On Some Properties of Maximal M-Open Sets

Murtadha Jaber Shnawa

Department of Mathematics, College of Science, Al-Mustansiriayah University.

Abstract

In this work we introduce maximal m-open set in minimal structure spaces and study some of their basic properties in these spaces.

1. Introduction

Recall that a subset U of a topological space X is said to be maximal open set if any open set which contains U is X or U. This concept is introduced by Nakaoka F. and Oda N. in [1]. Then they gave other equivalence definition for the maximal open set by lemma 2.2.1 [a subset U of a topological space X is maximal open set if any open set W, then $U \cup W = X$ or $W \subset U$]. Also if X is a non empty set, then by minimal structure space (X, m_X) (or m_X -space) means a collection m_X of subsets of X such that X, $\emptyset \in m_X$, members of m_x called m-open and their complements called m-closed and the m-closure (m-interior) of a subset A of X denoted by m-Cl(A) (m-Int(A)) is defined as: m-Cl(A) = \cap {U: U \in m_X , $A \subseteq U$ (m-Int(A) = \cup {U: $U \in m_X$, $U \subseteq A$) [2]. The aim this work is to give the concept of maximal m-open set. Some theorems and properties relative to this concept are introduced.

2. Maximal m-Open Sets

In this section we give the definition of maximal m-open subset of minimal structure space (X, m_X) . Throughout this section, we assume (X, m_X) to be minimal structure space.

Definition 2.1:

A proper nonempty m- open subset U of X is said to be a maximal m- open set if for any m-open subset W of X, then $U \cup W = X$ or $W \subseteq U$.

<u>Lemma 2.2:</u>

- (i) If a subset U of X is maximal m-open, then any m-open set which contains U is X or U.
- (ii) If U and V are maximal m-open sets, then either U = V or $U \cup V = X$.

Proof:

- (i) Suppose that there is an m-open set W of X such that U⊊W⊊X, then U∪W=W but U is maximal m-open, then U∪W=X so W=X which is a contradiction. Therefore any m-open which contains U is X or U.
- (ii) It follows directly from the Definition 2.1.■

<u>Remark:</u>

The converse of lemma 2.2.(i), is not true in general. For example if $X=\{1,2,3,4,5\}$ and $m_X=\{X,\emptyset,\{1,2,3\},\{4,5\},\{4\}\}$, then any m-open set which contains $\{1,2,3\}$ is X or $\{1,2,3\}$. But $\{1,2,3\}$ is not maximal m-open set.

Definition 2.3:

Let (X, m_X) be a minimal structure. A subset W of X is said to be an m-neighborhood of $x \in X$, if there exists $U \in m_X$ and $x \in U \subseteq W$.

Remark:

In above definition if also $W \in m_X$, then W is called m-open neighborhood.

Proposition 2.4:

Let U be a maximal m-open set. If x is an element of U, then for any m-open neighborhood W of x, $W \cup U=X$ or $W \subseteq U$.

Proof:

It follows from the fact that any m-open neighborhood is m-open.■

Theorem 2.5:

Let U, V, and W be maximal m-open sets such that $U \neq V$. If $U \cap V \subseteq W$, then U = W or V=W.

Proof:

Suppose neither that $U \neq W$ nor $V \neq W$. Since W is maximal m-open set then X–U and X–V are subsets of W and so $(X-U)\cup(X-V)=X-(U\cap V)\subseteq W$ but $U\cap V$ sets, $w\subseteq W$. Then we have W=X is a contradiction. Therefore U=W or V=W.

Theorem 2.6:

Let U, V, and W be maximal m-open which are different from each other. Then,

U∩V⊈U∩W. ∎

Proof:

The proof follows directly from Theorem 2.5. \blacksquare

Proposition 2.7:

Let U be a maximal m-open set and x an element of U. Then, $U = \bigcup \{W | W \text{ is an } m \text{-open neighborhood of } x \text{ such that } W \cup U \neq X \}.$

Proof:

It is follows from the fact that U is an m-open neighborhood of x, we have $U \subseteq \bigcup \{W | W \text{ is an m-open neighborhood of x}$ such that $W \cup U \neq X \}$.Since U is maximal m-open then $\bigcup \{W \mid W \text{ is an m-open neighborhood of x such that } W \cup U \neq X \} \subseteq U$. Therefore, we have the result.

3. m-Closure, m-Interior, and Maximal m-Open Sets

In this section we computation the closure of maximal m-open sets and the m-closure, the m-interior of other sets.

Theorem 3.1:

Let U be a maximal m-open set and x be an element of X–U. Then, X–U \subseteq W for any m-open neighborhood W of x.

Proof:

Suppose that $X-U \nsubseteq W$, for some m-open neighborhood W of x. Then $W \cup U \neq X$ which contradicts that U is maximal m-open. Therefore $X-U \subseteq W$.

Corollary 3.2:

Let U be a maximal m-open set. Then, following (i) or (ii) of the following holds:

- (i) For each x∈X−U and each m-open neighborhood W of x, W=X;
- (ii) There exists an m-open set W such that $X-U \subseteq W$ and $W \subsetneq X$.

Proof:

If (i) does not hold, then there exists an element x of X -U and an m- neighborhood W of x such that W \subseteq X. By Theorem 3.1, we have X-U \subseteq W.

Corollary 3.3:

Let U be a maximal m-open set. Then, following (i) or (ii) of the following holds:

- (i) For each $x \in X U$ and each m-open neighborhood W of x, we have $X - U \subsetneq W$.
- (ii) There exists an m-open set W such that $X-U=W \neq X$.

Proof:

Assume that (ii) does not hold. Assume that $x \in X - U$, then, by Theorem 3.1, we have $X - U \subsetneq W$ each m-open neighborhood W of x.

Theorem 3.4:

Let U be a maximal m-open set. Then, m-Cl(U) = X or m-Cl(U) = U.

Proof:

Since U is a maximal m-open set, then either one of the following cases (i) and (ii) occur by Corollary 3.3: (i) for each $x \in X-U$ and each m-open neighborhood W of x, we have $X-U \subsetneq W$. In this case let x be any element of X-U and W any m-open neighborhood of x. Since $X-U \ne W$, we have $W \cap U \ne \emptyset$ for any m-open neighborhood W of x. Hence, $X-U \sqsubseteq m$ -Cl(U).Since $X=U \cup (X-U)$ $\subseteq U \cup m$ -Cl(U) = m-Cl(U) $\subseteq X$, we have m-Cl(U)=X; (ii) If there exists an m-open set W such that $X-U=W \ne X$. X-U = W is an m-open set, then U is an m-closed set. Therefore, U=m-Cl(U).

Theorem 3.5:

Let U be a maximal m-open set. Then m-Int(X-U) = X - U or $m-Int(X-U) = \emptyset$.

Proof:

By Corollary 3.3, we have either (i) $m\text{-Int}(X-U) = \emptyset$ or (ii) m-Int(X-U) = X-U.

Theorem 3.6:

Let U be a maximal m-open set and S a nonempty subset of X-U. Then m-Cl(S) = X-U.

Proof:

Since $\emptyset \neq S \subset X-U$, we have $W \cap S \neq \emptyset$ for any element x of X–U and any m-open neighborhood W of x by Theorem 3.1. Then X–U \in m-Cl(S). Since X –U is an m-closed set and S \subset X –U, then m-Cl(S) \subset m-Cl(X –U) = X–U.

Corollary 3.7:

Let U be a maximal m-open set and M a subset of X with $U \subseteq M$. Then, m-Cl(M)=X.

Proof:

Since $U \subsetneq M \subset X$, there exists a nonempty subset S of X -U such that M = U \cup S. Hence, we have m-Cl(M) = m-Cl(S \cup U)=m-Cl(S) \cup m-Cl(U) \supset (X-U) \cup U = X by Theorem 3.6. Therefore, m-Cl(M)=X.

Corollary 3.8:

Let U be a maximal m-open set and assume that the subset X-U has at least two elements. Then, m-Cl($X-\{a\}$) = X for any element a of X-U.

Proof:

Since $U \subsetneq X - \{a\}$ by our assumption, we have the result by Corollary 3.7.

Theorem 3.9:

Let U be a maximal m-open set and N a proper subset of X with $U \subseteq N$. Then m-Int(N) = U.

Proof:

If N = U, then m-Int(N) = m- Int(U) = U. Otherwise N \neq U, and hence U \subsetneq N. It follows that U \subset m-Int(N). Since U is a maximal m-open set, we also m-Int(N) \subset U. Therefore, m-Int(N) = U.

Theorem 3.10:

Let U be a maximal m-open set and S a nonempty subset of X–U. Then X–m-Cl(S) = m-Int(X–S) = U.

Proof:

Since $U \subseteq X - S \subseteq X$ by our assumption, we have the result by Theorems 3.6 and Theorem 3.9.

Definition 3.11:

A subset M of a space (X, m_X) is called an m-preopen set if $M \subset$ m-Int (m-Cl(M)).

Theorem 3.12:

Let U be a maximal m-open set and M any subset of X with $U \subset M$. Then, M is a m-preopen set.

Proof:

If M = U, then M is an m-open set. Therefore, M is an m-preopen set. Otherwise,

U⊊M, then m-Int(m-Cl(M)) = m-Int(X) = $X \supset M$ by **Corollary 3.7**. Therefore, M is an m-preopen set.■

Corollary 3.13:

Let U be a maximal m-open set. Then, X-{a} is an m-preopen set for any element a of X-U.

Proof:

Since $U \subset X - \{a\}$ by our assumption, we have the result by Theorem 3.12.

4. Fundamental Properties of Radicals

In this section, we introduce the concept of radicals of maximal m-open sets and some of its properties.

Definition 4.1:

Let U_{λ} be a maximal m-open set for any element λ of Λ . Let $\mu = \{U_{\lambda} \mid \lambda \in \Lambda\}$, $\cap \mu = \cap \{U_{\lambda}: \lambda \in \Lambda\}$ is called the radical of μ . The intersection of all maximal ideals of a ring

is called the (Jacobson) radical of μ [3]. Following this terminology in the theory of rings, we use the terminology "radical" for the intersection of maximal m-open sets. The symbol $\Lambda \setminus \Gamma$ means difference of index sets; namely, $\Lambda \setminus \Gamma = \Lambda - \Gamma$, and the cardinality of a set Λ is denoted by $|\Lambda|$ in the following arguments.

Theorem 4.2:

Assume that $|\Lambda| \ge 2$. Let U_{λ} be a maximal m-open set for any element λ of Λ and $U_{\lambda} \ne U_{\mu}$ for any elements λ and μ of Λ with $\lambda \ne \mu$. (i) Let μ be any element of Λ . Then, $X = \bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} \subset U_{\mu}$. (ii) Let μ be any element of Λ . Then, $\bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} \ne \emptyset$.

Proof:

Let μ be any element of Λ . (i) Since $X-U_{\mu} \subset U_{\lambda}$ for any element λ of Λ with $\lambda \neq \mu$. Then, $X - U_{\mu} \subset \bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}$ Therefore, we have $X-\bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} \subset U_{\mu}$. (ii) If $\bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} = \emptyset$, we have $X = U_{\mu}$ by (i). This contradicts our assumption that U_{μ} is maximal m-open set. Therefore, we have $\bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} \neq \emptyset$.

Corollary 4.3:

Let U_{λ} be a maximal m-open set for any element λ of Λ and $U_{\lambda} \neq U_{\mu}$ for any elements λ and μ of Λ with $\lambda \neq \mu$. If $|\Lambda| \ge 3$, then $U_{\lambda} \cap U_{\mu} \neq \emptyset$ for any elements λ and μ of Λ with $\lambda \neq \mu$.

Proof:

By Theorem 4.2(ii), we have the result.■

Corollary 4.4:

(a decomposition theorem for maximal mopen set). Assume that $|\Lambda| \ge 2$. Let U_{λ} be a maximal m-open set for any element λ of Λ and $U_{\lambda} \ne U_{\mu}$ for any elements λ and μ of Λ with $\lambda \ne \mu$. Then, for any element μ of Λ , $U_{\mu} = (\bigcap_{\lambda \in \Lambda} U_{\lambda}) \cap (X - \bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda})$. *Proof:*

Let μ be an element of Λ . By Theorem 4.2 (1), we have:

$$\begin{split} &(\cap_{\lambda \in \Lambda} U_{\lambda}) \cup (X - \cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}) = ((\cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}) \cap U_{\mu}) \\ &\cup (X - \cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}) = ((\cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}) \cup (X - \cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda})) \cap (U_{\mu} \cup (X - \cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda})) = U_{\mu} \cup (X - \cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}) = U_{\mu}. \\ &U_{\lambda}) = U_{\mu}. \text{ Therefore, we have } U_{\mu} = (\cap_{\lambda \in \Lambda} U_{\lambda}) \cup (X - \cap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}). \\ \blacksquare \end{split}$$

Theorem 4.5:

Let U_{λ} be a maximal open set for any element λ of Λ and $U_{\lambda} \neq U_{\mu}$ for any elements λ and μ of Λ with $\lambda \neq \mu$. Assume that $|\Lambda| \ge 2$. Let μ be any element of Λ . Then, $\bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} \not\subset$ $U_{\mu} \not\subset \bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}$.

Proof:

Let μ be any element of Λ . If $\bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} \subset U_{\mu}$, then we see that $X=(X-\bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}) \cup \bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda} \subset U_{\mu}$ by Theorem 4.2(i). This contradicts our assumption. If $U_{\mu} \subset \bigcap_{\lambda \in \Lambda \setminus \{\mu\}} U_{\lambda}$, then we have $U_{\mu} \subset U_{\lambda}$, and hence $U_{\mu}=U_{\lambda}$ for any element λ of $\Lambda \setminus \{\mu\}$. This contradicts our assumption that $U_{\mu}\neq U_{\lambda}$ when $\lambda\neq\mu$.

Corollary 4.6:

Let U_{λ} be a maximal m-open set for any element λ of Λ and $U_{\lambda} \neq U_{\mu}$ for any elements λ and μ of Λ with $\lambda \neq \mu$. If Γ is a proper nonempty subset of Λ , then $\bigcap_{\lambda \in \Lambda \setminus \Gamma} U_{\lambda} \not\subset \bigcap_{\gamma \in \Gamma} U_{\gamma}$ $\not\subset \bigcap_{\lambda \in \Lambda \setminus \Gamma} U_{\lambda}$.

Proof:

Let γ be any element of Γ . We see $\bigcap_{\lambda \in \Lambda \setminus \Gamma} U_{\lambda} = \bigcap_{\lambda \in ((\Lambda \setminus \Gamma) \cup \{\gamma\}) \setminus \{\gamma\}} U_{\lambda} \not\subset U_{\gamma}$ by Theorem 4.5. Therefore we see $\bigcap_{\lambda \in \Lambda \setminus \Gamma} U_{\lambda} \not\subset \bigcap_{\gamma \in \Gamma} U_{\gamma}$. On the other hand, since $\bigcap_{\gamma \in \Gamma} U_{\gamma} = \bigcap_{\gamma \in \Lambda \setminus (\Lambda \setminus \Gamma)} U_{\gamma} \not\subset \bigcap_{\lambda \in \Lambda \setminus \Gamma} U_{\lambda}$, we have $\bigcap_{\gamma \in \Gamma} U_{\gamma} \not\subset \bigcap_{\lambda \in \Lambda \setminus \Gamma} U_{\lambda}$.

Theorem 4.7:

Let U_{λ} be a maximal m-open set for any element λ of Λ and $U_{\lambda} \neq U_{\mu}$ for any elements λ and μ of Λ with $\lambda \neq \mu$. If Γ is a proper nonempty subset of Λ , then $\bigcap_{\lambda \in \Lambda} U_{\lambda} \subsetneq \bigcap_{\gamma \in \Gamma} U_{\gamma}$. *Proof:*

By Corollary 4.6, we have $\bigcap_{\lambda \in \Lambda} U_{\lambda} = (\bigcap_{\lambda \in \Lambda \setminus \Gamma} U_{\lambda}) \cap (\bigcap_{\gamma \in \Gamma} U_{\gamma}) \subseteq \bigcap_{\gamma \in \Gamma} U_{\gamma}.\blacksquare$

Theorem 4.8:

Assume that $|\Lambda| \ge 2$. Let U_{λ} be a maximal m-open set for any element λ of Λ and $U_{\lambda} \ne U_{\mu}$ for any elements λ and μ of Λ with $\lambda \ne \mu$. If $\bigcap_{\lambda \in \Lambda} U_{\lambda} = \emptyset$, then $\{U_{\lambda} \mid \lambda \in \Lambda\}$ is the set of all maximal m-open sets of X.

Proof:

If there exists another maximal m-open set U_{ν} of X, which is not equal to U_{λ} for any element λ of Λ , then $\emptyset = \bigcap_{\lambda \in \Lambda} U_{\lambda} = \bigcap_{\lambda \in (\Lambda \in \{\nu\}) \setminus \{\nu\}} U_{\lambda}$. By Theorem 4.2(ii), we see $\bigcap_{\lambda \in (\Lambda \in \{\nu\}) \setminus \{\nu\}} U_{\lambda} \neq \emptyset$. This contradicts our assumption.

Proposition 4.9:

Let U_{λ} be a set for any element λ of Λ . If $m-Cl(\bigcap_{\lambda \in \Lambda} U_{\lambda}) = X$, then $m-Cl(U_{\lambda}) = X$ for any element λ of Λ .

Proof:

We see that $X = m\text{-}Cl(\bigcap_{\lambda \in \Lambda}U_{\lambda}) \subset m\text{-}Cl(U_{\lambda})$. It follows that $m\text{-}Cl(U_{\lambda}) = X$ for any element λ of Λ .

References

- [1] F.Nakaoka and N. Oda, *Some properties* of maximal open sets, Hindawi Publishing Corp., 2003:21, pp. 1331-1340.
- [2] V. Popa and T. Noiri, On the definitions of some generalized forms of continuity

under minimal conditions, Mem. Fac. Sci. Kochi Univ. Math Ser. 22, 2001, pp. 9–19.

[3] J. J. Rotman, An Introduction to Homological Algebra, Pure Applied Mathematics, vol. 85, Academic Press, New York, 1979.

الخلاصة

في هذا العمل نحن نقدم مفهوم المجموعة m- المفتوحة العظمى في فضاءات البنية الصغرى و ندرس بعض الخصائص الأساسية لهذه المجموعة في تلك الفضاءات.