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Abstract  

In this study consideration is given to the hydrodynamic characteristics of a buoyancy-driven 
convection loop containing an electrically-conducting fluid in a transverse magnetic field in  
one-dimensional model. We study three problems. In problem one, we analyze the unsteady flow in 
closed loop in which the right side is isothermal heated and the left side is isothermal cooled, while 
the top and bottom regions are insulated. In problems two and three, we analyze the steady and 
unsteady flow in closed loop in which the bottom region is isothermal heated and the top region is 
isothermal cooled, while the right and left sides are insulated regions.  

The Laplace transformation technique is used to solve problems one and three, while in problem 
two we found an analytical solution. 
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1. Introduction 

Magnetofluiddynamics (MFD), [1], is that 
branch of applied mathematics which deal 
with the flow of electrically conducting fluids 
in electric and magnetic fields. It unifies in a 
common framework the electromagnetic and 
fluid-dynamic theories to yield a description of 
the concurrent effects of the magnetic field on 
the flow and the flow on the magnetic field. 

There are many natural phenomena and 
engineering problems susceptible to 
magnetofluiddynamic (MFD) analysis. It is 
useful in astrophysics because much of the 
universe is filled with widely spaced, charged 
particles and permeated by magnetic fields, 
and so the continuum assumption becomes 
applicable. Again geophysicists encounter 
MFD phenomena in the interactions of 
conducting fluids,[3], and magnetic fields that 
are present in and around heavenly bodies. 
Engineers employ MFD principles in the 
design of heat exchangers, pumps, and flow 
meters; in solving space vehicle propulsion, 
control, and reentry problems; in designing 
communications and radar system; in creating 
novel power generating system; and in 
developing confinement schemes for 
controlled fusion. 

Laminar natural convection flow in closed 
loops has been studied by many investigators 
since it has considerable number of practical 
applications in the design of thermal energy 

systems including thermosyphonic solar 
applications and nuclear technologies. When a 
transverse magnetic field is applied to an 
electrically conducting fluid in the loop, 
convective hydrodynamic motion is damped 
and an electric current is induced. Such a 
system has two principal applications: the first 
is in energy systems or industrial processes 
that require control of flow destabilization or 
prohibition of motion: the second interest lies 
in the possible use of the system for electricity 
generation. 

In (1983) Hart [4] studied two-dimensional 
convection in a horizontal cavity, driven by 
differential heating of the two vertical end 
walls. In his paper, he describes the 
development of the unicellular flow and 
secondary instability of the unicell for shallow 
cavities filled with a low Prandtl number 
liquid. He shows that for prandtl numbers less 
than about 0.1, and aspect ratios less than the 
same value, parallel flow core will exist with 
approximately unit non-dimensional amplitude 
(a=1) up to the point (  ~800) where 
secondary vortices appear.  

 In (1986) Vives [7] studied the role of 
natural and damped during the thermally 
controlled solidification of tin and aluminum 
alloys in a toroidal mould. The damped 
convection was caused by a stationary and 
uniform magnetic field parallel to the gravity 
field. In his paper, Vives shows that the 
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evolution of the thermal phenomena with time 
(or with the position of the solidification front) 
and also their interactions on the crystal 
growth were examined, for various degrees of 
superheat, both in the absence and presence of 
an axial and a stationary magnetic field. 

N. Ghaddar in (1998) [2], studied the 
hydrodynamic characteristics of a buoyancy-
driven convection loop containing an 
electrically-conducting fluid in a transverse 
magnetic field analytically using a one-
dimensional model. One side of the loop is 
isothermally heated and the other side 
isothermally cooled, and the upper and lower 
sections are insulated. In her paper, the value 
of Prandtl number was taken from 0.003 to 7 
and the value of Reynolds number was taken 
from 10 to150. She concluded that the closed-
form solution of the flow velocity is used to 
predict the induced electric current of the 
system. And she found according to the 
solution there exist an optimal strength of the 
magnetic field that depends on the system flow 
and geometric parameters to maximize the 
induced electric current. 

In this paper we will consider three 
problems, the first one is the unsteady state of 
Ghaddar’s problem [2], the second and third 
are the steady and unsteady state respectively 
with the same loop as Fig. (1) with exception 
that the bottom part of the loop wall is 
isothermally heated to   , the top part 
isothermally cooled to    and the right and left 
side are insulated. 

 
2. Problems Statement 

A consideration is given to a loop 2L in 
height, an internal channel half width d. The 
upper and lower connecting portions of the 
vertical channel are semi-circular each of 
height  , see Fig.(1). The Boussinesg fluid 
contained in the loop is electrically conducting 
with an electrical conductivity σ, and a 
coefficient of thermal expansion  . The 
magnetic field B0 is applied perpendicular to 
gravity in the x-direction. The thermophysical 
properties of the fluid at a fixed temperature    are assumed to be constant except for the 
mass density ρ which is related to temperature 
according to  =    1 −  ( −   )  ................................(1) 

Assuming the channel width of the loop to 
be much smaller than its length 2L, i.e., 
2d < 2 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(1) The essential features of the 
thermosyphonic side-heated 

closed loop. 
 
In all three problems,    , was taken as the 

reference temperature, and we will write         
down the energy equation in term of the             
bulk temperature ,    , with this  
consideration equation (1) may be written as     =    1 −  (  −   ) . 

 

To simplify the coordinate system, circular 
ends at the top and bottom parts of the loop are 
considered to be straight and the origin of the 
y-axis placed at the top of the loop, parallel to 
the flow direction as it moves down with 
gravity along the cold side from 0 to +2L, and 
against gravity along the hot side from -2L to 
0, with motion being clockwise. 
 
3. Problem One 
In this problem, we study the unsteady state of 
Ghaddar’s problem [2], he study the steady 
state. Here, the left side of the loop wall is 
isothermally heated to    and the right side 
isothermally cooled to   . 
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3.1 The Continuity and Energy Equations 
The continuity and the energy equations 

will be written in terms of bulk temperature. 
Also, to simplify the problem, the following 
assumptions are made. 
1-The fluid velocity through the channel is 

constant and denoted by V . 
2-The fluid is incompressible i.e. ρ=constant. 

 

Using the assumptions mentioned above 
the continuity and energy equations for the 
problem under consideration can be written as V = constant ....................................................... (2) 

The energy equation for −2 + ≤  ≤ −  
and  ≤  ≤ 2 −             + V       = ℎ2 {  −   } +  V       ..................................................... (3) 

And for the regions − ≤  ≤   and 2 −  ≤  ≥ −2 +       V       =  V       ........................... (4) 
Where    is the bulk temperature,    is the 

loop wall temperature in the isothermal 
regions defined by:   =   for −2 +  ≤  ≤ −  ..................  (5 a)         =    for  ≤  ≤ 2 −    ....................  (5 b) 

By introducing the following new 
quantities: 

   =            ,  ∗ =    ,  ∗ =      

The dimensionless form of equations (3) 
and (4) can be written as:       ∗ +      ∗ +   =  +          .............. (6) 

 for −2 +  ≤  ≤ −  and for  + ≤  ≤ 2 −         ∗ +      ∗ +   =          ........................ (7) 
And the dimensionless form of the energy 
equations in the insulated region are      ∗ =          ........................................... (8) 

for –  ≤  ≤   and for 2 −  ≤  ≥                                                   −2 +          ∗ =          ........................................... (9) 
From which, by using the continuity 

condition, the boundary conditions that 
associated with the energy equations for the 
top and bottom regions are   ( ) =   (− ) + 2     (   )/    ........... (10)    (−2 +  ) =   (2 −  ) +     (   )/     

                               ...................................... (11) 
And the initial condition is given by 

    ( ∗,  ∗) = 0 at  ∗ = 0  .................... (12) 
Where m =         = Stanton number,  

Re =     
µ

 =Reynolds number,   =        = 

Hartmann number and   =      r  = Eckert 
number. 
 

3.2 Method of Solution 
The Laplace transformation technique,[6], 

is used to solve each of equations (6) and (7) 
and there analytic solution ,respectively, are   (  ∗ ,  ∗) = 

  −       ∗ +                            ∗  
−                            ∗ +         ∗ 
− 2 −  ∗  (     ∞

 =1+ ( −  ∗ +  ∗)  
−     ( +  ∗ −  ∗ ) )/(      (  )−      (  )   +(     (  ) +      (  ) )  ) +2    ∗  (     ( +  ∗ −  ∗ )  

      +     ( −  ∗ +  ∗ ) −      ( +  ∗ −  ∗ )  +     ( −  ∗ +   ∗) )/ (      (  ) +      (  )−      (  ) +      (  )  
 +(     (  ) −     (  ) −      (  ) −      (  ) )  ) −2     ∗  (     ( +  ∗ −  ∗)  

      +     ( −  ∗ +  ∗) −      ( + ∗ −  ∗)  +     ( −  ∗ +  ∗ ) )/ (      (  ) +     (  )−      (  ) +      (  )   +(     (  ) −     (  ) −      (  ) −      (  ) )  ) 

                               = 0,2,4 … .................................(13)  
 

       (   ∗,  ∗) =   −       ∗ + 

 1 −               −        (    ∗) − 

  1 +               −       (    ∗) +          ∗  
+       ∗ −     ∗ +  12  −  ∗ 
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− 2    ∗ ∑ (           ( −   −  ∗ +  ∗ )  −     ( +   +  ∗ −  ∗) )/(      (  )−      (  )   +(     (  ) +      (  ) )  ) +2    ∗  (      
     ( +   +  ∗ −  ∗ )  +     ( −   −  ∗ +  ∗) −      ( +  +  ∗ −  ∗)  +     ( −   −  ∗ +  ∗ ) )/ (      (  ) +      (  )−      (  ) +      (  )   +(     (  ) −     (  ) −      (  ) −      (  ) )  ) −2     ∗  (      
     ( +   +  ∗ −  ∗)  +     ( −   −  ∗ +  ∗) −      ( +  +  ∗ −  ∗)  +     ( −   −  ∗ +   ∗) )/ (      (  ) +      (  )−      (  ) +      (  )   +(     (  ) −     (  ) −      (  ) −      (  ) )  ) 

      = 0,2,4 …   .................................... (14) 

Where  =       (   )  ,  =    (     ),  =      ,  =        and   = 2(   ). 
 

4 Problem Two 
An analytical model of a side heated free 

convection loop place in a transverse magnetic 
field will be studied. In this problem, the 
bottom part of the loop wall is isothermally 
heated to    and the top part isothermally 
cooled to   . 
 

4.1 The Energy and Momentum Equations 
The continuity, energy and momentum 

equations for one dimensional are  V = constant (15) 
The energy equation for − ≤  ≤ +  and 2 −  ≤  ≥ −2 +    
     v       =    {  −   } +  v       . (16) 
And for the regions −2 +  ≤  ≤ −  and  ≤  ≤ 2 −       v       =  v         ....................... (17) 
The momentum equation for the problem 

under consideration is 
  0 = −     +   −  v    −      .............. (18)    is the loop wall temperature in the 

isothermal regions defined by: 
    =    for 2 −  ≤  ≥ −2 +    ...... (19 a) 
   =   for − ≤  ≤    .......................... (19 b) 

We can write down the energy equations 
(16) and (17) in non-dimensional form through 
using scaling and order of magnitude analysis. 
This can be done through introducing the 
following new quantities:   =            ,   ∗ =    

The substituting of these quantities into 
equations (16) and (17) gives the energy 
equations in dimensionless form and they are: 

        ∗ +    =  +          (20) 

for 2 −  ≤  ≥ −2 +   and for  − ≤  ≤ +       ∗ +   =          ............................... (21) 
And the dimensionless form of the           

energy equations for the insulated region, −2 +  ≤  ≤ − , is      ∗ =          .......................................... (22) 
and for  ≤  ≤ 2 −   is       ∗ =          .......................................... (23) 
From which, by using the continuity 

condition, the boundary conditions that 
associated with the energy equations for the 
right and left sides are   (− ) =   (−2 +  ) + 2     (    )/    

 ............................. (24)   (2 −  ) =   ( ) + 2     (    )/    
 ............................. (25) 

Where m , Re , Ha and Ec are same as in 
problem one. 
 

4.2 Method of Solution 
The governing equations for this problem 

are solved analytically.  
Equations (20) and (21) are linear 

differential equation of first order and their 
solutions, respectively, are   = 1 +       +            for  2 −  ≤  ≥ −2 +   ................... (26)  

   =       +            for − ≤  ≤ +   
 .........................................(27)  

Where the dimensionless parameter   is a 
form of Stanton number given by St=        =         . The other parameters in equations (26) 
and (27) are the Reynolds number based on the 
induced velocity,   =     ; the Nusselt 
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number,   =      ; the Prandtl number,   =   ; 
the Eckert number,   =      r  ; the 
temperature difference between hot and the 
cold side walls, r =   −   ; and the 
Hartmann number,   =         . Solution of 

equations (22) and (23) in the insulated 
sections give a linearly increasing bulk 
temperature due to Joulean heating in each 
segment. Therefore, the bulk temperature in 
those segments are given in equations 
(24)and(25). Using equations (24) and (25) 
one can find the constants   and   in 
equations, (26) and (27), these constants are  = [1 −       ][  (      ) −    (     )]− 

      (    )  [           (      )    (     )]  .................. (28)  =      +    (      ) + 2          (    )    
 ............................. (29) 

The momentum equation (18) which is   +  v    = −     +     ....................... (30) 
Since  =   (1 −  (  −   )), substitute 

the value of   into equation (30) we get   +  v    = −     +    −    (  −   )        
 ............................. (31) 

and using    r =   −      ................................. (32) 
Substituting from equation (32) into 

equation (30) we get    +  v    = −     +    −     r     
 ............................. (33) 

Integrated equation (33) around the loop 
we get ∫     +  v            = ∫  −     +    −         r        4    + 4 v     =    r [+ ∫     + ∫     +               ∫     −   ∫     − ∫              −∫           ] ........................................ (34)  
Where the pressure variations in the loop are 
only due to gravity. The negative and positive 
signs of the buoyant terms are related to 
gravity direction which is positive for the 
upward going flow and negative for the 

downward going flow. In each integral 
segment, the respective bulk temperature are 
used the isothermal region and insulated 
region. The flow in the channel is assumed 
fully developed and the solution of Hartmann 
[5] for MHD plane-Poiseuille flow with a 
transverse magnetic field is used to correlate 
the walls shear stress force to the mean flow 
velocity v  by:  = µ           (  )        (  )  ........................ (35) 

Using the value of   in equation (35) and 
evaluating the integral of the buoyancy term 
using the temperature distribution obtained in 
equations (26) and (27), reduces equation (34) 
to the following: 

  µ             (         ) + 4 V    =     r [                 +             

+            +            +   (  )       −   (  )           −2   (   )     ........................................................... (36) 

Equation (36) gives a correlation between 
the induced flow velocity v  and the other 
flow and geometric parameters in the system 
and can then be reduced to the following  
non-dimensional correlation: 

   =       [                 ]     { }        ................... (37) 

Where    is the Grashof number,    =   r     , the parameter   is defined as 

  = −           +            +         +        +       +       −    2   ........................................................... (38)   and   are the dimensionless terms defined in 
equations (28) and (29).  
 

5 Problem Three 
In this problem, we study the unsteady 

state of problem two. Where the bottom part of 
the loop wall is isothermally heated to    and 
the top part isothermally cooled to   . 
 

5.1 The Continuity and Energy Equations   
The continuity equation for one 

dimensional can be written as: V = constant  ...................................... (39) 
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The energy equation for 2 −  ≤  ≥−2 +   and − ≤  ≤ +            + v       =    {  −   } +  v       

................................ (40)  
And for the regions −2 +  ≤  ≤ −  and + ≤  ≤ 2 −    
       v       =  v        ..................... (41) 

in the above equations, we assume that the 
fluid is incompressible, i.e (ρ=constant), where    =  v      defined in problem one,    is the 
bulk temperature,    is the loop wall 
temperature in the isothermal regions defined 
by:   =   for 2 −  ≤  ≥ −2 +    ............. (42)   =    for − ≤  ≤ +    ....................... (43) 
 

5.2 Non-dimensional Form of Energy 
Equation 

We can write down the energy equation for 
both regions, the insulated and isothermal, 
with exception we will add the unsteady term 
and as follows       ∗ +      ∗ +   =  +         for  
      2 −  ≤  ≥ −2 +    .............................. (44) 

        ∗ +      ∗ +   =         for − ≤  ≤ +  ......................................... (45) 
and the dimensionless form of the energy 
equations for the insulated regions are 

      ∗ =         for −2 +  ≤  ≤ −   .......... (46) 

      ∗ =         for  ≤  ≤ 2 −    ............  (47) 
From which, by using the continuity 

condition, the boundary conditions that 
associated with the energy equations for the 
right and left sides are the same as in equations 
(24) and (25). And the initial condition is 
given by equation (12). 

 
5.3 Solution of Problem Three 

To solve this problem, the Laplace 
transformation is used on both side of the 
energy equation (44) and (45).It is found that 
there solution, respectively is given by 

   (   ∗ ,  ∗) =   −       ∗  

+                          ∗ −   (   )     ∗ −
                         ∗ + 

    ∗  (      
    ( ∗ −  ∗ −  )  +       ( ∗ −  ∗ +  )  

−      ( −  ∗ +  ∗ )   −     (( +  ∗ −  ∗ ) ))/ (      (  )−      (  )−     (  )−     (  )  
 +(     (  ) +      (  ) +      (  ) −     (  ))  ) (−     (( ∗ −   −  ∗ −  ) ) −       ( ∗ −   −  ∗ +  )   +      ( −  ∗ +   +  ∗)   +     (( +  ∗ −   −  ∗) ))/ (      (  )−      (  )−     (  )−     (  )   +(     (  ) +      (  ) +      (  ) −     (  ))  ) −    ∗  (      

   ( ∗ −  ∗ +  ) ) 

+      ( ∗ −  ∗ −  )  −       ( ∗ −   −  ∗ +  )   −     (( ∗ −   −  ∗ −  ) ))/ (      (  )−      (  )  
 +(     (  ) +      (  ) )  ) 

                 −     ∗ ∑ (          ( ∗ −  ∗ −  )   +      ( ∗ −  ∗ +  )  −      ( −  ∗ +  ∗ )   −     (( +  ∗ −  ∗ ) ))/((     (  ) −      (  ) −     (  ) −     (  ) )  +(     (  ) +      (  ) +      (  )−     (  ))  ) +  (+     (( ∗ −   −  ∗ −  ) ) +      (( ∗ −   −  ∗ +  ) ) −      ( −  ∗ +   +  ∗ )   −     (( +  ∗ −   −  ∗ ) ))/ (      (  )−      (  )−     (  )−     (  )   +(     (  ) +      (  ) +     (  )−     (  )) ) 

     = 1,2,3, …  ........................................................ (48) 
   (   ∗,  ∗) =   −       ∗ 

+  1 −            −         (    ∗) − 

2       −       1 +            −        (    ∗) 
−   2( −  )     ∗ +         ∗  
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+         ∗ −     ∗ − 

    ∗  (      
   ( ∗ +   −  ∗ +  )  +     ( ∗ +   −  ∗ −  ) −      ( ∗ +   −   −  ∗ +  )  −     ( ∗ +   −   −  ∗ −  ) )/ (      (  )−      (  )   +(     (  ) +      (  ) )  ) +    ∗ (      
    ( ∗ +   −  ∗ −  )   

+      ( ∗ +   −  ∗ +  )  −      ( −  ∗ −   +  ∗ )   −     (( +  ∗ +   −  ∗ ) ))/ (      (  )−      (  )−     (  )−     (  )  
 +(     (  ) +      (  ) +      (  ) −     (  ))  ) 

+(−     (( ∗ +   −   −  ∗ −  ) ) −      ( ∗ +   −   −  ∗ +  )   +      ( −  ∗ −   +   +  ∗)   +     (( +  ∗ +   −   −  ∗ ) ))/ (      (  )−      (  )−     (  )−     (  )   +(     (  ) +      (  ) +      (  ) −     (  ))  ) −     ∗ (      
    ( ∗ +   −  ∗ −  )   

+      ( ∗ +   −  ∗ +  )   −      ( −  ∗ −   +  ∗ )   −     (( +  ∗ +   −  ∗ ) ))/ (      (  )−      (  )−     (  )−     (  )   +(     (  ) +      (  ) +      (  ) −     (  ))  ) 

+(+     (( ∗ +   −   −  ∗ −  ) ) +      ( ∗ +   −   −  ∗ +  )   −      ( −  ∗ −   +   +  ∗ )   −     (( +  ∗ +   −   −  ∗ ) ))/ (      (  )−      (  )−     (  )−     (  )   +(     (  ) +      (  ) +      (  ) −     (  ))  ) 

    = 1,2,3, … ........................................... (49) 

Where =    (     ) ,  =       (    )   ,   = (   ),   = 2(    ),  =        and  =       . 
 

6. Results and Discussion (Problem One) 
In this section we will study the effect of 

the time, Reynolds and Prandtl numbers on the 
dimensionless bulk temperature distribution, 
equations (13) and (14), along the loop at 

  = 20,   = 2,   = 1.86,   = 1 and   = 0, as given by [2]. 
 

6.1 Effect of Time 
To study the effect of time (  ∗) on the 

temperature, we keep Reynolds and Prandtl 
numbers are fixed, while time is varied from 
π/6 to π. We will take Reynolds number is 
equal 50 and Prandtl number was set into 7, 
see Figs. (2-6).The following results were 
observed 
1-For the same points, we note that as  ∗ increases the bulk temperature   

increases. 
2-The bulk temperature varied between 

-0.015 to 0.02 as  ∗ increases. 
 

6.2 Effect of Reynolds Number 
To study the effect of Reynolds number on 

the temperature, we have set  ∗ is equal to π/3 
and Prandtl is equal to 1, while Reynolds is 
varied from 5 to 150, see Figs. (7-11). The 
following results were observed  
1-For the same points, as Reynolds number 

increases the bulk temperature  decreases. 
2-When Reynolds number,   ≤ 10, there  

exist a gradually translate in the bulk 
temperature. 

3-When Reynolds number,   > 10, we  note 
that the transition in the bulk temperature is 
more rapid from the case of    ≤ 10.  
(increasing in the curvature of the    
curve). 

 

6.3 Effect of Prandtl Number 
To study the effect of Prandtl number on 

the temperature, we have set  ∗ is equal to π/4 
and Reynolds number is equal to 50, while 
Prandtl number varied from 0.003 to 7, as 
shown in Figs. (3) and (12-16). The following 
results were observed  
1-For the same points, as Prandtl number 

increases the bulk temperature decreases. 
2-When Prandtl number,   < 0.05, there 

exist a sharper translate in the bulk 
temperature. 

3-When Prandtl number,0.05 <   < 1, there 
exist a gradually translate in the bulk 
temperature. 

4-When Prandtl number,   ≥ 1, the 
translation in the bulk temperature becomes 
faster. 
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7. Results and Discussion (Problem Two) 
 In this section, we will study the effect of 

the Reynolds and Prandtl numbers on the 
dimensionless bulk temperature distribution, 
equations (26) and (27), along the loop at   = 20,   = 2,   = 1.86,   = 1 and   = 0. Also, we find the effect of Reynolds 
and Prandtl numbers on the parameter  . 
7.1 Effect of Reynolds Number 

To study the effect of Reynolds number on 
the temperature, we keep Prandtl number fixed 
and is equal to 1, while Reynolds number 
varied from 10 to 150, see Figs. (17-21). The 
following results were observed 
1-For the same points, as Reynolds number 

increases the bulk temperature increases. 
2-When Reynolds number increases the range 

of the bulk temperature decreases. 
 

7.2 Effect of Prandtl Number  
To study the effect of Prandtl number on 

the temperature, we keep Reynolds number 
fixed and is equal to 50, while Prandtl number 
varied from 0.003 to 7, as shown in Figs. (22-
26). The following results were observed.  
1-For the same points, as Prandtl number 

increases the bulk temperature increases. 
2-When Prandtl number,   < 1, the bulk 

temperature between zero and one. 
3-When Prandtl number,   ≥ 1, the bulk 

temperature exceed the one by small  
amount. 

 

7.3 Effect of Reynolds and Prandtl 
Numbers on Parameter   
The effect of Reynolds and Prandtl 

numbers on the parameter  , equation,(37), is 
analyzed through plotting many cases for the 
parameter  , as shown in Figs. (27-30). The 
following results were noted. 
1-For all values of Reynolds and Prandtl  

numbers the parameter   is bounded below 
and goes to zero. 

2-For low to moderate Reynolds number and 
as Prandtl number increases the range of the 
parameter   decreases. 

 

8. Results and Discussion (Problem Three) 
In this section, we will study the effect of 

the time, Reynolds and Prandtl numbers on the 
dimensionless bulk temperature distribution, 
equations, (48) and (49), along the loop at 

  = 20,   = 2,   = 1.86,   = 1 and   = 0.  
 

8.1 Effect of Time  
To study the effect of time (  ∗) on the 

temperature, we keep Reynolds and Prandtl 
numbers are fixed, while time is varied from 
π/6 to π. We have set Reynolds number is 
equal to 50 and Prandtl number was set into 
0.1, as shown in Figs. (31-35). The following 
results were observed  
1-For the same points, we not that as  ∗  

increases the bulk temperature increases. 
2-Obviously from the graphs and since the 

slop of the vertical part from the curve is 
small then the change of the bulk 
temperature is small too. 

 

8.2 Effect of Reynolds Number 
To study the effect of Reynolds number on 

the temperature, we have set  ∗ equal to π/6 
and Prandtl number is equal to 1, while 
Reynolds number is varied from 10 to 150, see 
Figs. (36-40). The following results were 
observed.  
1-For the same points, as Reynolds number 

increases the bulk temperature increases. 
2-When Reynolds number increases, there 

exist a small change in the bulk 
temperature. 

 

8.3 Effect of Prandtl Number 
To study the effect of Prandtl number on 

the temperature, we have set  ∗ equal to π/3 
and Reynolds number is equal 50, while 
Prandtl number varied from 0.003 to 7, as 
shown in Figs. (41-44). The following results 
were observed.  
1-For the same points, as Prandtl number 

increases the change of the bulk temperature 
decreases, and the amount of the change is 
small, since there exist a small slop in the 
vertical part. 

 
Fig. (2) The dimensionless bulk temperature 

distribution,  ,along. 
the loop for  =   ,   =  ,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0  ∗=π/6. 
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Fig. (3) The dimensionless bulk temperature 

distribution,  ,along  
the loop for  =   ,   =  ,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0  ∗=π/4 .  

 
Fig. (4) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0& ∗=π/3. 

 
Fig. (5) The dimensionless bulk temperature 

distribution,  ,along  
the loop for  =   ,   =  ,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0  ∗=π/2. 

 
Fig. (6) The dimensionless bulk temperature 

distribution,  ,along the loop for  =   ,   =  ,Nu=1.86, 
Re=50,Pr=7,Ha=1,Ec=0 & ∗=π. 

 
Fig. (7) The dimensionless bulk temperature 

distribution,  ,along  
 the loop for  =   ,   =  ,Nu=1.86, Re=5,Pr=1,Ha=1,Ec=0,  ∗=π/3. 

 
 
 

Fig. (8) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=10,Pr=1,Ha=1, 

Ec=0,  ∗=π/3. 

 
 

Fig. (9) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=80,Pr=1,Ha=1,Ec=0,  ∗=π/3 

 
Fig.(10) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  , 
Nu=1.86,Re=130,Pr=1,Ha=1,Ec=0& ∗=π/3. 

 
Fig.(11)The dimensionless bulk temperature 

distribution,  ,along 
the loop  

for  =   ,   =  ,Nu=1.86,Re=150,Pr=1,Ha=1,Ec=0,  ∗=π/3. 

 
 

Fig.(12) The dimensionless bulk temperature distribution,  ,along  
theloop for  =   ,   =,Nu=1.86,Re=50, 

Pr=.003,Ha=1,Ec=0,  ∗=π/4. 
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Fig.(13) The dimensionless bulk temperature distribution,  ,along 
the loopfor  =   ,   =  ,Nu=1.86,Re=50, 

Pr=.05,Ha=1,Ec=0& ∗=π/4. 

 
 

Fig.(14)The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=50, 

Pr=.1,Ha=1,Ec=0& ∗=π/4. 

 
 

Fig.(15) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86, e=50, 

Pr=1,Ha=1,Ec=0& ∗=π/4. 

 
 

Fig.(16) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=50, 

Pr=5,Ha=1,Ec=0,  ∗=π/4. 

 
 

Fig.(17) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=10, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(18) The dimensionless bulk temperature distribution   ,along 
the loop for  =   ,   =  ,Nu=1.86, Re=30, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(19) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=80, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(20) The dimensionless bulk temperature 
distribution,  ,along  the loop for  =   ,   =  ,Nu=1.86, 

Re=130,Pr=1,Ha=1&Ec=0. 

 
 

Fig.(21) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86, Re=150, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(22) The dimensionless bulk temperature distribution,  ,along  
the loop for  =   ,   =  , Nu=1.86,Re=50,Pr=0.003, 

Ha=1&Ec=0. 
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Fig.(23) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  , Nu=1.86,Re=50 

,Pr=0.08,Ha=1&Ec=0. 

 
Fig.(24) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86, Re=50, 
Pr=1,Ha=1&Ec=0. 

 
 
 

Fig.(25) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86, Re=50, 

Pr=5,Ha=1&Ec=0. 

 
Fig.(26) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86,Re=50, 
Pr=7,Ha=1&Ec=0. 

 
 

Fig.(27) Aplot of the   parameter as a function of Grashof 
number for  =   ,   =  ,Nu=1.86,Ha=5, 

Ec=0 & Pr=0.003 . 

 
 

Fig.(28) Aplot of the   parameter as a function of Grashof number 
for   =   ,   =  ,Nu=1.86, 

Ha=5,Ec=0 & Pr=1. 

 
 

Fig.(29) Aplot of the   parameter as a function of Grashof 
number for   =   ,   =  ,Nu=1.86,Ha=5,Ec=0 & Pr=5. 

 
 

Fig.(30) Aplot of the   parameter as a function of Grashof number 
for   =   ,   =  ,Nu=1.86,Ha=5,Ec=0 & Pr=7. 

 

 
 

Fig.(31) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  , Nu=1.86,Re=50, 

 Pr=.1,Ha=1,Ec=0& ∗=π/6. 

 
Fig.(32) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86,Re=50, 
Pr=.1,Ha=1,Ec=0& ∗=π/4. 
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Fig.(33)The dimensionless bulk temperature distribution,  ,along  

the loop for  =   ,   =  , 
Nu=1.86,Re=50,Pr=.1,Ha=1,Ec=0& ∗=π/3. 

 
Fig.(34) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  , Nu=1.86,Re=50, 
Pr=.1,Ha=1,Ec=0& ∗=π/2. 

 
 

Fig.(35) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=50, 

Pr=0.1,Ha=1,Ec=0& ∗=π. 

 
Fig.(36) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  , 
Nu=1.86,Re=10,Pr=1,Ha=1,Ec=0& ∗=π/6. 

 
Fig.(37) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86,Re=50, 
Pr=1,Ha=1,Ec=0& ∗=π/6. 

 
Fig.(38) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86,Re=80, 
Pr=1,Ha=1,Ec=0& ∗=π/6. 

 
 

Fig.(39)The dimensionless bulk temperature distribution,  ,along 
the loopfor  =   ,   =  ,Nu=1.86,Re=130, 

Pr=1,Ha=1,Ec=0& ∗=π/6. 

 
 

Fig.(40) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  , Nu=1.86,Re=150, 

Pr=1,Ha=1,Ec=0& ∗=π/6. 

 
Fig.(41) The dimensionless bulk temperature distribution,  ,along 

the loopfor  =   ,   =  , 
Nu=1.86,Re=50,Pr=.003,Ha=1,Ec=0, ∗=π/3. 

 

 
 

Fig.(42) The dimensionless bulk temperature distribution,  ,along 
the loop for  =   ,   =  ,Nu=1.86,Re=50, 

Pr=.08,Ha=1,Ec=0,  ∗=π/3. 
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Fig.(43) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86,Re=50, 
Pr=1,Ha=1,Ec=0& ∗=π/3. 

 
Fig.(44) The dimensionless bulk temperature distribution,  ,along 

the loop for  =   ,   =  ,Nu=1.86,Re=50, 
Pr=7,Ha=1,Ec=0& ∗=π/3. 
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  الخلاصة
ِ  تقدم  حلقة مغلقه ممیزات هیدرودینامیكیه الدراسة هذه

◌ِ انتقال في كهربائیا موصل سائل على تحتوي  مجالِ
في :ثلاث مشاكل درسنا. واحد ذو بعد نموذج في مغناطیسي

المشكله الاولى درسنا الجریان اللامستقر في حلقه مغلقه 
حراریاً والجانب الأیسر متماثل  متماثل الأیمن وفیها الجانب

، بینما المناطق العلیا والسفلى معزوله في  في. البرودهِ
المستقر واللامستقر في  الجریان رسناد والثالثه الثانیه المشكلهِ 

 متماثله حراریاً والمنطقه السفلى المنطقه حلقه مغلقه وفیها
، في متماثله العلیا  ذو والأیسر بینما الجانب الأیمن البرودهِ

  .مناطق معزوله
 الاولى المشكلتین لحل لقد استخدمنا تحویلات لابلاس 

  .لتحلیلي إیجاد الحلتم  الثانیه والثالثه، بینما في المشكلهِ 
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