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Abstract 

The differential quadrature method with Chebyshev Gauss Lobatto sampling points is 

introduced for the modeling of vibration of a uniform beam. The g-spline interpolation function is 

utilized to obtain the explicit formula of the weighting coefficients for approximation of derivatives. 

Numerical example is presented to demonstrate the validity and accuracy of the proposed method. 
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Introduction  

Differential Quadrature (DQ) is a 

numerical method for evaluating derivatives of 

a sufficiently smooth function, proposed by 

Bellman and Casti [1]. The basic idea of DQ 

comes from Gauss Quadrature, which can be 

considered as a useful method for calculate the 

integral numerically. Gauss Quadrature is 

characterized by approximating a definite 

integral with weighting sum of integrand 

values at a group of so called Gauss points. 

Extension is made for finding the 

derivatives of various orders of a sufficiently 

smooth function give rise to DQ [1, 2]. In the 

other words, the derivatives of a smooth 

function are approximated with weighting sum 

of function values at a group of so called 

nodes [3]. The key procedure in the DQ 

application lies in the determination of the 

weighting coefficients. Initially Bellman and 

his associates proposed two methods to 

compute the weighting coefficients for the first 

order derivative. The first method is based on 

an ill-conditioned algebraic equation system. 

The second method uses a simple algebraic 

formulation, but the coordinates of the grid 

points are fixed by the roots of the shifted 

Legendre polynomial [4]. In earlier 

applications of the DQ method, Bellman's first 

method was usually used because it allows the 

case of an arbitrary grid point distribution. 

However, since the algebraic equation system 

of this method is ill conditioned, the number of 

the grid points usually used is less than 13;  

this drawback limits the application of the  

DQ method [4]. The DQ method and it 

applications were rapidly developed after the 

late of 1980, thanks to the innovative work in 

the computation of the weighting coefficients 

by many authors see [5, 6, 7,  8, 9]. As a result, 

the DQ method has emerged as a powerful 

numerical discretization tool in the past two 

decades. As compared to the conventional low 

order finite difference and finite element 

methods, the DQ can obtain very accurate 

numerical results using a considerably smaller 

number of grid points and hence requiring 

relatively little computational efforts. So for, 

the DQ method has been efficiently employed 

in a variety of problems in engineering and 

physical sciences. A comprehensive review of 

the differential quadrature method has been 

given by Bert and Malik [10]. This paper will 

employ function approximation theory using 

g-spline interpolation to formulate DQ. Nearly 

66 years ago, I.J. Schoenberg [11] introduced 

the subject of ''spline function" since then 

splines, have proved to be enormously 

important in various branches of mathematics, 

such as approximation theory, numerical 

analysis, numerical treatment of ordinary, 

integral, partial differential equations, and 

statistics, etc. There are several type of splines 

appeared in literature given by [12, 13, 14]. 

Among these types of spline the so called 

g-spline interpolation which is necessary to the 

work of this paper. In 1968 Schoenberg [11] 

extended the idea of Hermite for splines to 

specify that the order of derivatives specified 

may vary from node to node. Schoenberg used 

the term "g-spline" instead of generalized 

splines because the natural spline term 

"generalized spline" describes an extension in 

a different direction. The g-spline is used to 

interpolate the HB-data (problem), the data in 

this problem are the values of the function and 

it derivatives but without Hermite's condition 

that the only consecutives be used at each 
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node. Farther, Schoenberge [11] define  

g-spline as smooth piecewise polynomials, 

where the smoothness is governed by the 

incidence matrix, and then proved that  

g-splines, satisfies what so called the 

"minimum norm property", which is used for 

the optimality of the g-spline function defined 

mathematically by the following inequality: 
( ) 2 ( ) 2[ ( )] [ ( )]m m

I I

f x dx S x dx   

Where the function S is called a g-spline and 

it’s polynomial spline of degree 2m-1 over the 

interval I. 
 

The g-spline interpolation  

The g-spline interpolation was first presented 

by Schoenberg [11] as a tool used to specify 

the interpolatory condition: 
( ) ( )( ) ( , )j j

i if x y for i j e   

This condition is the Hermite-Birkhoff 

problem (and abbreviated by HB-problem), 

where e is a certain set of ordered pairs which 

will be defined later in this section. 
 

The HB-Problem, [11] 

It is convenient in this subsection to 

discuss the HB-problem, before; we give the 

tractable formal definition of the natural g-

spline interpolation. Consider the read and 

distinct node points arranged in ascending 

order of magnitude and represented as 

1 2 Kx x x    

Let  be the maximum of the orders of the 

derivatives to be specified at the nodes.  

Define an incidence matrix E, by: 

ijE a ,  i 1,  2,  ,  k;  j 0,  1,  ,        

where: 

ij

1, ( , )
a

0, ( , )

i j e

i j e


 


  

Here e  {(i, j): i  1, 2, …, k; j  0, 1, …, } 

has been chosen in such a way that i takes the 

values 1, 2, …, k; one or more times, while j  

{0, 1, …, } and j   is attained in at least 

one element (i, j) of e. Assume also that each 

row of the incidence matrix E and last column 

of E should contain some element equals to 1. 

Let 
( )j

iy  be prescribed real numbers for each 

(i, j)  e. The HB-problem is to find  
( ) ,f x C   which satisfies the interpolatory 

condition: 

( ) ( )( ) ( , ) .................(1)j j

i if x y for i j e 

The matrix E will likewise describes the set of 

equations (1) if we define the set e by: 

  ije { i,  j  |  a 1}   

then the integer n  ij

i, j

a , really is the 

number of interpolatory conditions required to 

constitute the system (1). 
 

Definition (1)[11]: 

Let m be a natural number, then the HB-

problem (1) is said to be m-poised provided 

that if: 

p(x)  m1 

p(j)(xi)  0 if (i, j)  e 

then: 

p(x)  0. 

(m1 is the class of polynomials of degree 

m1 or less).At this point, the g-spline 

interpolant of order m to f can be given in 

terms of the fundamental g-spline functions 

Lij(x), by: 
( )

( , )

( ) ( ) .................(2)j

m ij i

i j e

S x L x y


   

where: 

( )
0, ( , ) ( , )

  ( )
1, ( , ) ( , )

s

ij r

if r s i j
L x

if r s i j


 


  

The definition of g-spline is facilitated by 

defining a matrix E* which is obtained from 

the incidence matrix E by adding m    1 

columns of zeros to the matrix E. Let 
*E* [ ],ija  where (i  1, 2, …, k; j  0, 1, …, 

m1), where: 

  *
,

0, 1, 2,..., 1

ij

ij

a if j
a

if j m



 


 

   
 

If  j   + 1, then E*  E. 

  

Definition (2):  
A function S(x) is called natural g-spline 

for the nodes x1, x2, …, xk and the matrix E* 

of order m provided that it satisfies the 

following conditions: 

1- S(x)  2m1 in (xi, xi+1), i  1, 2,., k1. 

2- S(x)  m1 in (, x1) and in (xk, ). 

3- S(x)  Cm1(, ). 

4- If 
*
ija   0, then S(2mj1)(x) is continuous at  

x  xi. 
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Let S (E*; x1, x2, …, xk) denotes the class of 

all g-spline of order m. 
 

Approximation of Linear Functional with 

the Sense of g-spline Formula, [11] 

Let I  [a, b] be a finite interval containing the 

knots points x1, x2, …, xk and let us consider a 

linear functional: 

  Lf : C [a, b]   

of the form: 

 Lf ( j)
j

j 0 a

a (x)f (x)dx





 +

jn

( j)
ji ji

j 0 i 1

b f (x )



 

   

 .................................... (3) 

where the aj(x) are piecewise continuous 

functions in I, xji  I and bji are real constants, 

we can approximate the functional in equation 

(3) using the formula: 

Lf  ( j)
ij i

(i, j) e

f (x )



  + Rf ........................... (4) 

Therefore, in order to find the approximation 

Lf given by (5), which is best in some sense, 

we propose to determine the real's ij. I. J. 

Schoenberg [11] states two procedures to 

determine ij. One of them is the so called 

Sard procedure, which can be summarized by 

the following theorem: 
 

Theorem: 

If  < m < n and the HB-problem (1) is  

m-poised, then Sard's best approximation (4) 

to Lf of order m is obtained by operating with 

L on both sides of the g-spline interpolation 

formula (2) of order m.  

In other words, the coefficients ij are given 

by: 

ij  LLij(x) 

where Lij(x) are the fundamental functions of 

(2). 
 

The g-spline interpolation-based differential 

Quadrature method 

Suppose the function ( )f x  is sufficiently 

smooth on the interval 1[ , ]Nx x , and let us 

consider an m-poised Hermite-Birkoff 

problem  
( ) ( )( ) , ( , )j j

i if x y i j e   

on the N distinct nodes: 

1 2 ... Nx x x    

Based on differential Quadrature, the first and 

second order derivatives on each of these 

nodes are given by: 
 

( ) ( )

( , )

, 1,2,...,

k

j j

ki i

i j ex x

df
a f k N

dx 

   

 
2

( ) ( )

( , )

, 1,2,...,

k

j j

ki i

i j ex x

d f
b f k N

dx 

   

The coefficients ( )j

kia and ( )j

kib are the 

weighting coefficients of the first and second 

order derivatives the following respectively 

relation. 
 

Computation of the Weighting Coefficients 

for the First and Second order Derivatives 

Using g-spline Interpolation Formula 

To find the weights 
( )j

kia and 
( )j

kib , we need 

to consider an m-poised Hermite-Birkhoff 

problem to approximate the function f and 

our purpose is to construct a polynomial of x , 

which is of the form  
( )

( , )

( ) ( ) j

ij i

i j e

f x L x f


  

Satisfying  

( )
1 , ( , ) ( , )

( )
0 , ( , ) ( , )

s

ij r

if i j r s
L x

if i j r s


 


 

Then the first and second order derivatives 

at any grid points can be approximated by the 

following formulation 

( )

( , )

( )
.

k k

ij j

i

i j ex x x x

dL xdf
f

dx dx 

   

and 
22

( )

2
( , )

( )
.

k k

ij j

i

i j ex x x x

d L xd f
f

dx dx 

   

Therefore 
( )j

kia are the coefficients for the first 

order derivative, obtain by the following 

formula 

( )
( )

k

ijj

ki

x x

dL x
a

dx


  

and similarly 
( )j

kib are the coefficients of the 

second order derivative  given by  
2

( )

2

( )

k

ijj

ki

x x

d L x
b

dx


   
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In the same manner we may obtain 

formulae for higher order derivatives by using 

the higher order weighting coefficients, which 

are expressed as ( , )j m

k ie  to avoid confusion. 

They are characterized by the following 

recurrence formulation. 

 

( , )
( )

, ( , ) , 1,2,..., ,

1,2,3,..., 1

k

m

ijj m

ki m

x x

d L x
e i j e k N

dx

m N



  

 

Here we assume that ( ) ( ,1)j j

ki kia e  and 
( ) ( ,2)j j

ki kib e  
 

Free vibration analysis of a uniform beam 

The vibration of a uniform beam is 

governed by a fourth order differential 

equation. When a numerical method is applied 

to descretize the spatial derivatives, the 

ordinary differential equation can be reduced 

to a set of algebraic equations. The eigenvalue 

of the resultant algebraic equation system 

provide the vibrational frequencies of the 

problem. Usually the, number of interior grid 

points is equal to the dimension of the 

resultant algebraic equation system, thus 

providing the same number of 

eigenfrequencies. Among all the computed 

eigenfrequencies, only low frequencies are of 

practical interest [4]. 
 

Governing equations and Boundary 

conditions  

For a beam, three problems are often 

encountered, i.e., the bending, vibration and 

column buckling analysis. For a Bernoulli-

Euler beam of varying cross-section with 

length L, the non-dimensional governing 

equations are 
4 3 2 2

4 3 2 2

4

0

( ) ( )
( ) 2

( )
0 ..............................................(5)

d W d s X d W d s X d W
s X

dx dx dx dx dx

L q x

EI

 

 

 

For the bending analysis, and 
4 3 2 2

4 3 2 2

2

( ) ( )
( ) 2

0..................................................(6)

d W d s X d W d s X d W
s X

dx dx dx dx dx

W

 

 
 

For the vibration analysis, and  

4 3 2 2

4 3 2 2

2 2

2

0

( ) ( )
( ) 2

0 ..........................................(7)

d W d s X d W d s X d W
s X

dx dx dx dx dx

PL d W

EI dx

 

 

 

for the column buckling analysis, where 
2

0( ) / ,s X EI EI   4 2

0/ ,AL EI   

/ ,X x L  EI  is the beam's flexural rigidity, 

A is the mass per unit length, ( )q x  is the 

external distributed load.   is he dimensional 

frequency, P is the axial compressive load. 

For a beam of varying cross-section EI and A  

are functions of the coordinate x . The 

governing equation for a beam is 4th order 

ordinary differential equation. For a well-

posed problem it requires four boundary 

conditions. These can be obtained by 

specifying two boundary conditions at the end 

0X  , and another two boundary conditions 

at the end 1X  . Basically, there are three 

types of boundary conditions. For vibration 

analysis, these boundary conditions are given 

as 

 

Simply supported end (SS) 
  

 
2

2
W=0 and 0

d W

dx
  

Clamped end (C) 

  

 W=0 and 0
dW

dx
  

Free end (F) 

  

 
2 3

2 3
0 and 0

d W d W

dX dX
   

 

Numerical Discretization 
The selection of locations of the sampling 

points plays an important role in the accuracy 

of the solution of the differential equations. 

Using uniform grids can be considered to be 

convenient and easy selection method. Quite 

frequently the DQM delivers more accurate 

solution using the so called Chebyshev Gauss 

Lobatto points given by [4],  

            

1 1
1 cos , 1,2,..., ....(8)

2 1
i

i
X i N

N


   
       
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With the coordinates of mesh points given by 

(8), the g-spline-based differential quadrature 

weighting coefficients can be easily computed. 

These weighting coefficients can then be used 

to discetize equations (5), (6) and (7). Using 

the DQ method equations (5), (6) and (7) can 

be discretized as  
(2) ( ,2) ( ) (1) ( ,3) ( )

( , ) ( , )

4
( ,4) ( )

( , ) 0

( ) 2 ( )

( ) ( ) , ( , ) ...........(9)

j j j j

i ki i i ki i

i j e i j e

j j

i ki i i

i j e

s X e W s X e W

L
s X e W q X i j e

EI

 





   

 



 
(2) ( ,2) ( ) (1) ( ,3) ( )

( , ) ( , )

( ,4) ( ) 2 ( )

( , )

( ) 2 ( )

( ) , ( , ) ...(10)

j j j j

i ki i i ki i

i j e i j e

j j j

i ki i i

i j e

s X e W s X e W

s X e W W i j e

 





   

 



(2) ( ,2) ( ) (1) ( ,3) ( )

( , ) ( , )

4
( ,4) ( ) ( ,2) ( )

( , ) ( , )0

( ) 2 ( )

( ) , ( , )

j j j j

i ki i i ki i

i j e i j e

j j j j

i ki i ki i

i j e i j e

s X e W s X e W

PL
s X e W e W i j e

EI

 

 

 

  

 

 
 

where 
( )j

iw are the functional value and its 

derivative at the grid point ix but without 

Hermite's condition, (2) ( )iS x  and  (1) ( )iS x  

are respectively the first and second order 

derivatives of ( )S x at ix , 
( , ) , 2,3,4,...,.j m

kie m  are the DQ weighting 

coefficients of the mth order derivative. 

With proper implementation of the boundary 

conditions, equation (9)we formulate matrix as  
( )[ ]{ } { } ......................................(11)j

d iA W b

Where [ ]dA  is a matrix, 
( ){ }j

iW is a vector of 

unknowns and { }b  is known vector. 

The algebraic equation (11) can be solved 

using the direct methods such as the LU 

decomposion, or iterative methods such as the 

SOR approach. 

In similar manner, Equation (10), can be 

written as  
( ) 2 ( )[ ]{ } { }...............................(12)j j

v i iA W W   

and equation (25) can be put to  
2

( ) ( )

0

[ ]{ } [ ]{ }......................(13)j j

b i i

PL
A W B W

EI
  

Where [ ],[ ]v bA A and [ ]B are matricies, 

Equation (12) and (13) are eigenvalue systems. 

The frequency of a free vibration problem can 

be obtained from the eigenvalues of equation 

(12). The eigenvalues of equation (12) and 

(13) can be calculated using the standard 

solvers such as the QR algorithm. 
 

Direct substitution of Boundary Conditions 

into Discrete Governing Equations 

To implement the simply supported, 

clamped conditions and their combinations. 

The essence of the approach is that  

the Dirichlet condition is implemented at  

the boundary point, while the derivative 

condition is discretized by DQ method. The 

discretizeditive conditions at the two ends are 

then combined to given derivative conditions 

at the two ends then combined to give the 

solutions (0)

2W and (0)

1.NW   The expressions of 
(0)

2W and 
(0)

1NW   are then substituted into the 

discrete governing equation which is applied 

to the interior order pairs 

( , ) /{(2,0),( 1,0)}.i j e N   

For any combination of the clamped and 

simply supported conditions at the two ends, 

the discrete boundary conditions using the DQ 

method can be written as 
(0)

1

( , 0) ( )

1

( , )

(0)

( , 1) ( )

( , )

0.........................................(14 )

0......................(14 )

0.........................................(14 )

0...................

j n j

i i

i j e

N

j n j

Ni i

i j e

W a

e W b

W c

e W















 ...(14 )d

 

 Where 0n  and 1n  may be taken as 1 or 2. 

We shall treat only the following two sets of 

boundary conditions  

0 1, 1 2 ...clamped simply supported

0 2, 1 2...simply supported  simply supported

.................(15)

n n

n n

   


   

Equation (14a) and (14c) can be easily 

substituted into (14) and it's clear this is not 

the case for equations (14b) and (14d).  

However one can couple these two equations 

together to give the solutions   
(0)

2W  and 

(0)

1NW 
 as 

*

*

(0) ( )

2

( , )

(0) ( )

1

( , )

1
1 ......................(16 )

1
....................(16 )

j

i

i j e

j

N i

i j e

W AXK W a
AXN

W AXKN W b
AXN







  

  




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Where 
* /{(2,0), ( 1,0)}e e N   

( , 0) ( , 1) ( , 0) ( , 1)

1, , 1 1, 1 ,

( , 0) ( , 1) ( , 0) ( , 1)

1,2 , 1, ,2

( , 1) ( , 0) ( , 0) ( , 1)

,2 1, 1 1,2 , 1

1 j n j n j n j n

i N N N N i

j n j n j n j n

N i i N

j n j n j n j n

N N N N

AXK e e e e

AXKN e e e e

AXN e e e e

 

 

   

   

   

 

According to equation (16a) and (16b) (0)

2W  

and (0)

1NW   are expressed in terms of ( )j

iW , 
*( , )i j e and can be easily substituted into 

equation (10) . In order to find the values of 
( )j

iW , *( , )i j e the discretized governening 

equation (10) has to applied at interior points
*( , )i j e . Substituting equations (14b), (14c), 

(16a) and (16b) into equation (10) gives 

* *

*

(2) ( ) (1) ( )

1 2

( , ) ( , )

( ) 2 ( ) *

3

( , )

( ) 2 ( )

( ) , ( , ) .......(17)

j j

i i i i

i j e i j e

j j

i i i

i j e

s X C W s X C W

s X C W W i j e

 





   

 



 

where  
( ,2) ( ,2)

,2 , 1( ,2)

1 ,

( ,3) ( ,3)

,2 , 1( ,3)

2 ,

1

1

j j

k k Nj

k i

j j

k k Nj

k i

e AXK e AXKN
C e

AXN

e AXK e AXKN
C e

AXN





  
 

  
 

 

( ,4) ( ,4)

,2 , 1(4)

3 ,

1j j

k k N

k i

e AXK e AXKN
C e

AXN

  
   

It is noted that the equation (17) has (N-4) 

equations with (N-4) unknowns which can be 

written in matrix form written as 

 
( ) 2 ( )[ ]{ } { }j j

i iA W W   

where 2  represent the eigenvalues of the 

above system 
 

Numerical Example: Free Vibration 

Analysis of a uniform Beam Using g-Spline 

Interpolation-Based Differential Quarature 
 

In this section the free vibration analysis of 

a uniform beam as given in equation (10) with 

( ( ) 1)s x   will be treated. 

Two combinations of boundary conditions 

given by (15) are considered. Applying the 

approach given in section (5) by considered 

two different sets of Hermite-Birkhoff 

problems in the first one the usual differential 

quadrature occurs if we assume that N K  

and {( ,0), 1,..., 1}e i i k   since the usual 

differential quadrature based on lagrange 

interpolating polynomial and the Hermit-

Birkhoff problem can be reduced to a lagrange 

problem if we consider 0j  in each order 

pairs of e. While the second set represent that 

our approach can be considered as a 

generalization to the usual differential 

quadratrue and this can be illustrated by the 

following cases. 
 

Case1:- 

To construct the approximate solution via 

g-spline-based differential quadrature method 

an m-poised Hermite-Birkhoff problem must 

chosen. 

In this case we shall take a 5-poised 

Hermite-Birkhoff problem with  

1 {(1,0), (2,0), (3,0), (4,0), (5,0), (6,0)}e   

we shall seek 
*

5 1 2 3 4 5 6( ) ( , , , , , , )S x S E x x x x x x where  

1 0

1 0

1 0

1 0

1 0

1 0

E

 
 
 
 

  
 
 
 
 

  

and for which   
( )

5 1( ) , ( , )j

i iS x W i j e   

Applying the g-spline based differential 

quadrature method for the governing equation 

(10) ( ( ) 1)S x   and the boundary conditions 

given by (15) using the node points (8) with

6N  , hence we have an eigenvalue system 

given by (12). 

Following Table (1) represent a 

comparison of the low natural frequency ( )

of a uniform beam using g-spline-based 

differential quadrature with the exact solution 

given by Belvins [15]. 

 

Table (1) 

Comparison of natural frequency ( ) of a 

uniform beam using g-spline interpolation-

based differential quadrature using e1. 
 

Boundary 

Conditions 
  (DQ) 

  

(Exact) 
Error% 

SS-SS 9.8669 9.8696 0.0027  

C-SS 15.4682 15.4182 0.05  



Journal of Al-Nahrain University                     Vol.16 (2), July, 2013, pp.139-201                                             

Science 

199 

It is noted that all calculations are 

performed by a computer programs written by 

MATLAB14. The fundamental g-spline 

functions 

10 20 30 40 50 60( ), ( ), ( ), ( ), ( ) and ( )L x L x L x L x L x L x

 are given in appendix A.  
 

Case 2:-  

In this case we shall take a 5-poised 

Hermite-Birkhoff problem with  

2 {(1,0),(2,0), (3,0), (4,1), (5,1), (6,0)}e   

we shall seek 
*

5 1 2 3 4 5 6( ) ( , , , , , , )S x S E x x x x x x where  

 

 

1 0

1 0

1 0

0 1

0 1

1 0

E

 
 
 
 

  
 
 
 
 

  

and for which   
( ) ( )

5 2( ) , ( , )j j

i iS x W i j e   

Similarly applying the g-spline based 

differential quadrature method for the 

governing equation (10) ( ( ) 1)S x   and the 

boundary conditions given by (15) using the 

node points (8) with 6N  , hence we have an 

eigenvalue system given by (12). 

Following Table (2) represent a comparison of 

the low natural frequency ( ) of a uniform 

beam using g-spline-based differential 

quadrature with the exact solution given by 

Belvins [15]. 

 

Table (2) 

Comparison of natural frequency ( ) of a 

uniform beam using g-spline interpolation-

based differential quadrature using e2. 
 

Boundary 

Conditions 

  

(DQ) 

  

(Exact) 
Error% 

SS-SS 9.5773 9.8696 -0.1923 

C-SS 15.7376 15.4182 0.3194 

 

The fundamental g-spline functions 

10 20 30 41 51 60( ), ( ), ( ), ( ), ( ) and ( )L x L x L x L x L x L x

 are given in appendix B. 

 

Conclusion 

It is clear that the g-spline-based 

differential quadrature can be considered as a 

generalization to the usual differential 

quadrature method as it is pointed in section 

(6). Also, from Table (1) and Table (2) one 

can conclude that g-spline based differential 

quadrature given reasonable results although 

we used a small number of node points. 

 

Appendix A: 
9 92 3 4

10

9 9 9 9

1 16.713x+ 55.423( 0) 110.86( .0955)

110.985( .3456

78.366 1

) 111.195( .6546) 111.41( .9046) 55.763( 1)

43.193 93.468x x xL x x

x x x x

 

   

        

      
2 3 9 9

20

9 9 9 9

420.379x 127.056x +257.962x 177.142x +177.142( 0) 221.75( .0955)

221.999( .3456) 222.419( .6546) 222.85( .9046) 111.541( 1)

L x x

x x x x

 

   

      

      
 

9 92

30

9 9 9 9

3 4-5.24x+72.038x 192.538x 151.627x 110.985( 0) 221.999( .0955)

222.249( .3456) 222.669( .6546) 223.101( .9046) 111.666( 1)

L x x

x x x x

 

   

       

      
 

9 9

40

9 9

3

9 9

2 42.519x 37.745x +129.453x 120.173x +111.195( 0) 222.419( .0955)

222.669( .3456) 223.091( .6546) 223.523( .9046) 111.877( 1)

L x x

x x x x

 

   

      

      
 

9 9

50

9 9 9 9

2 3 4-1.681x+25.66x 92.759x 94.766x 111.41( 0) 222.85( .0955)

223.101( .3456) 223.523( .6546) 223.956( .9046) 112.094( 1)

L x x

x x x x

 

   

       

      
 

2 3 4 9 9

60

9 9 9 9

.737x 11.273x +41.076x 42.545x +55.763( 0) 111.541( .0955)

111.666( .3456) 111.877( .6546) 112.094( .9046) 56.105( 1)

L x x

x x x x

 

   

      

      
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Appendix B 
9 9

10

9 8 8

4

9

2 3 42.812( 0) 68.302( 0.0955)

25.613( 0.3458) 26.239( 0.6546) 6.394( 0.9

1 17.597 90.409 174.268 1

04

16.15

6) 0.122( 1)

5L x x

x x x x

x x x x  

   

     

    





  


 

92 9

2

9 8 8 9

3 4

0 +86.24( 0) 137.588( 0.0955) +

51.5

22.056 150.009 3

95( 0.3458) +52.856( 0.6546) 12.881( 0.9046) 2.22

18.05 221.72

1( )

2

1

L x xx x x x

x x x x

 

   

   

     

  

9 9

30

9 8 8

4

9

2 3 101.248( 0) 161.532( 0.0955)

60.573( 0.3458) 62.054

7.198 99.57 271

( 0.6546) 15.123( 0.9046) 0.

.589 216.346

29( 1)

L x x

x x x x

x x x x  

   

     

      

   

9 9

41

2

9 8

4

9

3

8

19.359( 0) 30.886( 0.0955)

11.582( 0.3458) 11.865( 0.6546) 2.892( 0.9046) 0.05

0.752 11.049 36

5

.161 32.96

( 1)

3L x x

x x x

x x x x

x

 

   

     

      

   

9 9

51

9 8 8

3 4

9

2 11.705( 0) 18.674( 0.0955)

7.002( 0.3458) 7.174( 0.6546) 1.748( 0.9046) 0

0.606 8.835 28.158 24.

.033( 1

221

)

L x x

x x x

x x x x

x

 

   

       

      



9 9

60

9 8 8 9

2 3 4 +57.82( 0) 92.246( 0.0955) +

34.591

2.739 39.97 127.807 110

( 0.3458) +35.437( 0.6546) 8.636( 0.9046) 0.16

.779

5( 1)

L x x

x

x x

x

x

x x

x  

   

   

     

  
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 لخلاصةا
 ان طريقة التفاضلات التربيعيه مع نقاط 

لوبانو قد استخدمت لتمثيل النموذج  –كاوس  -جيبيجف
 الرياضي لاهتزاز عامود منتظم. استخدمت دوال 

للاندراج  للحصول على صيغة لمعاملات  -g السبلاين
الاوزان لتقريب المشتقات. ثم تقديم مثال عددي يوضح فعالية 

 ودقة الطريقه المقترحه.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


