)a + \theta(yx)a = (a\theta(x) + \theta(yx)a) = (a\theta(x)) + \theta(yx)a = (a\theta(x)) + \theta(y$$

 $\theta(x)a)\theta(y) + \theta(y)(a\theta(x) + \theta(x)a)$

Implies that

 $a\theta(yx) + \theta(xy)a - \theta(x)a\theta(y) - \theta(y)a\theta(x) = 0$ $= (a\theta(y) - \theta(y)a) \theta(x) - \theta(x) (a\theta(y) - \theta(y)a)$

The second part of Lemma 2.1 (ii) gives us $a \in Z(U)$.

<u>Lemma 2.3:</u>

Let R be 2-torsion free prime ring, U be a square closed Lie ideal of R. θ ,T: R \rightarrow R are additive mappings, such that T(xoy) = T(x) $\theta(y) = \theta(x) \circ T(y)$, for all x, y \in U, then T(z) \in Z(U), for all z \in Z(U), where θ is a surjective endomorphism of U.

Proof:

Take any $c \in Z(U)$ and denote a = T(c).

 $2T(cx) = T(cx + xc) = T(c)\theta(x) + \theta(x)T(c) =$

 $a\theta(x) + \theta(x)a$

A straightforward verification shows that S(x)= 2T(cx) is satisfies $S(xoy) = S(x)o\theta(y) = \theta(x)oS(y)$ for all x, $y \in U$.

By Lemma 2.2, we have $T(c) \in Z(U)$.

Theorem 2.4:

Let R be 2-torsion free prime ring and U a square closed Lie ideal of R. and θ ,T: R \rightarrow R are additive mappings, such that $T(xoy) = T(x)o\theta(y) = \theta(x)oT(y)$ for all x, y \in U. Then $T(xy)=T(x)\theta(y) = \theta(x)T(y)$ for all x,y \in U, where θ be surjective endomorphism of U, $T(u) \in U$ for all $u \in U$, and $\theta(Z(U)) = Z(U)$

Proof :

$$2T(xy + yx) = 2T(x)\theta(y) + 2\theta(y)T(x) =$$

$$2\theta(x)T(y) + 2T(y)\theta(x) \dots (**)$$

If U is a commutative Lie ideal, we have

$$T(x^2) = T(x)\theta(x) = \theta(x)T(x)$$

If U is a non commutative Lie ideal

Replace y by 2xy + 2yx in (**), we get

$$4T(x) \theta(xy+yx) + 4\theta(xy+yx) T(x) =$$

 $4T(xy+yx) \theta(x) + 4\theta(x)T(xy+yx) = 4(T(x))$

$$\theta(y) + \theta(y)T(x))\theta(x) + 4\theta(x)(T(x)\theta(y) + \theta(y)T(x))$$

Now it follows that $[T(x),\theta(x)]\theta(y) = \theta(y)[T(x),\theta(x)]$ holds for all x, $y \in U$, but θ is surjective, then we get $[T(x), \theta(x)] \in Z(U)$ Next, we show that $[T(x),\theta(x)] = 0$ holds. Take

any $c \in Z(U)$

$$4T(cx) = 2T(cx + xc) = 2T(c)\theta(x) + 2\theta(x)T(c)$$

 $= 2T(x)\theta(c) + 2\theta(c)T(x)$

Using Lemma 2.3, we get

$$T(cx) = T(x)\theta(c) = T(c)\theta(x)$$

 $4[T(x),\theta(x)]\theta(c) = 4T(x)\theta(xc) - 4\theta(x)T(x)\theta(c)$

 $= 4T(c)\theta(x^2) - \theta(x)T(c)\theta(x) = 0$

Since $\theta(Z(U)) = Z(U)$, and $[T(x), \theta(x)] \in Z(U)$, by Lemma 2.1.2 we get our goal.

$$2T(x^2) = T(xx + xx) = T(x)\theta(x) + \theta(x)T(x) =$$

 $2T(x)\theta(x) = 2\theta(x)T(x)$

Theorem 1.3 now concludes the proof.

References

- [1] J.Bergen, I.N.Herstein and J.W.Ker, "Lie ideals and derivation of prime rings", J. Algebra 71, 1981, pp.259-267.
- [2] M. Bresar and J. Vukman, "On some additive mapping in rings with involution", Aequationes Math. 38, 1989, pp.178-185.
- [3] M. Bresar and B. Zalar, "On the structure of Jordan *-derivations", Colloquium Math., to appear.
- [4] M.N.Daif, M.S.Tammam El-Sayiad and N.M. Muthana, "An Identity on θ-Centralizers of Semiprime Rings", International mathematical forum, 3, 19, 2008, pp.937 – 944.
- [5] I.N.Herstein, "Jordan derivations in prime rings", Proc. Amer. Math. Soc., 8, 1957, pp.1104-1110.

- [6] I.N.Herstein, "Topics in ring theory", University of Chicago Press, 1969.
- [7] A.H.Majeed, and H.A.Shaker, "Some Results on Centralizers", Dirasat, Pure Sciences, 35,1, 2008, pp.23-26.
- [8] A.H.Majeed and M.I.Meften, "Jordan θ-Centralizers of Prime and Semiprime Rings", (preprint).
- [9] A.H.Majeed and M.I.Meften, "Some Results on θ -Centralizers". (preprint).
- [10] P.Šemrl, "Quadratic functionals and Jordan *-derivations", Studia Math.97, 1991, pp.157-165.
- [11] S.M.A.Zaidi, M.Ashraf and S.Ali, "On Jordan ideals and left (θ,θ) -derivation in prime rings", IJMMS, 37, 2004, pp.1957-1964.
- [12] B.Zalar, "On centralizers of semiprime rings", Comment. Math. Univ. Carolinae, 32, 4, 1991, pp.609-614.

الخلاصة

الهدف الرئيس من البحث هو توسيع نتائج بورت زلار حول التمركزات الى تمركزات θ على مثاليات لي.