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Abstract 
Taketa shows that all monomial groups (commonly written as M-groups) are solvable. 

Gajendragadkar gives the notion of π-factorable character. We show that an irreducible character of 
an M-group is primitive if it is π-factorable. Issacs proves that product of two monomial characters 
is a monomial. We extend this fact to include any finite number of monomial characters 
consequently we prove that any product of finite number of M-groups is an M-group. We show that 
any group of order 45 is an M-group and for any group G, the factor group /G G ′  is an M-group. 
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1. Introduction 
The essential body of representation theory 

has been constructed by Richard Brauer (1901-
1977). His processors; Frobenius, Burnside 
and Schur, gave the grand task to which 
character theory could make a central 
contribution, that is, the complete 
classification of finite simple groups [1], [2], 
[13]. 

T.Okuyanta [12] proved that if G is an  
M-group and P is Sylow P-subgroup of G, 
then ( ) /GN P P  is an M-group. I.M.Issacs [7] 
shows that if H is a Hall subgroup of an  
M-group then ( ) /GN H H ′  is also and  
M-group. 

In studying monomial groups it is 
important to know as much as possible about 
the primitive characters of its subgroups, since 
that every character is induced from a 
primitive character [4]. 

The following are proved: 
 

• Any irreducible character of monomial 
group is primitive if it is π-factorable. 

• Any finite product of monomial 
characters is monomial. 

• The external direct product of n-copies of 
monomial groups is monomial. 

 

2. Characters and M-groups  
Character theory was developed by 

Frobenius in 1896. It provides a powerful tool 
for proving theorems about finite groups. No 
non-character theoretic description of the class 
of M-groups has been found. We use character 
techniques to gain more information and facts 
about M-groups. 

 

2.1 Definition [8]:  
Let χ be a character of G, then χ is 

monomial if Gχ λ=  where λ is a linear 
character of some subgroup of G. 

 
2.2 Definition [7]:  

Let G be any group, we denote by ( )Irr G  
for the set of all irreducible characters of G. 

 
2.3 Definition [8]: 

A group G is an M-group (monomial 
group) if every ( )Irr Gχ ∈  is monomial 
character.  

 
2.4 Theorem (Taketa) [1]:  

Every M-group is solvable 
 

2.5 Theorem [8]:  
Every nilpotent group is an M-group. 
 

2.6 Definition [2]:  
Let 1 2{ , ,..., }np p pπ =  be a non-empty set 

of primes a π-number is a positive integer 
whose prime divisors belong to π. An element 
of a group is called a  
π-element if its order is a π-number and if 
every element of a group is π-element, the 
group is called π-group. 

 
2.7 Remark: 

Let π be a set of primes define π' to be the 
complement primes of π, the π'-number is a 
positive integer whose prime divisors does not 
belong to π. An element of a group is called a 
π'–element if its order is a π'-number and if 
every element of a group is π'-element the 
group is called π'-group. 
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2.8 Definition [9]: 
Let G be a finite group and let π be a 

nonempty set of primes. Then G is said to be 
π-separable if it has normal series each factor 
of which is either a π-group or π'-group. 

 
2.9 Definition [7]:  

Let χ be a character of G and det χ = λ  be 
the uniquely defined linear character, write 

( ) ( )o oχ λ=  the order of λ  as an element of 
the group of linear characters of G is called the 
determinantal order of χ 

 
2.10 Definition [6]:  

Let ( )Irr Gχ ∈ , and let π  be a set of 
primes. Then χ is π-special, (π'-special) 
provided that χ (1) is a π-number (π'-number) 
and that for all subnormal subgroups 
S G<< and all irreducible constituents ө of 

Sχ , the determinantal order  O(ө) is a  
π –number, (π'-number).  

 
2.11 Definition [6]:  

Let ( )Irr Gχ ∈ , we say that χ is  
π-factorable if there exist , ( ) ,   Irr Gζ η ζ∈  is 
 -special π  and   is -special η π ′  such 
that  =χ ζη . 

 
2.12 Definition [8]: 

Irreducible characters whose restriction to 
every normal subgroup is homogeneous 
(multiples of an irreducible) are called  
quasi-primitive. 

 
2.13 Theorem [6]:  

Let G be a π-separable. Then every quasi-
primitive ( )Irr Gχ ∈  is π-factorable. 

 
2.14 Definition [8]:  

Let G be any group, , ( )N G Irr Nθ ∈<  
then θ  is called primitive if it cannot be 
obtained by inducing any character of proper 
subgroup. 

 
2.15 Proposition [6]:  

Let G be π-separable and let ( )Irr Gχ ∈ be 
primitive. Then χ factors as a product of 
primitive π-special and π'-special characters. 

 

2.16 Lemma[9]: 
Let G be any group, , ( )Irr Gξ η ∈  are 

monomial and ( )Irr Gχ ξη= ∈  then χ  is 
monomial. 

3 Main Results and Applications 
3.1 Definition [7]:  

If 
1

k

i i
i

nχ χ
=

= ∑ , then those iχ  with 0in f  

are called the irreducible constituent of χ  
3.1 Proposition:  

Let G be a π-separable group, ( )Irr Gχ ∈  
is quasi-primitive. Then the π-special and  
π'-special factors of χ are quasi-primitive. 

 
Proof:  

We can write χ ζη=  where ζ is π-special 
and η is π'-special. Let N G< and let 

andα β  be irreducible constituent of 

N Nandζ η respectively, then αβ  is irreducible 
and is a constituent of Nχ .Since χ is quasi-
primitive it follows that  αβ  is G-invariant 
and thus andα β  are G-invariant by the 
uniqueness of factorization. 

 
3.2 Theorem:  

Let G be an M-group. Then ( )Irr Gχ ∈  is 
primitive if it is π-factorable. 
 

Proof:  
Let ( )Irr Gχ ∈  be a primitive, since G is 

M-group then by theorem 2.4 G is solvable 
and hence π-separable.  Since χ is primitive it 
is quasi-primitive and by theorem 2.13 χ is  
π-factorable. 

 
3.3 Remark:  

Any finite product of monomial characters 
is monomial. 

 
3.4 Proposition:  

External direct product of n-copies of 
monomial group is monomial. 

 
Proof:  

Let iG be monomial group for each i, to 

show that 
1

n

i
i

G
=

∏  is monomial. Let 

1 1

( )
n n

i i
i i

Irr Gχ η
= =

= ∈∏ ∏  where i iGη ∈ , since 

iG  is monomial group for each i, by 
Definition 2.1 iη is monomial character for 
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each i, by Remark 3.3 
1

n

i
i

χ η
=

= ∏  is monomial 

therefore 
1

n

i
i

G
=

∏ is monomial group. 

 
3.5 Proposition: Any group of order 45 is an 

M-group. 
 

Proof:  
Let G be any group of order 45, since 

245 3 .5=  G has a 3-sylow subgroup H of order 
9 and a 5-sylow subgroup K of order 5. Let n 
is the number of the distinct conjugates of H, 
then n=1+3r ( 0)r ≥  and n divides 45 the  
only possibility is r=0 thus n=1 and hence 
 H is normal in G. Similarly K is normal  
in G, we have G=HK. Since 

45HK HK H K H K= ∩ = =  thus G 
isomorphic to H K× but H is abelian and K is 
cyclic [11] so G is abelian and hence it is 
nilpotent therefore by theorem 2.5 it is an  
M-group. 

 
3.6 Proposition: Let G be a group and let G' be 
the derived subgroup of G, then G/G' is an  
M-group. 
 
Proof:  

We know that G' is normal in G, let 
,x y G∈ then; 

1 1 1 1( )( ) [( ) ] ( )xG yG xyG xy x y yxG xyx y yxG yxG yGxG− − − −′ ′ ′ ′ ′ ′ ′ ′= = = = =
since 1 1( )xyx y G− − ′∈  thus G/G' is abelian and 
hence nilpotent ( in fact every abelian group is 
nilpotent group of class one) therefore it is M-
group by theorem 2.5. 

 
3.7 Proposition:  

The quotient group (2, ) / (2, )GL R SL R  is 
an M-group. 

 

Proof:  
We show that (2, )SL R  is the derived 

subgroup of (2, )GL R  and by using 
proposition 3.9 we are done. The mapping 

(2, )GL R →   defined by det( )x x→  is a 
homomorphism with kernel (2, )SL R , thus the 
special linear group is a normal subgroup 
and[ (2, )] (2, )GL R SL R′ ⊆ . 

Now, the following matrices are the 
generators of (2, )SL R : 

1 1 0 0
, , ,           (r,s,t , t 0)

0 1 1 0 1/
r t

s t
     

∈ ≠     
     

  

Where  
if (2, )

a b
SL R

c d
 

∈ 
 

 we have two cases; 

when  
0c ≠   

1 ( 1) / 1 0 1 ( 1) /
0 1 1 0 1

a b a c d c
c d c

− −     
=     

     
 

When 0c =  
0 1 /

0 1/ 0 1
a b a b a
c d a

    
=    

    
 

And the calculation below show that the 
generators of SL (2,R) are commutators 

1 1 0 1 1 0 1
0 1 0 1/ 2 0 1 0 2 0 1

r r r−      
=       

       
  

1 0 1 0 1 0 1 0 1 0
0 2 1 0 1/ 2 1 1s s s

         
=        −        

 

2

2 2 2

0 1 2 0 1 1/ 3 2/3
1 0 2 1 0 2/ 3 1/ 3

t t t t
t t t t

 −   
=     −    

0
1/

t
s t

 
 
 

 

And therefore we have:   
(2, ) [ (2, )]SL R GL R ′⊆  
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