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Abstract

In this paper we consider the most general

nonlinear regression model, Y(x) =

¥(01))91(02); x) + & , prove of the almost sure convergence, and asymptotic normality of the
estimators for the nonlinear parameters, using the most general optimal stochastic approximation
procedure. A procedure for constructing the general confidence intervals for the vector of nonlinear
parameters is also developed; the most generalized nonlinear regression model is introduced. We
establish asymptotic properties for the most generalized model.

1-Interduction

Consider the  following  nonlinear
regression  model:Y(x) = g(8; x) + ewhere
g:RP X R" - R,with RPand R", being
Euclidean spaces,¢ is an unobservable random
error, with E(¢) = 0,var(x) = 62,02 is a
constant that may depend on x ; Y(x) is an
observable random that can be observed
at each level xe€eR"; and 6 €RP is
the parameter of interest. Based on
observationsY;,Y,, ...., Y, , it has been known,
[6],[10],via classical procedures, how to

estimate 6 = (6, ....,6,). Now our problem

is to estimate 6 sequentially by using
optimal stochastic approximation methods
[11.[2].[3].[4]. We shall incorporate the
approach of eliminating linear parameters
proposed by [9] in an iterative manner together
with  optimal  stochastic  approximation
procedures to estimate 6 sequentially. We
shall also consider the general model
(Y(x) =g(@;x) + & ) when the regression
function ,as far as the parameters are
concerned , is composed of linear and
nonlinear regression functions, ie.,
9(8;x) = Y ((01)) 91(8(2); x), where
91(62); x) , is a nonlinear regression function
and g,:RP™7 X R™ - R™, with 6, € RP™1
and Y((6y) is a real valued linear
function of (6;)). However ¥((8¢)) may
depend on X, and 6y € R?. The model:

Y(x)=g (H;x) + ¢ then takes the form

Y(x) = w((H(l))gl(é)(z); x) + f We StUdy the
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most  general stochastic  approximation
procedure to estimated,, given by:
9 (n+1) Q(n)

~(2) 2
y W .
anlp( - (1)>Anhn , n=12,.. with
0;%2; being. an  arbitrary = random
vector in RP™? that will be independent
of any future observations,a, may be
positive measurable functions of
®
(0~(2), X1,X2 xn, h’l' hz ""hn—l)’ An are
(p-q x m) matrix-valued measurable functions
Of (HN(Z)’ X1, X2 wieny Xp, hlr hz e hn—l) and hn
are design vectors in R™ based on

transforming the observations Y,, by a Borel

measurable transformation,h =
(hD, .....,h™)". We study the almost sure
convergence as well as the asymptotic
normality of the sequential estimating
(m) (n+1) _
sequence 9~(2)) generated by (9~(2) =
g™ _ ) _
6y — (6205 ) Anhn » n=12,.. ),

under conditions on h and on the conditional
distribution of the error random vectors 1}, =

Y, — E <Yn o et 9&?) = Y, —

H (9((;1))) we prove the asymptotic normality
of n2(6. ) — 6z)) for
0<ac<l, WhICh is given as
followsn®/2 (9~ (2) —6z)) is normal with

mean = 0, and covariance matrix = a?l5P ). P,
where YD = (P AY.(h, )AP)ED (aA® +
aAY” —p)=1.  We construct  general
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confidence intervals for the vector of nonlinear g™ _g @D
parameters,8,y  which is  given by O C
Q) Q) +(GnGn—1GnY
nt/? (9~(2) - 9(2)) (0~ =02 = [\(¢ 6 9((2))) 0y "
alyZ ol |[VPZP|l | | —60 Nn=12,..
Consider the following nonlinear regression Wh g 6.6 o] G0t | i
. ere o. = [COLEPNED @y , 1S an
model: @ 6 B 6@ -
. ey s - (1
Y(x) = g(0;X) + € covveveeeieeeeeeien, 1.2) initial value for the sequence(0~g))), and 9~E2§
Where: R? x R" - R™ , with R?,R",and R™ is an arbitrary initial value for the
are Euclidean spaces, & is an unobservable sequence (9’~EZ)))-N°W substitute 6, into
vector of random ermors, with E(e) =0, (1.2). The vector of linear parameters .. ,is
var(e) = I %; where | is an identity matrix , e P ~
o is a constant that may depend on x; Y(X) is automa,tlcally rfepla_ced by tr_]e best companion
an observable response random vector at each value 6. ., which is a function of 6. ) alone.
level x € R";and 6 € R? is the vector of One then obtains the reduced model given by:
parameters of concern. Yo = (6 6 x)4er 13
We shall consider the most general ) lp( ~(1))g1( ~@y ) """"" (13)
nonlinear regression model of (1.1), when the Consider the most general stochastic
regressionfunction is composed of linear and approximation ~ procedures  given  by:
nonlinear regression components, i.e. . (n+1) o () . (n)
’ 6. =0, —a, (0. )Anhy,
9(6;x) =¢(9(1))g1(9(2);x) @ ) n ( (1)) nitn
: : . T (1.4)
Whereg, (62 ;x) is a nonlinear regression @ . _ _
function in 65y, with8 5y eRP~ and ¥(6y)) Where 6.,y is an arbitrary random vector in
is a real —valued linear function of 6 . RP~4 that will be independent of any future
However %(84,) may depend on xand ?bsetr_vatlons, a, be positive measurablt;:c
81)eR?. Let ¢ be distributed according to a utlc(ll)ons °
distribution function F that admits a symmetric (9~(2)'x1'xz o Xns hy, By ----hn—l)rAn
density function f whose gradient vector are (p-g x m) n  matrix-valued
exists, and the information matrix, I(f), off is measurable functions of

itive definite. Th | (1.1) then tak e

. . are  design vectors in R™  based

Ya) =9 (9~(1)) g1 (9~(2); x) FE 12 o transfc?rming the observations Y, by

wherey: R? > R,and g,: RP71 X R" - R™, a Boral measurable transformation,
with x=(x; ..., x;.), h=hO,.... , h(m)

0y = (611,612, .- 01,4), and Our main objective is to study the almost

O(2) = (021,022, - 02.p—q) - sure convergence of 9281)) . weshall study the

Let us first estimate 6 estimated aasymptotic normality, of the sequential

sequentially by applying an iterative least
square procedure. [4] ,since 6,y is assumed to

appear linearly in the model (1.2), then
substitute the initial guess 6., of 6 into
(1.2). Therefore, the estimating sequence
4 (m)
~()

estimating sequence (G'NEZ))) generated by
(1.4). Weshall construct confidence intervals

s

for the vector of nonlinear parameters 6.. @)

IS given by

203
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2- Assumptions

The following assumptions are stated in
this section to be called upon later in the
sequel [5]

Assumption (2.1):

9183» 92%2, ... Are (p-g)-dimensional
random vectors. Let h:R™ - R™ be a

Boral measurable transformation such that
for n € N,E(h(Y, (9’~g))))) exists.  Let

Y, Y, . ; and hq, h,, .... be-m-dimensional
random vectors with
@ 4 @) ¢ (M) _
( |9~(2)’( ;(2)' "'(9;(2)) -
1 s (n
(h(yn)|9~(2)' 9~(2)) -
)] ¢ ()
e (r]6-5) = £ (n( (0-3) )
For all ne€ N.Moreover, let a, be
positive measurable functions of
. (D)
(9~(2),x1,x2 R hlﬂhZ "'hn—l)! and An

be (p-g x m) matrix-valued measurable
functions inR®-a¥m) | et \y( ~(1))bea linear
function OfH’N(l); 9;(1) € R%y(.) may depend

r - (n)\. . .

on x€R ¢(9~(1))IS an iterative least
squares estimate ofw( ~(1)> and, with an
o . ® 1
|n|E|aI ) estlzn)ate HN(Z)O(f) 6.2 let
s (n+1 n n
Oy = -y = ant (6-0) Antn

n=12..... ) e (2.1)

Moreover, let H,,(.) and H,(.) be Boral
measurable functions defined on
RP~% into R™,and Y (.) be bounded Boral
measurable function defined on

R%into R ,with Fy = (6., F, =
- (1)

o (QN(Z), X By, By o by 13 Ay
(The smallest-o-field induced by the indicated

functions), let
. (n)

Er, (hn) = Hyp (6.03))

with H,, , = H,, , where h = the identity.

X1,X2,

Assumption (2.2)

The m-dimensional observations
Yy, Yy, .. satisfy Y, =H, (QNEZ))) +V
n=12,. where V,=Y, -

W ;@ O
( |0~(2); ~(2) QN(Z)) = Yn —
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H, (6 m

~(2)), are random vector errors. V,, are

ey

conditionally <given (9~(2), v

-2)

distributed with a distribution function F that
admits a symmetric density function f whose
gradient vector exists and the information
matrix, I(f), of fis positive definite .

Assumption (2.3)

Let(t) = (u® (@), ......
be defined by
UMDY =uP(©)

= j R (t + v)f (v)dv, j
Rm

=12,....m
Which exists for all t € R™. Moreover,
suppose that

f [AD(t +v) —u@ ()] [P (t + v)
' —uP () f (v)dv]

Exists and is finite for all t € R™ |, and i ,
j=12,...m

Assumption (2.4):

u(m)(t)),t € R™,

The transformation h satisfies:
Jem RO f(v)dv =
0 and [, RO WD () f(v)dv =

0 fori+#j
{aiz(h,f) fori=j
Where o7 (h,f) is positive constant that
depends on h and f;i;j=1,2,....,m. This
assumption actuallystates that the components
of the vector h(V,) are uncorrelated, i.e.
cov(h(i),h(j)) =0.
3-Almost Sure Convergence of the Most
General  Stochastic ~ Approximation
Procedures
To establish almost sure convergence of
the most general stochastic approximation
procedure in (Assumption2. 1), we shall refer
to Almost Sure convergence Theorem [11]

3.1-( almost sure Convergence Theorem)

Let 65y € RP~ q,e((zn)) € R and assumption

(2. 1) hold with A,,(p — q x m) matrix-valued

F,-measurable functions of
)
(0~(2)' X1, X, i X3 Ry, o Ry q).LeL

Pn-Vn, Ly, and t, be positive numbers. Then
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suppose for every 6 € RP~7 | and every

P ~(2)
n ’
" e
n n
1/)(9~(1)) AnHpp(0-) >) Z0; s (3.1)
If 0<6;,<6,<o, then, for every
n=>1,
: n)
inf 5, <o-000 18, | Hnn CGDIIZ o .(3.2)

)

inf yen (<068 — 00y WO AnHy 1 (05) >

(n) )
/(@ 9(1) ||9(2) 9(2)| X
||Hn,h o) ”) > Uy e (3.3)
For each  sequence (0((;))) for
whlchs”p||9((;))|| < oo . Suppose also that
201(2:1 A Vplyo and Zﬁ:lanvnlnpn = 0,
.................................. (3.4)
For every sequence GNEZ; X1y eee e Xp, Ry, Ry, e
for which*%|16|] < o,
(n) )
||Hn,h ~@) ” <t (||0) — o || +
m
N 1) ; GN(Z() )e RP=9, 7 > 1;........(3.5)
n s (n
Y (6 ~(1)) 21y ; 0. € R, n=>1.... (3.6)
Furthermore, for every sequence
HLE;;, X1y ey Xpy hl, hz'._"_, let
00 2.2 .2 sup
Zn:llnanrn(( ((;)) X1, Xihy, ey )”A II )
< ... (3.7)
And _1 LnanEg [||hy —
m) sup
nh(9~(2)|| ](9((;))'x1r---xniih1 e )II n” )
©....(3.8)
Then HNEZ)) - 9~(z) almost surely as — oo,

Before the proof we shall give some remarks
on the above conditions.

Remarks:
. - (n) .
(1) We use eqg. (3.1), since (9~(z) _9~(z))
must be in the same direction of
At (6.0 Hun (6-05)) 50 that the

regression functlon is bounded between two
lines, also to insure that the angle and
its cosine must be positive between

Vol.16 (2), July, 2013, pp.202-201

205

Science

- (n) -
vectors 2] - 0. @ and

~(2)

n) e (n)

V(- Antn (0-)
@ Eq (32) allows ||Hn,h o ||—>

two

0 as ||e~(2) 6|1 > 0, and eq. (33)
is Cauchy-Schwartz inequality, it is
concerned with the cosine of the angle
between two vectors, it requires that the
smallest point must be greater or a positive
number, such that*“Z| |9~(2)| | <o

(3) Eg. (3.5) is bounded condltlon on
Hn,h(e'Ng))) by using Lipschitz condition.

Eq. (3.6) is a bounded condition on
P (62 gl)) ) from below.

(4) Eqg. (3.7) implies ||A,|| multiplied by
a?,12,72 is bounded, and eg. (3.8) mean
that conditional variance of h, multiplied
by a?,12, and

SUP11 A 112is bounded.
(9((21))951 ------ Xniha,An— 1)” nll

Proof:

Without loss of generality, let 0~(2) 0.
By (2.1), we have
. (n+1) ) Fmy _
bo@) =) — WOy Anh, =
1,2,.and thus
f ) _ g () ) )
-y =0-@~ n¢( 1)) Antn 6y +

any (6. (1)) ApZy cooeieiiiiieiiannn (3.9

where Z, = — (hn -

Hy p (HNEZ;)) with Ep Z, = 0 . Thus, by using
(3.5) and (3.6) , we get

(n+1) n)
6.0 = 1168
e
~ a4 ~((1)))A atnn (6-G)
n
AR WAL
< [je1i + aiz]| anliiza
20211 41121 Hyy n (65| 2
+ @212 Anl 12| Hyn( ~(2))||
(n) (n)
—20n < 9~(1) P (9~(1))A"Hn'h (9~(2))
> 42
) )
<@ (63)) AnZn, 0.5y >
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Using C-inequality [|la + b||" < C.(||a||” +
1b117),

1 Jifr<1;
CT :{ r—-1
2 ifr>1
We will have
(n—-1) (m)
“9~(2> I* < || b I* +
QRI2|| Anll?]| Zal 2202272 4Gl 12(116%5))
1) — 2a, < 6%, (0 ApHy n (657
) a, < )’ Y( (1)) nHpn( (2)) >
Wy s oo (3.10)
. _ (n)
WithEx W, = 0 , since ay, An,lp( ~(1)) and

H, j are F, - measurable functions, then taking
the conditional expectation of both sides of

(3.10) with respect to F,, we obtain
(n+1) (n)
Er16-5y 112 < 116 o 1121 +
207 3TA AR l1?) + 207 ]| Anl]? X
(Tn+1/2EF || Zn ||2)_2an
) n) )
~(2),1,1)(9~(1))A th(9~(2)) > e, (3.11)
Therefore, by applying (nonnegative

almost sure supermartingales convergence
theorem) [11] , with E, = E, , Z,, = ||9~g))||2,
B = 2az L5t AnlI?,

(m) ) )
£, =2a, < 9~(2),¢(9~(1))A th(BN(Z)) >,
and
£y = 233114l 12 (z7 + 1/2ER, |1 Z,11%),
under  (3.1),(3.7),and  (3.8),satisfy  the
conditions of (nonnegative almost sure
supermartingales convergence theorem )[11],

we conclude that ||9~(2)|| converges and is
finite and

o]

(n) (n) (n)
D an(< 0 (O At (6-0)
n=1
S YO (3.12)

Now (3.12) implies under (3.3), that

| |H"h( ~(2))| | <o

Zn 1 anvn

~(2)
............................. (3.13)
But (3.13) and (3.4) imply that
o (n) _
Tll‘i?omf“&m ||th ~@) || 0
.............................. (3.14)

It remains to establlshHN(z) — 0, wedoso

by a contradiction. Suppose that here exists

Vol.16 (2), July, 2013, pp.202-209
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£#0 such thatP( lim | |9~(2)| |=£)>0.
N —0000
Then choose 0 <A <A< such

that P(A;< £ < A,) > 0 . Then for each, win
the set [| |9~(2)| | > £ with A,< £(w) < A, ,
we have ,

m< e g w1 <4, (315)

For n sufficiently large so that
2 n)
*+ @< |6 ] 182 >0 Thus, from

206

(3.15),(3.11), and
large , we have

(n+1) (n)
Er 16- 5 117 < 1162051171 +

2aplntyl|An II ) + 2az 3| Ap |7 X (T3 +
1/2EFn||Z ” ) Z(an A1Unpn

, (3.2) for n sufficiently

................................ (3.16)
Apply  (nonnegative  almost  sure
supermartingales  convergence  theorem)

[11]Jonce more to (3.16) we conclude that
Y= 1anvnl <o  which contradicts (3.4).

Thus 9~ (2) N

4-  Asymptotic Normality of the Most
General  Stochastic ~ Approximation
Procedures
We prove a general theorem on the

asymptotic normality of the most general

stochastic approximation procedure in (2.1),

based on FabianTheorem [7]

-0 asn — ©

4.1-( Asymptotic Normality Theorem)
Let «a,ly,l,, be positive numbers and

a, i,y be nonnegative numbers, Let
Assumption (2.1) hold with

=pP—q 'an=a/na1

0<a<l ; B=1if a=1, =

Oif @F 1, oo, (4.1)

The symmetric nonsingular (P —q X P —q)
matrices A, in R®~9*P~@) converge to a
positive definite symmetric matrix A in
R@—axP=® and the eigenvalues of 4,(w) lie

In[vn, U]l for all w in Q, where
=(logln+ 1) L u, =n*, 0<u<y,
0 <y <1/2. Moreover, let assumptions

(2.2), (2.3) and (2.4) hold, the function h be
continuous a.e, (F) and U be differentiable at
0 in R®=9 with

v (1)
[DU()]¢=0 = [ at("g ]t=0

=K f) o (42)
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Where K(h,f) is a (p-gxp-q) positive definite
symmetric matrix;

(k(h, [ =
lim (¢)~* [

(l)—>o

- hD W) f(t — v)dv

Set for t € RP~4
Y(8) = [[op-o[ AP (€ + v) —uD@O][RD (¢ +

v) — u(l)(t)]f(v)dv U 1
Which is a (p-g x p-q) symmetric matrix with

2(0) =Yo(h,f) a diagonal matrix with
diagonal elements
of(hf); j=12,cc0,D = q e, (4.5)
Assume that Y. (t) is bounded, and, is
continuous at
T20 o (4.6)
Letly S Y(E_ (1) S Ly v 4.7)
In addition; let
. (1)

E, = 0(9~(2),x1, X3 hy, e chy_q;

Afy e A,) , and for n=1,2,.....; M,, be
RP-axr-aFp .  measurable satisfying

. (n) . (n) . (n) .
¥ (0c) Hn (6-0) = Ma (-5 = 6-))
................................ (4.8)
Assume that there exists M in R®-axp-a)
such that
My = M oo (4.9

And AK(h,f)M is positive definite (4.10)
Seto?, = E[|1Znl1? x {|[|1Z,1* = rn*}],

FOrT >0 i (4.11)
) ¢ ()

Where Z, = (h( ~(2))—Hn_h (BN(Z))) :

and Z, is E,-measurable random vector is

RP=%  and h (9~gl))) = h, , Furthermore,
assume that forall r > 0

lim 07, = 0,07

n—-oo

=1 and limn~

n-—-oo

Since AK(h,f)M is a symmetric (p-q X p-q)
matrix , then there exists an orthogonal matrix
p € RP=4xP=aD gych that p AK(h,HM p = A
is a diagonal matrix with the eigenvalues of
AK(h,f)M lie on the main diagonal of A4 [8] .
Assume that
ax > g

Where 3 = "5 (AW). Then

Vol.16 (2), July, 2013, pp.202-201
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B'NEZ)) -6, as n— o , and the asymptotic
(n) . .
distribution of n /Z(HN(Z) 6. ;) is normal

with mean=0 and
Covariance matrix = a?l5p ¥, p , where

T =(PAY (AP (@A™ +
Proof:

Without loss of generally, set9~(2) =0, we
have

Hu (6)) =0 (H (63))) =
(u® (Hn (9~E’2‘)))> ' RTCRl) (Hn (9~EZ)))>)

and since U is differentiable at o , then, [7],
we have for t € RP™19 |

U () =D U0t + n@|ltl| = K(h.f)e +
n(@®||tl|With|[n(®)l| = o as t - o,

(Note DU(0) is a (p-g x p-q) matrix) .
Therefore

U (1 (6-))

- K (5-2)
(1 (6-) 1o (6-3)]

witnln (1, (6-30)) ”

0 as H (9~?21))) — 0 , Define the following

(p-g x p-q) matrix-valued measurable function;

Kn(h, f)

K(h, f) if H, (eg‘))) 0;
n( n)) . n
((n) || if Hy(63)) # 0

K, f) +n (H,(63)) |
O2)

And  thusH,, (6.0)) = U (Hn (e;g)))) -
Ko ) Hy (6 (3)) vt (4.14)

Hence, using eq.(4.14) and under the given
conditions, it can be easily checked that
conditions of theorem (3.1) are satisfied and

conclude that 8_,.. — 0 . Thus, under (4.8),

~<z>
we get

H, (9~E121))) -0 as B'NEZ)) - 0, and,
Ka(h, f) > K(h,f) (as 63) = 0) ......(4.15)
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Now wusing eq. (4.14), we have
f (1) o () n-c )
Oy =0y = ap (0.G)) Anhe
n=12,...
()

) QN(Z) (m (m)

- n n
n~ay (6 ~(1))A Kulh, )y (60)) +
Tl_aal/)(9~(1))A Zip oo (4.16)

Withz,, = — <hn -

. (m)
U (Hn 2 m))) and Ep Zy =0

Let I be the (p-g x p-q) identity matrix,
then eq. (4.16) by using eq. (4.8) , reduces to

6.y ) = 6.0 = n @A Ky (h, M6
+ (6. ) AnZn
= (1
— n%aduky(h, K)My)6 ()

+n @ (6. ;) AnZn

Then applying (Fabian theorem)[7] ,we have
satisfied the conditions, with

Up=6.0, B=a
1—“I‘L - a'ATLK‘n(h'f)MTL - aAK(h;f)M = F

T,=0=T,V,=Z,,2=2,(hf)
¢ = ap (6 ~(1)) L <al,A, > alA=¢

To satisfy the remaining condition of(Fabian
theorem)[7],we have
)
N(Z)))

Ep, ViV = Ep,ZnZyn = X(Hp, (

| t ON
i e (10
Zo(h, )(4.17)
And fort € R®P~-D |

E (t (EFnZnZn - Zo(h: f)) t) =

t (Ep,ZnZn — To(h f))t - 0(4.18)
Define forr > 0,

pin = E[|IVall? X {]|? = rn®}]
= E[||1Zn|1? X {|1Z5]|?* = rn*}](4.19)
By eq.(4.12),we have
pin—0asn -, or a=
1 and n~'Y7}_; pf; — 0(4.20)

Then we conclude that the asymptotic

distribution of

a n) 2 .
n'/2(6. —6.,) Is  normal  with

Mean = (aAK(h, f)M — (g) N0 =0,
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And covariance matrix = a?l53PYP ,
Where Y@ = (PAY, (h, /)AP)W) (aA™ +
aA(ff) _ ﬁ)_ll

5- Confidence intervals For the Vector of
Nonlinear Parameters
To construct confidence intervals for the

vector of nonlinear parameters, 9~(2), of the

most generalized model (1.3) . Using the result
of theorem (4.1),we have

a2 (4 ™ _ 4

’1 (9~<2) 9~(2))

- N(0,a?l53PYP)as n -

Where H'Ng)) is the nth iterative of the most
general stochastic approximation procedure
given by (1.4). Then the joint 100(1 — @)%

confidence intervals for the vector of nonlinear

parameters, 6- (2 is given

by:na/z( &%) 0 <Z._. . e
aly|[yPXP|| = flman T

w2 (g ® g5 O

n (9~(2) ‘9~(2)) (9~(2) 9~(2)) =

a 1221—a|_|'\/ PZP“ ' - B
WhereY @) = (P AY, (h, f)AP)Y (aA™ +
aA(jj) _ ﬁ)_l ’

And Z,_, isthe 1 — a point ("upper a-point™)
of the normal distribution.

6- Conclusion
We consider the most general nonlinear

regression model

Y(x) =g9(0;x) + ¢, the

when regression

function, as far as the parameters are
concerned, is composed of linear and
nonlinear regression function, i.e.,

9(6;x) = Y(61))g1(02y; x). We study the

most  general stochastic  approximation
procedure to  estimate 9’~(2), given
(n+1) (n) m)

by:6l.y = ey — (63 ) Anha

n=12,...

We prove that almost sure convergence of

G I () I

9~(2)’ Ie.,BN(Z) - 9~(2) , as n - o and the
; ; a/2(g ™ _ 4

asymptotic normality of n 0. @~ 0. @)

for o<a<1, which is given as
0(/2 (Tl) e . .

followsn (9~(z) 9~(2)) is normal with

mean=0, and covariance matrix= a?l3PYP,
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where Y@ = (P AY,(h, )AP)W (aA®™ +
aA(jj)—,B)_l

Finally, we construct general
intervals for the wvector of

parameters, 6., which is
0 (r)) <

ne/2 (9;?21)) B 9’~(2)) (9;%;)) B

alyZi_q |\/ PZP“
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