PreCartan G-Space

Anmar Hashim Al-Sheikhly

Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad-Iraq. E-mail: anmarhj@yahoo.com.

Abstract

In this paper a preCartan G-space is our aim. Now we list the following some results that we have gotten: (i) a Cartan G-space is preCartan. (ii) We introduced some results on a net with a preopen set. (iii)We introduced this space (preCartan G-space) and give enough examples and theorems about it, where we study its properties, subspace, product, and the equivarianthomeomorphic image.

Keywords: Preopen, preclosed, preneighborhood, precluster, preconvergence, strongly preopen function, preCartan G-space.

Introduction

The first step of studying preopen set was done in 1984 [5]. The authors were defined a set A to be preopen if $A \subseteq \overline{A}^o$ and that the intersection of an open set and a preopen set is preopen.

The set of all preopen sets of a topological space X is denoted by PO(X), the complement of a preopen set is called The intersection of preclosed [5]. all preclosed sets containing A is called the preclosure of A, denoted by \overline{A}^p , which is the smallest preclosed set containing A [5], [11]. Preneighborhood is introduced in [7]. Preopen function is introduced in [4], where strongly preopen function is introduced in [6]. By occasion, the definitions of a precluster point of a net and a preconvergence net could be found in [8], [13]. The aim of this paper is to introduce another type of a Cartan G-space which we call apreCartan G-space.On the other hand, a Cartan G-space is introduced by Palais in [2]. The space in the sense of Palais is assumed to be a completely regular and a Hausdorff while G is a locally compact.

Preliminaries:

In this section, we recall the following theorems that we need:

Theorem 2.1 [3]:

- (i) A topological space X is T₂ if and only if every convergent net in X has a unique limit.
- (ii) A topological space X is compact if and only if each net in X has a cluster point.
- (iii) A net has y as cluster point if and only if it has a subnet which converges to y.

Theorem 2.2 [3]:

Let f be a function from a topological space X in to a topological space Y.

Then f is continuous at $x \in X$ if and only if whenever $x_{\alpha} \rightarrow x$ in X, then $f(x_{\alpha}) \rightarrow f(x)$

Theorem 2.3 [9]:

Let X be a topological space and $Y \subset X$. Then Y is open if and only if no net in X-Y can converge in a point in Y.

<u>Theorem 2.4 [12]:</u>

For each $x \in X$, the isotropy subgroup G_x at x is closed.

Theorem 2.5 [6]:

Let $(X_i)_{i \in I}$ be a family of topological spaces and $\emptyset \neq A_i \subseteq X_i$ for each $i \in I$. Then $\prod_{i \in I} A_i$ is preopen in $\prod_{i \in I} X_i$ if and only if A_i is preopen in X_i for each $i \in I$ and A_i is a non dense for only finitely many $i \in I$.

Theorem 2.6 [6]:

If U is a preopen subspace of a topological space X, and V is a preopen subset of $(U, \tau/U)$, then V is preopen in X.

Theorem 2.7 [10]:

A subset A of a topological space X is preclosed set if and only if $A = \overline{A}^p$.

Theorem 2.8 [13]:

Let X be a topological space and A \subset X, $x \in X$. Then $x \in \overline{A}^p$ if and only if there is a net $(x_{\alpha})_{\alpha \in A}$ in A such that $x_{\alpha} \overset{p}{\underset{\alpha \in A}{\longrightarrow}} x$.

PreCartan G-space:

A new G-space is introduced in this section which we call a preCartan G-space,

which is weaker than a Cartan G-space. But first we state and prove the following theorem.

Theorem 3.1:

Let $(x_{\alpha})_{\alpha \in A}$ be a net ina topological space X such that $x_{\alpha} \underset{\infty}{\infty} x, x \in X$ and let $A \in PO(X)$ such that $x \in A$. Then there exists a subnet $(x_{\alpha_{\mu}})$ in A of the net (x_{α}) such that $x_{\alpha_{\mu}} \rightarrow x$.

Let U be an open subset of X. Then $U \cap A$ is a preopen set such that $x \in U \cap A$.

 $(x_{\alpha})_{\alpha \in \Lambda}$ is frequently in U \cap A.Let

 $M = \{(\alpha, U \cap A) | \alpha \in \Lambda, U \text{ is an open subset} \\ of X, x \in U, and x_{\alpha} \in U \cap A\}.$

Suppose that M be ordered as follows:

 $(\alpha_1, U_1 \cap A) \leq (\alpha_2, U_2 \cap A)$ if and only if $\alpha_1 \leq \alpha_2$ and $U_1 \subseteq U_2$.

Clear that \leq is reflexive and transitive relations.

At the present time, let $(\alpha_1, U_1 \cap A)$ and $(\alpha_2, U_2 \cap A)$ be in M.

 $(U_1 \cap U_2) \cap A \in PO(X)$ and $x \in (U_1 \cap U_2) \cap A$ So (x_α) is frequently in $(U_1 \cap U_2) \cap A$.

Since Λ is a directed set and $\alpha_1, \alpha_2 \in \Lambda$, then there exists $\alpha'_3 \in \Lambda$ such that $\alpha_1 \leq \alpha'_3$ and $\alpha_2 \leq \alpha'_3$.

Therefore, there exists $\alpha_3 \in \Lambda$ such that $x_{\alpha_3} \in (U_1 \cap U_2) \cap A$ and $\alpha'_3 \leq \alpha_3$.

i.e. $(\alpha_3, (U_1 \cap U_2) \cap A) \in M$ such that $\alpha_1 \le \alpha_3, \alpha_2 \le \alpha_3$ and $U_1 \cap U_2 \subseteq U_1, U_1 \cap U_2 \subseteq U_2$. Hence $(\alpha_1, U_1 \cap A) \le (\alpha_3, (U_1 \cap U_2) \cap A)$ and $(\alpha_2, U_2 \cap A) \le (\alpha_3, (U_1 \cap U_2) \cap A)$

So M is a directed set.

Define g:M $\rightarrow \Lambda$ such that g(α , U $\cap A$) = α . To prove that *xog* satisfying a subnet conditions. Let (α_1 , U₁ $\cap A$) \leq (α_2 , U₂ $\cap A$). Then $\alpha_1 \leq \alpha_2$ i.e.g(α_1 , U₁ $\cap A$) \leq g(α_2 , U₂ $\cap A$). Let $\alpha \in \Lambda$.

On the other hand, since $X \cap A = A$ is a preopen subset of X which contains *x*, then there exists $\alpha' \in \Lambda$ such that $x_{\alpha} \in X \cap A$ and $\alpha \leq \alpha'$.

So $(\alpha', X \cap A) \in M$, such that:

 $\alpha \leq \alpha' = g(\alpha', X \cap A)$

Hence g defines a subnet of the net (x_{α}) . Now, let U_o be any open subset of X which contains *x*. Then $U_o \cap A$ is a preopen subset of X which contains *x*.

We could find $\alpha_0 \in \Lambda$ such that $x_{\alpha_0} \in U_0 \cap A$.

So $(\alpha_{o}, U_o \cap A) \in M$

Hence for each $(\alpha, U \cap A) \in M$ and $(\alpha_{o}, U_{o} \cap A) \leq (\alpha, U \cap A)$, we have $\alpha_{o} \leq \alpha$ and $U \subseteq U_{o}$.

So $x_{\alpha} \in U \subseteq U_{o}$.

This subnet is eventually in every neighborhood which contains *x*.

Hence it is converges to $x \in A$.

Definition 3.2:

A G-space X is called a preCartan G-space if every point of X has a thin preneighborhood.

Example 3.3:

(i) (R, +) with the usual topology is a locally compact topological group, and the set:

D={ $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\} \mid x \ge 0, y \ge 0$ } with the relative usual topology is a completely regular T₂ space.Let R acts on D as follows:

 $\pi: R \times D \rightarrow D$ such that $\pi(t, (x, y)) = (xe^{-t}, ye^{t})$ for each $t \in R$, $(x, y) \in D$. Clear that D is an R-space.

To show that D is a preCartan R-space.

Let $(x, y) \in D$ and $U = (x-\varepsilon, x+\varepsilon)$ be a

preneighborhood of x in

 $L = \{(x, 0) \in \mathbb{R}^2 \setminus \{(0, 0)\} \mid x \ge 0\},\$

where ε does not equal neither x nor -x. Let: W={(0, y) \in R^2 \{(0, 0)} | y \ge 0 }.

By theorem 2.5 we get that $U \times W$ is a preneighborhood of (x, y) in D.

Before we prove $((U \times W, U \times W))=((U, U))$, we need to show that W is an R-space and then we can continue solving the example.

(W, +) with the relative usual topology is a topological group which is locally compact but not compact and R with the usual topology is a completely regular T_2 space. Then R acts on W as follows:

 $\pi_1: R \times W \rightarrow W$, such that $\pi_1(t, y) = ye^t$ for each $y \in W$, $t \in R$. Clear that W is an R-space. Now to prove $((U \times W, U \times W)) = ((U, U))$.

 $g \in ((U, U)) \leftrightarrow gU \cap U \neq \emptyset \leftrightarrow (gU \cap U) \times W$ $\neq \emptyset \times W \leftrightarrow gU \times W \cap U \times W \neq \emptyset \leftrightarrow \text{ since by [8]}$ W is invariant $gU \times gW \cap U \times W \neq \emptyset \leftrightarrow g \in$ $((U \times W, U \times W)).$

Hence $((U \times W, U \times W)) = ((U, U)).$

Yet we have to show that ((U, U)) has a compact closure.

$$e^{-t_{1}}(x-\varepsilon) = x+\varepsilon \Rightarrow t_{1} = \ln ((x-\varepsilon)/(x+\varepsilon))$$

$$e^{-t_{2}}(x+\varepsilon) = x-\varepsilon \Rightarrow t_{2} = \ln (((x+\varepsilon)/(x-\varepsilon)))$$
If x >0, then t_{1} = -t_{2} and the set:
((U, U)) = {g \in G |gU \cap U \neq \emptyset} = (-t_{2}, t_{2}) has
a compact closure.

Hence D is a preCartan R-space.

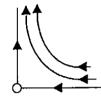


Fig. (I).

(ii) $(\mathbb{R}\setminus\{0\}, \cdot)$ with the usual topology is a locally compact non-compact topological group. Besides, \mathbb{R}^2 with the usual topology is a completely regular Hausdorff space.

Then $\mathbb{R} \setminus \{0\}$ acts on \mathbb{R}^2 as follows:

 $\pi: \mathbb{R} \backslash \{0\} \times \mathbb{R}^2 {\rightarrow} \mathbb{R}^2$

is defined by:

 π (r, (x, y)) = (rx, ry)

for each $r \in \mathbb{R} \setminus \{0\}$ and $(x, y) \in \mathbb{R}^2$. Clear that \mathbb{R}^2 is $\mathbb{R} \setminus \{0\}$ -space.

But R^2 is not preCartan $R \setminus \{0\}$ -space, since

 $(0, 0) \in \mathbb{R}^2$ has no thin preneighborhood since for any preneighborhood U of (0, 0) the set $((U, U)) = \mathbb{R} \setminus \{0\}$ is not relatively compact in $\mathbb{R} \setminus \{0\}$.

Proposition 3.4:

A Cartan G-space is preCartan. *Proof:*

Clear.

Proposition 3.5:

If X is a preCartan G-space, then: a) Each orbit of X is preclosed.

b) For each $x \in X$ the isotropy subgroup G_x at x is compact.

Proof:a)

Let X be a preCartan G-space to prove that Gx is preclosed in X (i.e., $Gx = \overline{Gx}^{p}$), we have to show that $\overline{Gx}^{p} \subseteq Gx$.

Let $y \in \overline{Gx}^{p}$. Then by 2.8, there is a net $(g_{\alpha}x)$ in Gx such that $g_{\alpha}x \xrightarrow{p}_{\infty} y$.

Since X is preCartan, then there exists U a thin preneighborhood of y.

By 3.1, there is a subnet $(g_{\alpha}{}_{\mu} x)$ of the net $(g_{\alpha}x)$ in U such that $g_{\alpha}{}_{\mu} x \rightarrow y$.

Fixing α_o , then $(g_{\alpha\mu} g_{\alpha\rho}^{-1})(g_{\alpha\rho} x) = g_{\alpha\mu} x$. To prove $g_{\alpha_{\mu}} g_{\alpha_{\rho}}^{-1} \in ((U, U)).$ Because (g_{α}, x) is in U, then so is (g_{α}, x) . Hence $(g_{\alpha_{\mu}} g_{\alpha_{\rho}}^{-1})(g_{\alpha_{\rho}} x)$ lies in $(g_{\alpha_{\mu}} g_{\alpha_{\rho}}^{-1})$ U. i.e., $U \cap (g_{\alpha} g_{\alpha}^{-1}) U \neq \emptyset$. Then $g_{\alpha_{\mu}} g_{\alpha_{\rho}}^{-1} \in ((U, U)).$ Since ((U, U)) is relatively compact, then by 2.1(ii), $(g_{\alpha \mu} g_{\alpha \rho}^{-1})$ has a cluster point say g∈G. Hence by 2.1(iii), we get that $(g_{\alpha_{\mu}} g_{\alpha_{\rho}}^{-1})$ has a subnet which converges to g. So $g_{\alpha_{\mu}} g_{\alpha_{\rho}}^{-1} \rightarrow g$, then $g_{\alpha_{\mu}} \rightarrow gg_{\alpha_{\rho}}$. By 2.2, we get that $g_{\alpha_{\mu}} x \to g g_{\alpha_{\rho}} x$. Since X is T_2 , then by 2.1(i) we have $y = g g_{a_0} x \in Gx.$

Hence $\overline{Gx}^p \subseteq Gx$.

But we have $Gx \subseteq \overline{Gx}^p$.

Therefore $Gx = \overline{Gx}^{p}$. So by 2.7 we get that Gx is preclosed in X.

b) Let $x \in X$.

Since X preCartan, then there exists U a thin preneighborhood of x.

The next step is to show that $G_x \subseteq ((U, U))$. Let $g \in G_x$ then gx = x which leads to $gU \cap U \neq \emptyset$.

Then $g \in ((U, U))$. Hence $G_x \subseteq ((U, U))$ which is relatively compact and by 2.4 we get that G_x is closed in G. Then G_x is compact.

Proposition 3.6:

If X is a preCartan G-space and $x \in X$, then $g \rightarrow gx$ is a preopen map of G onto Gx.

Proof:

Let U be a preopen subset of G.

To prove that Ux is preopen in Gx. (i.e. (G-U)x is preclosed in Gx).

Let $y \in \overline{(G-U)x}^{p}$. Then by 2.8, there is a net $(g_{\alpha}x)$ in (G-U)x such that $g_{\alpha}x \xrightarrow{p} y$. Since X is preCartan, then there exists V a thin preneighborhood of y.

By 3.1, there is a subnet $(g_{\alpha}{}_{\mu} x)$ of the net $(g_{\alpha}x)$ in V such that $g_{\alpha}{}_{\mu} x \rightarrow y$. Fixing α_{o} , then $(g_{\alpha}{}_{\mu} g_{a}{}^{-1}{}_{o})(g_{\alpha}{}_{o} x)=g_{\alpha}{}_{\mu} x$. As in the proof of 2.4(a), then $g_{\alpha}{}_{\mu} g_{a}{}^{-1} \in ((V, V))$. Since ((V, V)) is relatively compact, then by 2.1(ii), $(g_{\alpha}{}_{\mu} g_{a}{}^{-1}{}_{o})$ has a cluster point say g. Hence by 2.1(iii), $(g_{\alpha}{}_{\mu} g_{a}{}^{-1}{}_{o})$ has a subnet which converges to g. So $g_{\alpha}{}_{\mu} g_{a}{}^{-1}{}_{o} \rightarrow g$, then $g_{\alpha}{}_{\mu} \rightarrow gg_{\alpha}{}_{o}$ and by 2.2, we get $g_{\alpha}{}_{\mu} x \rightarrow gg_{\alpha}{}_{o} x$. Since U is open and $g_{\alpha}{}_{\mu} \notin U$, then by 2.3, we have $gg_{\alpha}{}_{o} \in G$ -U.

Since X is T₂, then by 2.1(i), we have y = gg $a_0 x \in (G-U)x$.

Hence $\overline{(G-U)x}^p \subseteq (G-U)x$.

But we have $(G - U)x \subseteq \overline{(G - U)x}^p$.

Therefore $(G-U)x = \overline{(G-U)x}^p$. Then by 2.7, we get that (G-U)x is preclosed. Hence Ux is preopen in Gx.

Theorem 3.7:

Let X and Y be G-spaces and let $\lambda: X \rightarrow Y$ be an onto, strongly preopen and equivariant function. If X is a semi Cartan G-space, then so is Y.

Proof:

Let $y \in Y$. Since λ is onto, then there exists $x \in X$ such that $\lambda(x) = y$.

Since X is a preCartan G-space and $x \in X$, then x has U as a thin preneighborhood.

Since λ is strongly preopen, then $\lambda(U)$ is a preneighborhood of y. To show that $\lambda(U)$ is thin we have to prove that $((U, U)) = ((\lambda(U), \lambda(U)))$.

 $g \in ((U, U)) \leftrightarrow gU \cap U \neq \emptyset \leftrightarrow \lambda (gU \cap U)$

 $\neq \emptyset \leftrightarrow$ since λ is onto λ (gU) $\cap \lambda$ (U) $\neq \emptyset \leftrightarrow$ since λ is equivariant $g\lambda(U) \cap \lambda$ (U) $\neq \emptyset \leftrightarrow g \in$ (($\lambda(U), \lambda(U)$)). Hence:

 $((\mathbf{U},\mathbf{U}))=((\lambda(\mathbf{U}),\lambda(\mathbf{U}))).$

Because ((U, U)) is relatively compact, then so is ((λ (U), λ (U))).Hence Y is a preCartan G-space.

Proposition 3.8:

If X is a preCartan G-space, H is a closed subgroup of G and Y is an preopen subspace of X which is an H-invariant subspace of X, then Y is a preCartan H-space.

Proof:

By [1] (H,Y) is a topological transformation group. Since Y is a subspace of X and X is a completely regular Hausdorff space, then so is Y. Since G is locally compact and H is a closed subgroup of G, then by [9] H is locally compact.

Hence Y is an H-space.

At the present time we are going to prove that Y is preCartan. Let $y \in Y$. Then $y \in X$.

Since X is a preCartan G-space then y has U as a thin preneighborhood in X. Let $U'=U \cap Y$. Since Y is a preopen subspace of X, then by 2.6 we get that U' is a preneighborhood of y in Y.

So by [2] U' is a thin preneighborhood of y in Y.

Hence Y is a preCartan H-space.

Proposition 3.9:

Let X and Y be G-spaces. Then $X \times Y$ is a preCartan G-space if at least one of X or Y is preCartan.

Proof:

At first we shall show that $X \times Y$ is a G-space.

Since X is a G-space, then G acts on X by $\pi_1:G \times X \rightarrow X$ such that π_1 (g, x) = gx for each $g \in G$ and $x \in X$. Since Y is a G-space, then G acts on Y by $\pi_2:G \times Y \rightarrow Y$ such that π_2 (g, y) = gy for each $g \in G$ and $y \in Y$.

Define π : G×X×Y \rightarrow X×Y such that:

 $\pi(g, (x, y)) = g(x, y) = (gx, gy) \text{ for each } g \in G,$ $x \in X \text{ and } y \in Y.$

a) π is continuous.

b)
$$\pi$$
 (e, (x, y)) = e (x, y) = (ex, ey) = (x, y)

c)
$$\pi(g_1, \pi(g_2, (x, y)) = \pi (g_1, g_2 (x, y))$$

$$= g_1 g_2(\mathbf{x}, \mathbf{y})$$

 $=(g_1g_2x, g_1g_2y)$

$$=\pi(g_1g_2,(x,y))$$

Hence $X \times Y$ is a G-space.

Now to prove that $X \times Y$ is preCartan.

Let $(x, y) \in X \times Y$.

Since $x \in X$ and X is preCartan, then there exists U a thin preneighborhood of x.

By 2.5 we get $U \times Y$ as a preneighborhood of (x, y) in $X \times Y$.

Because we have $((U, U)) = ((U \times Y, U \times Y))$. So, $((U \times Y, U \times Y))$ is relatively compact, which means that $X \times Y$ is a preCartan G-space.

Theorem 3.10:

If a G-space X has a star thin preopen set U, then X is a preCartan G-space.

Proof:

Let $x \in X$.

Since U is a star set, then there is $g \in G$ such that $gx \in U$.

Hence $x \in g^{-1} U$.

Since $\pi_g: X \rightarrow X$ is strongly preopen for each $g \in G$, then $g^{-1}U$ is a preopen set of x.

Since U is thin, then by [2] we get that $((g^{-1} U, g^{-1} U))$ is relatively compact in G. That is $g^{-1} U$ is a thin preneighborhood of x

in X

Thus X is a preCartan G-space.

Theorem 3.11:

If X is a preCartan G-space, then:

- (a) There is no fixed point.
- (b) There is no periodic point.

Proof:

a)Let $x \in X$ such that x is a fixed point.

Since X is a preCartan G-space, then x has U as a thin preneighborhood in X.

Because x is a fixed point, then gx = x for each $g \in G$.

So $gU \cap U \neq \emptyset$ for each $g \in G$.

That is ((U, U)) = G.

Since ((U, U)) is relatively compact in G, then G is compact.

But G is not compact, which leads to a contradiction.

Hence X has no fixed point.

(b) Let $x \in X$ such that x is a periodic point.

Then G_x is a syndetic subgroup in G.

That is there is a compact subset K of G such that $G = G_x K$.

By 3.5(b) G_x is compact in G for each $x \in X$. Thus G is compact

But that leads to a contradiction since G is not compact.

Hence X has no periodic point.

References

[1] Gottschalk, W.H. Held and G.A; Amer, Math. Soc. Colloquimpuldication" Topological Dynamics", vol.36, providence 1955.

- [2] Palais, R.S.: "On the Existence of Slices for Actions of Non Compact Lie Groups"; Annals of mathematics, vol.73, no. 2, March, P. 295-323, 1962.
- [3] Willard, S.; Addition, Wesley publishing; "General Topology" company, Inc. 1970.
- [4] MashhourA.S., Abd El-Monsef M.E. and El-Deeb S. N., Proc. Math. Phys. Soc. "On precontinuous and weak Egypt precontinuous functions" vol. 53, 47-53, 1982.
- [5] MashhourA.S., Abd El-Monsef M.E and El-DeebS.N., Bull. Math.De la soc. R.s.de Roumanie "On Pretopological Spaces" 28(78), 39-45, 1984.
- [6] Jankovic' D., I.L. Reilly, Indian, J., Pure Appl. Math., "On Semi Separation Properties", 16, 957-964, 1985.
- [7]NavalagiG.B., The Mathematics Education, "pre-neighborhoods", vol XXXII, No.4, 201-206, dec 1998.
- [8] NavalagiG.B, Department of mathematics, G.H.college, Haveri-581110, Karnataka (India), "Pre-US spaces" April 30, 2000.
- [9]Gupta, K.P.; post Box No.62, Begum Bridge, Meerut" Topology "100-250 (u.p.).
- [10] Al-Khazraji R.B., Thesis submitted to the college of education/Ibn Al-Haitham, Baghdad Unv." On Semi P open sets"., 2004.
- [11]Mohammed S. Elatrash, Sahar F. Alsamak, el al., J. Al-Aqsa Unv., "Preopen and Semi Open in T_o-Alexandroff Space", 10(S.E.), 396-414, 2006.
- [12] Al-Attar Amal I., Al-Sheikhly Anmar H.; proceeding of 3rd scientific college of science, Baghdad Unv., "On Palais Semi Proper G-space" 394-403, 2009.
 - [13] AL-Asady B.J. Mahmood, S. I.; J. Al-NahrainUnv., "On Pre-convergence Nets and Filters"vol.12, 197-203, 2009.

الخلاصة

فضاء- G لبريكارتان هو هدفنا الاساسى بهذا البحث حيث حصلنا على النتائج التالية:

(i) فضاء – G لكارتان هو فضاء – G لبريكارتان.

- (ii) قدمنا بعض النتائج على الشبكة مع مجموعة .preopen
- (iii) قدمنا هذا الفضاء (فضاء -G لبريكارتان) مع امثلة ونظريات وإفية عنه. حيث درسنا خصائصه، فضائه الجزئي، جدائه، وصورة التكافؤ المتغابر له.