Lie Ideals and Jordan θ-Centralizers of Prime Rings

Abdulrahman H. Majeed ${ }^{*}$ and Mushreq I. Meften ${ }^{* *}$
Department of Mathematic, College of Science, Baghdad University, Baghdad -Iraq.
*E-mail: ahmajeed6@yahoo.com.
${ }^{* *}$ E-mail: mushreq.meften@yahoo.com.

Abstract

The main purpose of this paper is to extend the result of B.Zalar about centralizers to θ-centralizers on Lie ideals.

Keywords : Prime ring, left (right) centralizer, centralizer, Jordan centralizer, left (right) θ centralizer, θ - centralizer, Jordan θ - centralizer.

Introduction

Throughout this paper, R will represent an associative ring with the center Z . For any $x, y \in R$, the symbol $[x, y]$ will represent the commutator $x y-y x, R$ is called prime if $\mathrm{aRb}=(0)$ implies $\mathrm{a}=0$ or $\mathrm{b}=0$ [6:p47], and semiprime if $\mathrm{aRa}=(0)$ implies $\mathrm{a}=0$ [12]. R is called 2-torsion free in case $2 x=0, x \in R$ implies $x=0$ [6:p47]. A mapping $D: R \rightarrow R$ is called derivation if $D(x y)=D(x) y+x D(y)$ holds for all $x, y \in R$ [5]. A left (right) centralizer of R is an additive mapping T : $R \rightarrow R$ which satisfies $T(x y)=T(x) y(T(x y)=$ $x T(y)$) for all $x, y \in R$. A centralizer of R is an additive mapping which is both left and right centralizer[12]. If $a \in R$, then $\operatorname{La}(x)=a x$ is a left centralizer and $\operatorname{Ra}(x)=x a$ is a right centralizer[12].

A mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is called (θ, θ) derivation if $D(x y)=D(x) \theta(y)+\theta(x) D(y)$ holds for all $x, y \in R[11]$. A left (right) θ-centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $T(x y)=T(x) \theta(y)$ $(T(x y)=\theta(x) T(y))$ for all $x, y \in R$. A θ centralizer of R is an additive mapping which is both left and right θ-centralizer[4]. If $a \in R$, then $\operatorname{La}(x)=a \theta(x)$ is a left θ-centralizer and $\operatorname{Ra}(\mathrm{x})=\theta(\mathrm{x})$ a is a right θ-centralizer[4].

A mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ is called Jordan (θ, θ)-derivation if $D\left(x^{2}\right)=D(x) \theta(x)+\theta(x) D(x)$ holds for all $x \in R[11]$. A Jordan left (right) θ-centralizer of R is an additive mapping $T: R \rightarrow R$ which satisfies $T\left(x^{2}\right)=T(x) \theta(x)$ $\left(T\left(x^{2}\right)=\theta(x) T(x)\right)$ for all $x \in R[4]$. A Jordan θ-centralizer of R is an additive mapping
which is Jordan both left and right θ-centralizer [4] .

If R is a ring with involution *, then every additive mapping $\mathrm{E}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $E\left(x^{2}\right)=E(x) x^{*}+x E(x)$ for all $x \in R$ is called Jordan ${ }^{*}$-derivation[12]. These mappings are closely connected with a question of representability of quadratic forms by bilinear forms. Some algebraic properties of Jordan *-derivations are considered in [2], where further references can be found. For quadratic forms see [10].

In [3] M. BreŠar and B. Zalar obtained a representation of Jordan *-derivations in terms of left and right centralizers on the algebra of compact operators on a Hilbert space. They arrived at a problem whether an additive mapping T which satisfies a weaker condition $T\left(x^{2}\right)=T(x) x$ is automatically a left centralizer. They proved in [3] that this is in fact so if R is a prime ring (generally without involution). In [12] B. Zalar generalized this result on semiprime rings. In [7] A.H.Majeed and H.A.Shaker extended the results of B.Zalar [12]. We generalized results of Zalar[12] and A.H.Majeed and H.A.Shaker [7] to left θ-centralizer in [8],[9].

An easy computation shows that every centralizer T is satisfies $T(x o y)=T(x) o y=$ xoT(y). B.Zalar in [12] proved that every additive mapping $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ which satisfies $T(x o y)=T(x) o y=x o T(y)$ of a semiprime ring is a centralizer.

An easy computation shows that every θ-centralizer T is satisfies $T(x o y)=T(x) o \theta(y)=$ $\theta(x) o T(y)$. In [8] we proved that every
additive mapping $T: R \rightarrow R$ which satisfies $T(x o y)=T(x) o \theta(y)=\theta(x) o T(y)$ is θ-centralizer.

In the present paper we generalize our results in [8] to lie ideal where R is 2 -torsion free prime ring.

1. The First Result

To prove our first result, we need two lemmas which we now state.

Lemma 1.1 [1]:

If $\mathrm{U} \not \subset \mathrm{Z}$ is Lie ideal of a 2-torsion free prime ring R and $a, b \in R$ such that $\mathrm{aUb}=\{0\}$, then $\mathrm{a}=0$ or $\mathrm{b}=0$.

Lemma 1.2 :

Let R be 2 -torsion free prime ring and U be a Lie ideal of R. Suppose that $\mathrm{A}, \mathrm{B}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ biadditive mappings. If $\mathrm{A}(\mathrm{x}, \mathrm{y}) \mathrm{w}$ $B(x, y)=0$ for all $x, y, w \in U$, then $A(x, y) w$ $B(u, v)=0$ for all $x, y, u, v, w \in U$.

Proof:

$A(x, y)$ w $B(x, y)=0, \quad$ for all $x, y, w \in U$
Replace x with $\mathrm{x}+\mathrm{u}$, we have
$\mathrm{A}(\mathrm{x}+\mathrm{u}, \mathrm{y}) \mathrm{wB}(\mathrm{x}+\mathrm{u}, \mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{w}, \mathrm{u} \in \mathrm{U}$

$$
A(x, y) w B(u, y)=-A(u, y) w B(x, y)
$$

We used the biadditivity of A and B
$2^{4}(\mathrm{~A}(\mathrm{x}, \mathrm{y})$ w B(u,y)) z $(\mathrm{A}(\mathrm{x}, \mathrm{y})$ w B(u,y)) $=$
$-2^{4} A(u, y)$ w $B(u, y) z A(x, y)$ w $B(x, y)=0$
$2^{4}(\mathrm{~A}(\mathrm{x}, \mathrm{y})$ w $\mathrm{B}(\mathrm{u}, \mathrm{y})) \mathrm{z}(\mathrm{A}(\mathrm{x}, \mathrm{y})$ w $\mathrm{B}(\mathrm{u}, \mathrm{y}))=0$,

$$
\text { for all } x, y, u, z, w \in U(*)
$$

If $\mathrm{U} \not \subset \mathrm{Z}(\mathrm{R})$, by Lemma 1.1, we get
$A(x, y) w B(u, y)=0$ for all $x, y, u, w \in U$
If $\mathrm{U} \subset \mathrm{Z}(\mathrm{R})$, right multiplication of relation (*) by $r z$, where $r \in R$, we get
$2^{4} A(x, y) w B(u, y) z r A(x, y) w B(u, y) z=0$, for all $x, y, u, z, w \in U, r \in R$

By primness of R, we have
$2^{4} \mathrm{~A}(\mathrm{x}, \mathrm{y}) \mathrm{wB}(\mathrm{u}, \mathrm{y}) \mathrm{z}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{z}, \mathrm{w} \in \mathrm{U}$
Right multiplication of the above relation by r, where $r \in R$, and since R is prime, we get
$2^{2} \mathrm{~A}(\mathrm{x}, \mathrm{y})$ w $\mathrm{B}(\mathrm{u}, \mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{w} \in \mathrm{U}$

Now, we replace y by $\mathrm{y}+\mathrm{v}$ and obtain the assertion of the lemma with a similar approach as above.

Theorem 1.3 :

Let R be 2-torsion free prime ring, and U a square closed Lie ideal of $R, \theta, T: R \rightarrow R$ are additive mappings, if $T\left(x^{2}\right)=T(x) \theta(x)\left(T\left(x^{2}\right)=\right.$ $\theta(x) T(x))$ for all $x \in U$, then $T(x y)=T(x) \theta(y)$ $(T(x y)=\theta(x) T(y))$ for all $x, y \in U$, where θ be surjective endomorphism of U, and $T(u) \in U$ for all $u \in U$.

Proof:

$T\left(x^{2}\right)=T(x) \theta(x) \quad$ for all $x \in U$
If we replace x by $x+y$, we get
$T(x y+y x)=T(x) \theta(y)+T(y) \theta(x)$ for all $x, y \in U$

By replacing y with $x y+y x$ and using (2), we arrive at

$$
\begin{array}{r}
\mathrm{T}(\mathrm{x}(\mathrm{xy}+\mathrm{yx})+(\mathrm{xy}+\mathrm{yx}) \mathrm{x})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{xy})+2 \mathrm{~T}(\mathrm{x}) \theta(\mathrm{yx}) \\
+\mathrm{T}(\mathrm{y}) \theta\left(\mathrm{x}^{2}\right) \quad \ldots \ldots . ~ \tag{3}
\end{array} \text { (} 3
$$

But this can also be calculated in a different way.

$$
\begin{array}{r}
\mathrm{T}\left(\mathrm{x}^{2} \mathrm{y}+\mathrm{yx} \mathrm{x}^{2}\right)+2 \mathrm{~T}(\mathrm{xyx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{xy})+\mathrm{T}(\mathrm{y}) \\
\theta\left(\mathrm{x}^{2}\right)+2 \mathrm{~T}(\mathrm{xyx}) \tag{4}
\end{array}
$$

Comparing (3) and (4), we obtain
$T(x y x)=T(x) \theta(y x) \quad$ for all $x, y \in U$
If we linearize (5), we get

$$
\begin{align*}
T(x y z+z y x) & =T(x) \theta(y z)+T(z) \theta(y x) \text { for all } \\
x, y & \in U \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . ~(6) ~ \tag{6}
\end{align*}
$$

Now we shall compute $\mathrm{j}=2^{4} \mathrm{~T}$ (xyzyx + yxzxy) in two different ways. Using (5), we have
$j=2^{4} T(x) \theta(y z y x)+2^{4} T(y) \theta(x z x y)$ for all $x, y, z \in U$
Using (6), we have
$j=2^{4} T(x y) \theta(z y x)+2^{4} T(y x) \theta(z x y)$ \qquad
for all $x, y, z \in U$

Comparing (7) and (8) and introducing a biadditive mapping $\mathrm{B}(\mathrm{x}, \mathrm{y})=\mathrm{T}(\mathrm{xy})-\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})$, we arrive at
$B(x, y) \theta(z y x)+B(y, x) \theta(z x y)=0$,

$$
\begin{equation*}
\text { for all } x, y, z \in U \tag{9}
\end{equation*}
$$

Equality (2) can be rewritten in this notation as $B(x, y)=-B(y, x)$. Using this fact and equality (9), we obtain
$B(x, y) \theta(z)[\theta(x), \theta(y)]=0$, for all $x, y, z \in U$
Using Lemma 1.2, we have
$B(\mathrm{x}, \mathrm{y}) \theta(\mathrm{z})[\theta(\mathrm{u}), \theta(\mathrm{v})]=0$,
for all $x, y, z, u, v \in U$
(i) If U is a non commutative Lie ideal

Using θ is onto and Lemma 1.1, we have

$$
B(x, y)=0 \quad \text { for all } x, y \in U
$$

(ii) If U is a commutative Lie ideal and $\mathrm{U} \not \subset \mathrm{Z}(\mathrm{R})$
Now, we shall compute $\mathrm{N}=2^{4} \mathrm{~T}$ (xyzyx) in two different ways. Using (5), we have
$N=2^{4} T(x) \theta$ (yzyx) for all $x, y, z \in U$
$N=2^{4} T(x y) \theta(z x y)$ for all $x, y, z \in U$
Comparing (12) and (13), we arrive at
$B(x, y) \theta(z) \theta(y x)=0$ for all $x, y, z \in U$
Let $\Phi(\mathrm{x}, \mathrm{y})=\theta(\mathrm{x}) \theta(\mathrm{y})$, it's clear that Φ is a biadditive mapping, therefore
$\mathrm{B}(\mathrm{x}, \mathrm{y}) \theta(\mathrm{z}) \Phi(\mathrm{y}, \mathrm{x})=0, \quad$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{U}$
Using θ is onto and Lemma 1.2, we have
$\mathrm{B}(\mathrm{x}, \mathrm{y}) \theta(\mathrm{z}) \Phi(\mathrm{u}, \mathrm{v})=0, \quad$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{U}$
Implies that
$B(x, y) \theta(z) \theta(u v)=0, \quad$ or all $x, y, z, u, v \in U$

Using θ is onto, replacing $\theta(\mathrm{v})$ with $4 \mathrm{~B}(\mathrm{x}, \mathrm{y})$ $\theta(\mathrm{z})$, and Lemma 1.1, we have
$B(x, y) \theta(z)=0, \quad$ for all $x, y, z \in U$
Using θ is onto and Lemma 1.1, we have $B(x, y)=0, \quad$ for all $x, y \in U$
(iii) If $\mathrm{U} \subset \mathrm{Z}(\mathrm{R})$

Right multiplication of relation (15) by r , where $r \in R$, and since R is prime, we get $B(x, y)=0$ for all $x, y \in U$

If $T\left(x^{2}\right)=\theta(x) T(x)$, we obtain the assertion of the theorem with similar approach as above , the proof is complete.

2. The Second Result.

We again divide the proof in few lemmas.

Lemma 2.1:

Let R be 2 -torsion free prime ring, U be a square closed Lie ideal of $R, \theta, D: R \rightarrow R$ are additive mappings, such that $D\left(x^{2}\right)=D(x) \theta(x)$ $+\theta(x) D(x)$ for all $x \in U$, and $a \in U$ some fixed element, where θ be surjective endomorphism of U
(i) $\mathrm{D}(\mathrm{x}) \mathrm{D}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ implies $\mathrm{D}=0$.
(ii) $a \theta(x)-\theta(x) a \in Z(U)$ for all $x \in U$ implies $a \in Z(U)$.

Proof:

(i) $\mathrm{D}(\mathrm{x}) \theta(\mathrm{y}) \mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \mathrm{D}(\mathrm{yx})-\mathrm{D}(\mathrm{x}) \mathrm{D}(\mathrm{y}) \theta(\mathrm{x})=0$

If $\mathrm{U} \not \subset \mathrm{Z}(\mathrm{R})$, using θ is onto and Lemma 1.1. we have $\mathrm{D}=0$ on U

If $U \subset Z(R)$, we get
$D(x) w D(y)=0, \quad$ for all $x, y \in U, w \in R$
By primness of R we have $D=0$ on U
(ii) Define $\mathrm{D}(\mathrm{x})=\mathrm{a} \theta(\mathrm{x})-\theta(\mathrm{x})$ a. It is easy to see that D is a (θ, θ)-derivation. Since $D(x)$ $\in Z(U)$, for all $x \in U$, we have $D(y) \theta(x)=$ $\theta(x) D(y)$ and also $2 D(y z) \theta(x)=$ $2 \theta(x) D(y z)$.
Hence
$D(y) \theta(z x)+\theta(y) D(z) \theta(x)=\theta(x) D(y) \theta(z)+$

$$
\theta(x y) D(z)
$$

$$
\mathrm{D}(\mathrm{y})[\theta(\mathrm{z}), \theta(\mathrm{x})]=\mathrm{D}(\mathrm{z})[\theta(\mathrm{x}), \theta(\mathrm{y})]
$$

Since θ is surjective take $a=\theta(z)$. Obviously $D(z)=0$, so we obtain

$$
0=\mathrm{D}(\mathrm{y})[\mathrm{a}, \theta(\mathrm{x})]=\mathrm{D}(\mathrm{y}) \mathrm{D}(\mathrm{x})
$$

From (i) we get $\mathrm{D}=0$ and hence $\mathrm{a} \in \mathrm{Z}(\mathrm{U})$.

Lemma 2.2 :

Let R be 2 -torsion free prime ring, U be a square closed Lie ideal of $R, \theta, T: R \rightarrow R$ are
additive mappings, and $a \in U$ some fixed element. If $T(x)=a \theta(x)+\theta(x) a$, and $T(x o y)=$ $T(x) o \theta(y)=\theta(x) o T(y)$ for all $x, y \in U$, then $\mathrm{a} \in \mathrm{Z}(\mathrm{U})$, where θ be surjective endomorphism of U

Proof:

$\mathrm{T}(\mathrm{xy}+\mathrm{yx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x})$
gives us

$$
\begin{gathered}
\mathrm{a} \theta(\mathrm{xy})+\mathrm{a} \theta(\mathrm{yx})+\theta(\mathrm{xy}) \mathrm{a}+\theta(\mathrm{yx}) \mathrm{a}=(\mathrm{a} \theta(\mathrm{x})+ \\
\theta(\mathrm{x}) \mathrm{a}) \theta(\mathrm{y})+\theta(\mathrm{y})(\mathrm{a} \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{a})
\end{gathered}
$$

Implies that

$$
\begin{aligned}
& a \theta(y x)+\theta(x y) a-\theta(x) a \theta(y)--\theta(y) a \theta(x)=0 \\
& =(a \theta(y)-\theta(y) a) \theta(x)-\theta(x)(a \theta(y)-\theta(y) a)
\end{aligned}
$$

The second part of Lemma 2.1 (ii) gives us $a \in Z(U)$.

Lemma 2.3:

Let R be 2-torsion free prime ring, U be a square closed Lie ideal of R. $\theta, \mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ are additive mappings, such that T (xoy) $=$ $T(x) o \theta(y)=\theta(x) o T(y)$, for all $x, y \in U$, then $T(z) \in Z(U)$, for all $z \in Z(U)$, where θ is a surjective endomorphism of U .

Proof:

Take any $\mathrm{c} \in \mathrm{Z}(\mathrm{U})$ and denote $\mathrm{a}=\mathrm{T}(\mathrm{c})$.
$2 \mathrm{~T}(\mathrm{cx})=\mathrm{T}(\mathrm{cx}+\mathrm{xc})=\mathrm{T}(\mathrm{c}) \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{c})=$ $\mathrm{a} \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{a}$

A straightforward verification shows that $S(x)$ $=2 T(c x)$ is satisfies $S(x o y)=S(x) o \theta(y)=$ $\theta(\mathrm{x}) \mathrm{oS}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.
By Lemma 2.2, we have $T(c) \in Z(U)$.

Theorem 2.4:

Let R be 2 -torsion free prime ring and U a square closed Lie ideal of R. and $\theta, \mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ are additive mappings, suth that $T(x o y)=T(x) o \theta(y)=\theta(x) o T(y)$ for all $x, y \in$ U. Then $T(x y)=T(x) \theta(y)=\theta(x) T(y)$ for all x, y $\in U$, where θ be surjective endomorphism of $\mathrm{U}, \mathrm{T}(\mathrm{u}) \in \mathrm{U}$ for all $\mathrm{u} \in \mathrm{U}$, and $\theta(\mathrm{Z}(\mathrm{U}))=\mathrm{Z}(\mathrm{U})$

Proof:

$2 \mathrm{~T}(\mathrm{xy}+\mathrm{yx})=2 \mathrm{~T}(\mathrm{x}) \theta(\mathrm{y})+2 \theta(\mathrm{y}) \mathrm{T}(\mathrm{x})=$ $2 \theta(x) T(y)+2 T(y) \theta(x)$

If U is a commutative Lie ideal, we have

$$
\mathrm{T}\left(\mathrm{x}^{2}\right)=\mathrm{T}(\mathrm{x}) \theta(\mathrm{x})=\theta(\mathrm{x}) \mathrm{T}(\mathrm{x})
$$

If U is a non commutative Lie ideal
Replace y by $2 \mathrm{xy}+2 \mathrm{yx}$ in $\left({ }^{* *}\right)$, we get
$4 T(x) \theta(x y+y x)+4 \theta(x y+y x) T(x)=$
$4 \mathrm{~T}(\mathrm{xy}+\mathrm{yx}) \theta(\mathrm{x})+4 \theta(\mathrm{x}) \mathrm{T}(\mathrm{xy}+\mathrm{yx})=4(\mathrm{~T}(\mathrm{x})$
$\theta(\mathrm{y})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x})) \theta(\mathrm{x})+4 \theta(\mathrm{x})(\mathrm{T}(\mathrm{x}) \theta(\mathrm{y})+\theta(\mathrm{y}) \mathrm{T}(\mathrm{x}))$
Now it follows that $[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{y})=$ $\theta(\mathrm{y})[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]$ holds for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$, but θ is surjective, then we get $[T(x), \theta(x)] \in Z(U)$
Next, we show that $[\mathrm{T}(\mathrm{x}), \theta(\mathrm{x})]=0$ holds. Take any $c \in Z(U)$

$$
\begin{gathered}
4 \mathrm{~T}(\mathrm{cx})=2 \mathrm{~T}(\mathrm{cx}+\mathrm{xc})=2 \mathrm{~T}(\mathrm{c}) \theta(\mathrm{x})+2 \theta(\mathrm{x}) \mathrm{T}(\mathrm{c}) \\
=2 \mathrm{~T}(\mathrm{x}) \theta(\mathrm{c})+2 \theta(\mathrm{c}) \mathrm{T}(\mathrm{x})
\end{gathered}
$$

Using Lemma 2.3, we get

$$
\begin{gathered}
\mathrm{T}(\mathrm{cx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{c})=\mathrm{T}(\mathrm{c}) \theta(\mathrm{x}) \\
4[\mathrm{~T}(\mathrm{x}), \theta(\mathrm{x})] \theta(\mathrm{c})=4 \mathrm{~T}(\mathrm{x}) \theta(\mathrm{xc})-4 \theta(\mathrm{x}) \mathrm{T}(\mathrm{x}) \theta(\mathrm{c}) \\
=4 \mathrm{~T}(\mathrm{c}) \theta\left(\mathrm{x}^{2}\right)-\theta(\mathrm{x}) \mathrm{T}(\mathrm{c}) \theta(\mathrm{x})=0
\end{gathered}
$$

Since $\theta(Z(U))=Z(U)$, and $[T(x), \theta(x)] \in$ $\mathrm{Z}(\mathrm{U})$, by Lemma 2.1.2 we get our goal .
$2 \mathrm{~T}\left(\mathrm{x}^{2}\right)=\mathrm{T}(\mathrm{xx}+\mathrm{xx})=\mathrm{T}(\mathrm{x}) \theta(\mathrm{x})+\theta(\mathrm{x}) \mathrm{T}(\mathrm{x})=$ $2 \mathrm{~T}(\mathrm{x}) \theta(\mathrm{x})=2 \theta(\mathrm{x}) \mathrm{T}(\mathrm{x})$

Theorem 1.3 now concludes the proof.

References

[1] J.Bergen, I.N.Herstein and J.W.Ker, "Lie ideals and derivation of prime rings", J. Algebra 71, 1981, pp.259-267.
[2] M. Bresar and J. Vukman, "On some additive mapping in rings with involution", Aequationes Math. 38, 1989, pp.178-185.
[3] M. Bresar and B. Zalar, "On the structure of Jordan *-derivations", Colloquium Math., to appear.
[4] M.N.Daif, M.S.Tammam El-Sayiad and N.M. Muthana, "An Identity on θ-Centralizers of Semiprime Rings", International mathematical forum, 3, 19, 2008, pp. 937 - 944.
[5] I.N.Herstein, "Jordan derivations in prime rings", Proc. Amer. Math. Soc.,8,1957, pp.1104-1110.
[6] I.N.Herstein, "Topics in ring theory", University of Chicago Press, 1969.
[7] A.H.Majeed, and H.A.Shaker, "Some Results on Centralizers", Dirasat, Pure Sciences, 35,1, 2008, pp.23-26.
[8] A.H.Majeed and M.I.Meften, "Jordan θ-Centralizers of Prime and Semiprime Rings", (preprint).
[9] A.H.Majeed and M.I.Meften, "Some Results on θ-Centralizers". (preprint).
[10] P.Šemrl, "Quadratic functionals and Jordan *-derivations", Studia Math.97, 1991, pp.157-165.
[11] S.M.A.Zaidi, M.Ashraf and S.Ali, "On Jordan ideals and left (θ, θ)-derivation in prime rings", IJMMS, 37, 2004, pp.19571964.
[12] B.Zalar, "On centralizers of semiprime rings', Comment. Math. Univ. Carolinae, 32, 4, 1991, pp.609-614.

الخلاصة

$$
\begin{aligned}
& \text { الهرف الرئيس من البحث هو نوسيع نتائج بورت زلار } \\
& \text { حول التمركزات الى تمركزات } \theta \text { على مثّاليات لي. }
\end{aligned}
$$

