Journal of Al-Nahrain University

Vol.15 (4), December, 2012, pp.Y +8-Y13

Science

Development of a 2-D Wavelet Transform based on Kronecker Product

Waleed A. Mahmoud”, Ahmed S. Hadi” and Talib M. Jawad™
University of Baghdad, University of Al-Nahrain.

Abstract

Advances in wavelet transform have produces algorithms capable of surpassing the existing
digital signal processing. This paper presents a new wavelet transform computation method that
verifies the potential benefits of the kronecker product and gains much improvement in terms of

low computational complexity.

A fast algorithm for computing 2-D wavelet transform based on a modified orthogonal matrix is
developed using kronecker product. The algorithm has several promising features which make it

suitable for 2-D signal processing applications.
Keywords: 2-D DWT and Kronecker Product.

Introduction

The discrete wavelet transform (DWT) is
found to be an efficient and useful tool for
signal processing applications [1, 2]. It has
become a powerful tool in various digital
processing such as audio, image and
multimedia [1-3]. Fast computation methods
introduced recently applied in several
approaches for directional representations of
image data, each one with the intent of
efficiently representing image features.
Among these examples include Ridglet [4],
Curvelets [5], Contourlets [6], and Shearlets
[7].

As the choice of transform used depends in
particular, on computational complexity which
is measured in terms of the number of
multiplications and additions required for the
implementation of the transform.

This paper facilitates the computation of
discrete 2-D wavelet transform involving a
computation procedure consisting mainly of
basic arithmetic operations like matrix
multiplication, permutations, shuffling and
other easy to verify operations.

A simple way to perform wavelet
decomposition on 2-D signal is to alternate
between operations on the rows and columns.
First, wavelet decomposition is performed on
each row of the 2-D signal matrix. Then,
wavelet decomposition is performed to each
column of the previous result. The process is
repeated to perform the complete wavelet
decomposition. The basic idea developed in
this paper is that of solving the problem of
cascaded two steps multiplication of 2-D DWT
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computation into one of
multiplication.

A particular set of wavelets is specified by
a particular set of numbers, called wavelet
filter coefficients. For simplicity we will
restrict to wavelet filters in a class discovered
by Daubechies. The most localized embers
often used are Haar and Daubechies 4 (Db4)
coefficients. For easy of notation we will use
the notation h(0) and h(1) for Haar coefficients
and h(0), h(1), h(2), and h(3) for Daubechies 4
coefficients.

In the 2-D Haar bases wavelet, the matrix

form will be as

only step

h(0) k(1) 0 0
1o 0 Rh0) h(1)
h(1) —h(©) O 0
0 0 h(l) —h(O) NXN
1 1 0 O
110 O 1 1
:\/_E 1 -1 0 Q | e (1)
0 0 1 -1

The Daubechies wavelet transform are
defined in the same way as Haar wavelet
transform by computing the running averages
and differences via scalar products with
scaling signals and wavelets the only
difference between them consists in how these
scaling signals and wavelets are defined [8].

The simplest and most localized number is
the 2-D DWT Db4 which has four coefficient
h(0), h(1), h(2), and h(3) where

_(1+V3) _ (3+V3)_
h©)=2"20.4830, h1)= E2=0.8365,
h@= 20224, and h@E)= 2=
~0.1294



The Daubechies scaling function and the
formed matrix is [9],

h(©) h(1) h2) h@3)
r=|h@)  hB)  h(O0) h()
“|h@) —h@) R(1) —h(0)
lh() —h0) K@) -h@),.,
04830 08365 02241 —0.1294
_|-0.1294 —02241 08365 —0.4830
~| 02241 -01294 04830 0.8365
0.8365 —0.4830 —0.1294 —0.2241

)

Fast Algorithm for Computing 2-D DWT:

Any good and successful transform should
have the following categories available, low
complexity and efficient implementation. The
typical approach is to process each of the
rows inorder and then process each column
of the result [10]. Computation complexity
is measured in terms of the number of
multiplications and additions required for the
implementation of the transform. Efficient
implementation is a measure of how well the
transformation can be realized using parallel
processing. This result is a simple and easy
algorithm to use for fast and overall one packet
computation.

Mahmoud et al [11] suggested a fast
algorithm for computing wavelet transform of
2-D signal matrix; such method provides a
mixed orthogonal matrix that offers benefits
over the conventional methods in terms of
reduce the computation and simplify the
implementation.

To compute a single level is orthogonal-
based fast discrete wavelet transform (FDWT)
for 2-D signal, the following steps should be
followed:

1.Signal matrix “X” should be square
(NxN), where N must be power of 2.

2.Construct a transform matrix (T) using the
desired wavelet bases functions.

3.Apply transformation by multiplying the
transform matrix, T, by the input signal
matrix and next multiplying their result by
the transpose of T, thus

Y=T.X.Tt (3)

Where Y is the final NxN discrete wavelet
transform matrix of the, NxN input signal
matrix, X.

Let’s take a general 2-D signal, for
example any 4x4 matrix, and apply the
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following steps to compute 2-D FDWT using
the fast seperable method:
1.Let X be the input 2-D signal,

1 2 3 4
44 9 10 11 12

13 14 15 16
2.For an 4x4 matrix input 2-D signal, X

construct a 4x4 transformation matrix, T,
using Haar coefficients filter, or using Db4
coefficients filter:

a. Apply row transformation by:

[Z]:['_I'][X] .................................................. 4)
By using Haar:
Z(Haar)44=
1 3 4
iy il s
N ! 9 10 11 12
13 14 15 16
4, 2426 5 6569 7.0711 8.4853
_|15.5563 16.9706 183848 19.7990
—5.6569 —5.6569 —5.6569 —5.6569
—2.8284 —2.8284 —2.8284 —2.8284
b. By using Db4:
Z(Db4) 44
0.4830 0.8365 0.2241 —-0.1294
_1—-0.1294 -0.2241 0.8365 —0.4830
102241 —0.1294 0.4830 0.8365
0.8365 —0.4830 —0.1294 -0.2241
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
5.0002 6.4144 7.8286 9.2428
_|—0.0004 -0.0004 -0.0004 -—0.0004
14.7986 16.2128 17.6270 19.0412
—5.6564 —5.6564 —5.6564 —5.6564
3. Transpose the Z matrix,
a. For Haar:
Z'(Haar)4xs
42426 15.5563 —5.6569 —2.8284
5.6569 16.9706 —5.6569 —2.8284]
7.0711 18.3848 —5.6569
—2.8284J
[8.4853 19.7990 —5.6569 _28784
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b. For Db4:
Z'(Db4)4 4
[5.0002 —0.0004 14.7986 —5.6564]
6.4144 —0.0004 16.2128 —5.6564
~17.8286 —0.0004 17.6270
—5.6564
9.2428 —0.0004 19.0412 _ ...,
4. LetB]=[THZT oo (5)
a. For Haar:
. 1 1 0 0
_11lo o 1 1
B(Haar)xs = 51 -1 0 o
0 0 1 -1
[4.2426 155563 —5.6569 —2.8284]
|5.6569 16.9706 —5.6569 —2.8284|
l7.0711 18.3848 —5.6569 —28284J
8.4853 19.7990 —5.6569 _3'goo,
7 23 -8 —4
111 27 -8 -4
-2 =2 0 0
-1 -1 0 0
b. For Db4;
B(Db4)sxs = )
0.4830 0.8365 02241 —0.1294
—0.1294 —0.2241 0.8365 —0.4830
0.2241 —0.1294 0.4830 0.8365 |
0.8365 —0.4830 —0.1294 —0.2241]
[5.0002 —0.0004 14.7986 —5.6564]
|6.4144 —0.0004 16.2128 —5.6564
St T ey —sess
: : : —5.65641
83391 —0.0006 22.1960 —7.999
_ [-o0.0001 0 —0.0001 0
11.8033 —0.0006 25.6602 —7.9993
—1.9998 0 —1.9998 0

5.The final DWT matrix [Y] is equal to the
transpose of [B] matrix.

a. For Haar:
7 11 -2 -1
Y,, = 23 27 -2 -1
: -8 -8 0 0
—4 -4 0 0
b. For Dbh4:
Y4-.4
8.3391 —0.0001 11.8033 —1.9998
_ |—0.0006 0 —0.0006 0
22.1960 —0.0001 25.6602 —1.9998
—7.9993 0 —7.9993 0

Let’s take a general 2-D signal, for
example any 4x4 matrix, and apply the
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following steps to compute 2-D FDWT using
fast method:
1.Let X be the input 2-D signal,

1 2 3 4
44 9 10 11 12

13 14 15 164
2.For a 4x4 matrix input 2-D signal, X,

construct a 4x4 transformation matrix, T.
3.Apply row transformation by
[YI=[TIXITT

a. For Haar:
Y4-.4-
1 1 00 1 2 3 4
_Ilo o 1 1||5 6 7 8
2|1 -1 0 0 9 10 11 12
0 0 1 -—-11113 14 15 16
1 0 1 0
1 0 -1 0
'[O 1 0 1
01 0 -1
7 11 -2 -1
_ 123 27 -2 -1
-8 -8 0 0
-4 -4 0 0
b. For Db4:
Y4.4
0.4830 0.8365 0.2241 —0.1294
_1-0.1294 -0.2241 0.8365 —0.4830
~ | 0.2241  —0.1294 0.4830  0.8365
0.8365 —0.4830 —0.1294 —-0.2241
1 2 3 4
5 6 7 8
9 10 11 12¢
13 14 15 16
0.4830 —0.1294 0.2241 0.8365
0.8365 —0.2241 -0.1294 —0.4830
0.2241  0.8365 0.4830 —0.1294
—0.1294 -0.4830 0.8365 —0.2241
8.3391 —0.0001 11.8033 —1.9998
_ |—0.0006 0 —0.0006 0
22.1960 —0.0001 25.6602 —1.9998
—7.9993 0 —7.9993 0
Proposed Kronecker Product Method for
Computing 2-D Discrete  Wavelet
Transform:

As mentioned in the previous section Fast
Mahmoud [11] method of computation of 2-D
Wavelet transform consists of applying twice
the matrix multiplication and in cascade. First,
wavelet decomposition is performed on each
row of the 2-D signal matrix. Then, wavelet
decomposition is performed to each column of
the previous result.



As an alternative method to Mahmoud
method an investigation of replacing the two
cascade steps matrix multiplication by only
one step computation. This was achieved
through the construction of transform matrix
using Kronecker product.

Given an NxN matrix A=[a;] and an MxN
matrix B, then the Kronecker product AQB
generate C matrix of NMxNM elements
defined as follows:

a1 B a,B ... ayyB

C = AQB = azle aZ:ZB az,:V,B

ayiB aynB ... ayyB
................................ (6)

Note that AQB # BQA , where ® stand
for the Kronecker product [12].

In the proposed method, we will consider
the 2-D DWT by using 1-D computation
instead of the conventional 2-D computation
of 2-D DWT.

Equation (3) requires T.X to be computed
first, and then the result will be multiply by T".
While in our proposed method this can be
done by one shot, as shown below:

YN21 = TNZ.NZ'XNZ.l ................................. (7)
WheI'ETNzNz = TNN ® TNN ..................... (8)

X yz41s the 1-D signal of Xy y after reshape
by taking the row wise, and Yz, is the 1-D
signal of Yy y.
So, Yz ,must be reshaped into Yy y to get
the 2-D DWT.
For example,
X11 X12 X13 X14

Let, X, , = X1 Xpp %23 X24
X31 X32 X33 X34
Xa1 Xa2 Xa3 Xaa
Reshape it to X16’1:[ X1,1 X12 X13 X1,4 X211
X22 X23 X24 X31 _X32 X33 X34 Xa1 X42 Xa3
X4,4]T:[X0 . X15]T.
Let T be the transformation matrix for
DWT type Haar then,

Ti616 = Taa @ Tyy
Y16.1 == T16.16' X16.1' Flnaly, I‘eShapeY161 to
getY,,.

Ilustrative Example:

1.ReshapeX,, to X16:=[1 5 9 13 2 6 10
14 37 11 15 4 8 12 16]"
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2.Reshape T,, to Tig16, by using the
kronecker product:
a. For Haar:

N =

1
0
1
0
0
0
0
0
1
0
1
0
0
0
0

L0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
b.

Ti616 = T4 @ Tyy =

1 0 O 1 1 0 0
0o 1 1 0 0 1 1
-1 0 O 1 -1 0 0
0 1 -1 0 0 1 -1
0 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
1 0 0 -1 -1 O 0
0o 1 1 0 0o -1 -1
-1 0 0 -1 1 0 0
0O 1 -1 0 0o -1 1
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 01
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
1 0 O 1 1 0 0
0 1 1 0 0 1 1
-1 0 O 1 -1 0 0
0 1 -1 0 0 1 -1
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
0O 0 O 0 0 0 0
1 0 0 -1 -1 O 0
0o 1 1 0 0o -1 -1
-1 0 0 -1 1 0 0
0 1 -1 0 o -1 1/
For Db4:

Ti616 = Taa QTha =
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r 0.2333 0.4040 0.1082 —=0.0625

—0.0625 =0.1082 0.4040 —0.2333

0.1082 —0.0625 0.2333 0.4040
0.4040 —-0.2333—-0.0625-0.1082

—0.0625 —0.1082—-0.0290 0.0167 -

0.0167 0.0290 —0.1082 0.0625

—0.0290 0.0167 —0.0625-0.1082

—0.1082 0.0625 0.0167 0.0290 -
0.1082 0.1875 0.0502 —0.0290

—0.02900-0.0502 0.1875 —0.1082
0.0502

0.1875

—0.1082 =0.1875 0.6997 —0.4040
0.1875

L 0.6997 —0.4040-0.1082—-0.1875
0.4040 0.6997 0.1875 —0.1082
—0.1082 —0.1875 0.6997 —0.4040
0.1875 —0.1082 0.4040 0.6997
0.6997 —0.4040 —0.1082—-0.1875

—0.1082 —0.1875 —0.0502 0.0290

0.0290 0.0502 -0.1875 0.1082
—0.0502 0.0290 -0.1082-0.1875
—-0.1875 0.1082 0.0290 0.0502

—0.0625 —0.1082 —0.0290 0.0167

0.0167 0.0290 -0.1082 0.0625
—0.0290 0.0167 -0.0625-0.1082
—-0.1082 0.0625 0.0167 0.0290

—0.2333 —0.4040 —-0.1082 0.0625

0.0625 0.1082 -0.4040 0.2333
—-0.1082 0.0625 -0.2333-0.4040
—-0.4040 0.2333 0.0625 0.1082
0.1082 0.1875 0.050Z2 -0.0290
—0.0290 —-0.0502 0.1875 -—0.1082
0.0502 -0.0290 01082 0.1875
0.1875 —-0.1082 —-0.0290 —0.0502
0.4040 0.6997 0.1875 -=0.1082
—0.1082 —-0.1875 0.6997 —0.4040
0.1875 -0.1082 0.4040 0.6997
0.6997 -—-0.4040 -0.1082 —-0.1875
0.2333 0.4040 0.1082 -0.0625
—0.0625 —-0.1082 0.4040 -—0.2333
0.1082 —-0.0625 0.2333 0.4040
0.4040 —-0.2333 —-0.0625 —-0.1082

—0.0625 —0.1082 —0.0290 0.0167

0.0167 0.0290 -—-0.1082 0.0625
—0.0290 0.0167 -—-0.0625 —-0.1082

—0.1082 0.0625 0.0167 0.0290

—0.0290 0.1082 0.1875 -

—0.1082—-0.0290-0.0502
0.4040 0.6997 0.1875 —0.1082

—0.1082 0.4040 0.6997 .
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—0.0625 —0.1082 —-0.0290 0.0167 1
0.0167 0.0290 -0.1082 0.0625
—0.0290 0.0167 -0.0625 —-0.1082
—0.1082 0.0625 0.0167 0.0290
—0.2333 —-0.4040 -0.1082 0.0625
0.0625 0.1082 -0.4040 0.2333
—0.1082 0.0625 -0.2333 —0.4040
—0.4040 0.2333 0.0625 0.1082
0.4040 0.6997 0.1875 -—0.1082
—0.1082 -0.1875 0.6997 -—0.4040
0.1875 -—-0.1082 0.4040 0.6997
0.6997 -0.4040 -0.1082 —0.1875
—0.1082 —0.1875 -0.0502 0.0290
0.0290 0.0502 -0.1875 0.1082
—0.0502 0.0290 -0.1082 —0.1875
—0.1875 0.1082 0.0290 0.0502 |

3-Y16.1 = T16.16- X161
a. For Haar:
Yiea=1[723-4-41127 -4 -4 -1
-100-1-100]7
Reshape it we will get:
7 11 -1 -1
23 27 -1 -1
-4 —4 0 0
-4 —4 0 0
b. For Db4:
Yie1 = [8.3391 —.0006 22.1960 — 7.9993
—0.0001 0 — 0.0001 011.8033
—0.0006 25.6602 — 7.9993 — 1.9998 0

Ypu =

—1.99980] T
Reshape it we will get:
Yyq
8.3391 —-0.0001 11.8033 —1.9998
—0.0006 0 —0.0006 0
22.1960 —-0.0001 25.6602 —1.9998
—7.9993 0 —7.9993 0
Conclusions
This paper facilitates the computation of
2-D DWT and involving a computation
procedure consisting mainly of basic

arithmetic operation of matrix multiplication
and other simple and easy operation like
permutations and shuffling.

Some flashing remarks can be concluded
after studying the proposed direct computation
method which based on Kronecker product:

1.1t offers benefits over methods in terms of
savings in computation. It is basically the
same previous matrix in which only the
transformation coefficients are expanded to
satisfy the arrangement of the input matrix
into a vector. The reason why we have



chosen such an arrangement is that this
scattering of the data tends to be less
sensitive to coefficient reduction and thus
gives better quality of the image. Basically
all matrix coefficients have the same local
correction and statistical prosperities that
the conventional matrix have.

2.The single level multiplication of the
Kronecker product is equivalent to two
cascaded levels of the conventional
method.

3.The new method required a vector-valued
input signal, which is a new issue
addressed for 2-D transform computation.
This conversation is called preprocessing.

4.The transform matrix dimension used in
computing; 2-D DMWT algorithm should
equal N°xN? for a matrix of NxN
dimension. Having this in mind; the 2-D
DWT implementation has to be adapted to
work on 16x16 for 4x4 input matrix.
It is possible to generalize this idea to other

transforms like FFT, Multiwavelet, Slantlet,
Ridglelet, Curvelet and Shearlet.
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