On (1,2)* b-Open Functions and (1,2)* b-Closed Functions In Bitopological Spaces

Sabiha I.Mahmood^{*} and Sanaa Hamdi^{**}

^{*}Department of Mathematics, College of Science, Al-Mustansiryah University, Baghdad-Iraq. **Department of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad-Iraq.

Abstract

The main goal of this paper is to create special type of open and closed functions in bitopological spaces namely, quasi $(1,2)^*$ b-open functions and quasi $(1,2)^*$ b-closed functions. Also, we give some properties and equivalent statements of this concept.

Keywords: (1,2)* b-continuous function, (1,2)* b-irresolute function, contra (1,2)* b-irresolute function, quasi (1,2)* b-open function and quasi (1,2)* b-closed function.

Introduction

The concept of a bitopological space $(X\tau_1,\tau_2)$ was first introduced by Kelly [1], where X is a nonempty set and τ_1, τ_2 are topologies on X. Also, the concept of $(1,2)^*$ b-open sets was first introduced and studied by Sreeja and Janaki [2]. The purpose of this paper is to give a new type of open and closed functions in bitopological spaces called quasi $(1,2)^*$ b-open functions and quasi $(1,2)^*$ b-closed functions. Also, we study the relation between the quasi $(1,2)^*$ b-open (resp. quasi $(1,2)^*$ b-closed) functions and each of the $(1,2)^*$ open (resp. $(1,2)^*$ closed) functions, $(1,2)^*$ b-open (resp. $(1,2)^*$ b-closed) functions and pre- $(1,2)^*$ b-open (resp. pre- $(1,2)^*$ b-closed) functions. Moreover, we study the characterizations and basic properties of quasi $(1,2)^*$ b-open functions and quasi $(1,2)^*$ b-closed) functions.

Throughout this paper (X,τ_1,τ_2) , (Y,σ_1,σ_2) and (Z,η_1,η_2) (or simply X, Y and Z) represent non-empty bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned

1. Preliminaries

First, we recall the following definitions: (1.1) *Definition [3]:*

A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -open if $A=U_1 UU_2$ where $U_1 \in \tau_1$ and $U_2 \in \tau_2$. The complement of a $\tau_1 \tau_2$ -open set is called $\tau_1 \tau_2$ -closed.

Notice that $\tau_1 \tau_2$ -open sets need not necessarily form a topology [3].

(1.2)Definition [3]:

Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then:-

i) The $\tau_1 \tau_2$ -closure of A, denoted by $\tau_1 \tau_2 c(A)$, is defined by:

$$\tau_1 \tau_2 c(A) = I \{F: A \subseteq F \& F \text{ is } \tau_1 \tau_2 - dosed\}$$

ii) The $\tau_1 \tau_2$ -interior of A, denoted by $\tau_1 \tau_2 int(A)$, is defined by:

 $\tau_1 \tau_2 \operatorname{int}(A) = \bigcup \{U: U \subseteq A \& U \text{ is } \tau_1 \tau_2 - open \}.$

(1.3)Definition [4]:

A subset A of a bitopological space (X, τ_1, τ_2) is called an $(1,2)^*$ -neighborhood of a point x in X if there exists a $\tau_1 \tau_2$ -open set U in X such that $x \in U \subseteq A$.

(1.4)Definition [2]:

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(1,2)^*$ b-open if $A \subseteq \tau_1 \tau_2 d(\tau_1 \tau_2 \operatorname{int}(A)) U \tau_1 \tau_2 \operatorname{int}(\tau_1 \tau_2 d(A))$. The complement of an $(1,2)^*$ b-open set is said to be $(1,2)^*$ b-closed. The class of all $(1,2)^*$ bopen (resp. $(1,2)^*$ b-closed) subsets of X is denoted by $(1,2)^*BQX, \tau_1, \tau_2)$ (resp. $(1,2)^*BQX, \tau_1, \tau_2)$).

(1.5) Definition:

Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. Then :-

i) The $(1,2)^*$ b-closure of A, denoted by $(1,2)^*bc(A)$, is defined by: $(1,2)^*bc(A) = I \{F: A \subseteq F \& F is (1,2)^*b - closed\}$.

ii) The $(1,2)^*$ b-interior of A, denoted by $(1,2)^*$ bint(A) is defined by: $(1,2)^*$ bint(A) = U{U:U \subseteq A & U is $(1,2)^*b$ -open}.

The following proposition holds. The proof is easy and hence omitted.

(1.6) Proposition:

Let (X, τ_1, τ_2) be a bitopological space and $A \subset X$. Then:-

1) The union (resp. intersection) of any family of $(1,2)^*$ b-open (resp. $(1,2)^*$ b-closed) sets in a *bitopological space* (X,τ_1,τ_2) *is* $(1,2)^*$ *b-open (resp.* $(1,2)^*$ *b-closed*).

2) $A \subseteq (1,2) * bc(A)$.

3) (1,2)*bc(A) is an (1,2)*b-closed set in X.

4) A is $(1,2)^*$ b-closed in X iff $A=(1,2)^*bc(A)$.

5) (**1,2**)*bint(A)⊆A.

6) (1,2)*bint(A) is an (1,2)* b-open set in X.

7) Ais $(1,2)^*$ b-open iff A=(1,2)*bint(A).

(1.7) **Definition** [5]:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be $(1,2)^*$ -continuous if $f^{-1}(V)$ is $\tau_1\tau_2$ -open set in X for every $\sigma_1\sigma_2$ -open set V in Y.

(1.8) **Definition** [6]:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be $(1,2)^*$ -open (resp. $(1,2)^*$ -closed) if the image of every $\tau_1\tau_2$ -open (resp. $\tau_1\tau_2$ closed) subset of X is a $\sigma_1\sigma_2$ -open (resp. $\sigma_1\sigma_2$ -closed) set in Y.

(1.9) Definition [2]:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be $(1,2)^*$ b-irresolute if $f^{-1}(V)$ is $(1,2)^*$ b-open set in X for every $(1,2)^*$ b-open set V in Y.

(1.10) Proposition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (1,2)* b-irresolute iff $f^{-1}(V)$ is (1,2)* b-closed set in X for every (1,2)* b-closed set V in Y.

(1.11) Definition [7]:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be pre-(1,2)* b-closed (resp. pre-(1,2)* b-open) if the image of every (1,2)* b-closed (resp. $(1,2)^*$ b-open) subset of X is an $(1,2)^*$ b-closed (resp. $(1,2)^*$ b-open) set in Y.

2. Quasi (1,2)* b-open Functions

Now, we introduce the following definitions:

(2.1) Definition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be $(1,2)^*$ b-open if the image of every $\tau_1\tau_2$ -open subset of X is an $(1,2)^*$ b-open set in Y.

(2.2) Definition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be quasi $(1,2)^*$ b-open if the image of every $(1,2)^*$ b-open set in X is $\sigma_1\sigma_2$ -open in Y.

(2.3) Proposition:

Every quasi $(1,2)^*$ b-open function is $(1,2)^*$ -open as well as $(1,2)^*$ b-open.

(2.4) Remark:

The converse of (2.3) may not be true in general. Consider the following example.

Example:

Let $\overline{X} = Y = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi\}, \sigma_1 = \{Y, \phi, \{a\}, \{b, c\}\} \& \sigma_2 = \{Y, \phi\}.$ So the sets in $\{X, \phi, \{a\}\}$ are $\tau_1 \tau_2$ - open in X and the sets in $\{Y, \phi, \{a\}, \{b, c\}\}$ are $\sigma_1 \sigma_2$ -open in Y. Also, $(1,2) * BQX, \tau_1, \tau_2) = \{X, \phi, \{a, c\}, \{a, b\}, \{a\}\} \& (1,2) * BQY, \sigma_1, \sigma_2) = \{Y, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a function defined by: f(a)=a, f(b)=b & f(c)=c. It is clear that f is $(1,2)^*$ b-open as well as $(1,2)^*$ -open, but f is not quasi $(1,2)^*$ b-open, since $\{a, c\}$ is $(1,2)^*$ b-open in (X,τ_1,τ_2) , but $f(\{a,c\})=\{a,c\}$ is not $\sigma_1\sigma_2$ -open in (Y,σ_1,σ_2) .

(2.5) Proposition:

Every quasi $(1,2)^*$ b-open function is pre- $(1,2)^*$ b-open.

(2.6) Remark:

The converse of (2.5) may not be true in general. Consider the following example.

Let $X=Y=\{a,b,c\}, \tau_1=\{X,\phi\}, \tau_2=\{X,\phi,\{a,c\}\}, \sigma_1=\{Y,\phi,\{a\},\{b\},\{a,b\}\} \& \sigma_2=\{Y,\phi,\{a\}\}.$ So the sets in $\{X,\phi,\{a,c\}\}$ are $\tau_1\tau_2$ -open in X and the sets in $\{Y,\phi,\{a\},b\},\{a,b\}\}$ are $\sigma_1\sigma_2$ -open in Y. Also, $(1,2)*BQX,\tau_1,\tau_2)=\{X,\phi,\{a\},\{c\},\{a,c\},\{b,c\}\}\& (1,2)*BQY,\sigma_1,\sigma_2) = \{Y,\phi,\{a\},\{b\},\{a,c\},\{a,b\},\{a,c\},\{a,b\},\{b,c\}\}.$

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a function defined by: f(a)=a, f(b)=c & f(c)=b. It is clear that f is pre-(1,2)* bopen,but f is not quasi (1,2)* b-open, since $\{a,b\}$ is (1,2)* b-open in (X,τ_1,τ_2) , but $f(\{a,b\})=\{a,c\}$ is not $\sigma_1\sigma_2$ -open in (Y,σ_1,σ_2) .

Thus we have the following diagram:

(2.7) *Theorem*:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is quasi $(1,2)^*$ b-open iff $f((1,2)^*bint(U)) \subseteq \sigma_1 \sigma_2 int((U))$ for every subset U of X.

<u>Proof:</u>⇒

Let f be a quasi $(1,2)^*$ b-open function. To prove that $f((\bar{I},2)*bint(U)) \subseteq \sigma_1 \sigma_2 int(U)$ for every subset U of X. By (1.6) no. 5, (1,2)*bint(U) \subset U \Rightarrow $f((1,2)*bintU) \subset f(U)$. Since (1,2)*bintU) is an (1,2)* b-open set in X and f is quasi $(1,2)^*$ b-open, then $f((1,2)^*bint(U))$ $\sigma_1 \sigma_2$ -open Thus is in Y. $f((1,2)*bint(U)) \subset \sigma_1 \sigma_2 int(f(U)).$ Converselv Suppose that $f((1,2)*bint(U)) \subset \sigma_1 \sigma_2 int(U)$ for every subset U of X. To prove that f is quasi $(1,2)^*$ b-open. Let U be an $(1,2)^*$ b-open set in X. Then by (1.6) no.7. $U=(12)*bintU \Rightarrow$ $f(U)=f((0,2)*bint(U)) \subseteq \sigma_1 \sigma_2 int((U)).$ $\sigma_1 \sigma_2 \operatorname{int} f(U) \subset f(U)$. Consequently But $\sigma_1 \sigma_2 \operatorname{int} f(U) = f(U) \Longrightarrow f(U)$ is a $\sigma_1 \sigma_2$ - open set in Y. Hence f is a quasi $(1,2)^*$ b-open function.

(2.8) Theorem:

If a function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is quasi $(1,2)^*$ b-open, then $(1,2)^*bint(^{-1}(U)) \subseteq f^{-1}(\sigma_1\sigma_2 int(U))$ for every subset U of Y.

Proof:

Let U be any arbitrary subset of Y. Then, $f^{-1}(U)$ is a subset of X. Since f is quasi (1,2)* b-open, then by (2.7) $f((1,2)*bintf^{-1}(U)) \subseteq \sigma_1 \sigma_2 intf(f^{-1}(U)) \subseteq$ $\sigma_1 \sigma_2 intU)$. Thus $(1,2)*bintf^{-1}(U) \subseteq f^{-1}(\sigma_1 \sigma_2 intU))$ for every subset U of Y.

(2.9) Definition:

A subset A of a bitopological space (X, τ_1, τ_2) is said to be an $(1,2)^*$ b-neighborhood of a point x in X if there exists an $(1,2)^*$ b-open set U in X such that $x \in U \subseteq A$.

(2.10) Theorem:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a function from a bitopological space X into a bitopological space Y. Then the following are equivalent:-

i) f is quasi (1,2)* b-open.

- ii) $f((1,2)*bint(U)) \subseteq \sigma_1 \sigma_2 int((U))$ for each subset U of X.
- iii) for each $x \in X$ and each $(1,2)^*$ bneighborhood U of x in X, there exists an $(1,2)^*$ -neighborhood V of f(x) in Y such that $V \subset f(U)$.

Proof:

(i) \rightarrow (ii). It follows from theorem (2.7) (ii) \rightarrow (iii).

Let $X \in X$ and U be an arbitrary $(1,2)^*$ b-neighborhood of x in X, then by (2.9) there exists an $(1,2)^*$ b-open set V in X such that $X \in V \subseteq U$. Since V is $(1,2)^*$ b-open in X, then by (1.6) no.7, $V = (1,2)^*$ bint(V). By (ii), we have $f(V) = f((1,2)^*$ bint(V)) \subseteq $\sigma_1 \sigma_2 intf(V)) \Rightarrow f(V) \subseteq \sigma_1 \sigma_2 intf(V)$. Since $\sigma_1 \sigma_2 intf(V)) \subseteq f(V) \Rightarrow$ $f(V) = \sigma_1 \sigma_2 \operatorname{int} f(V) \Longrightarrow f(V) \text{ is } \sigma_1 \sigma_2 \text{ open}$ in Y such that $f(x) \in f(V) \subseteq f(U)$. (iii) \rightarrow (i).

Let U be an arbitrary $(1,2)^*$ b-open set in X. Then for each $y \in f(U)$ there exists $x \in U$ such that f(x)=y. By (iii) there exists an $(1,2)^*$ -neighborhood V_y of y in Y such that $V_y \subseteq f(U)$. Since V_y is an $(1,2)^*$ -neighborhood of y, then there exists a $\sigma_1 \sigma_2$ -open set W_y in Y such that $y \in W_y \subseteq V_y$. Thus $f(U) = \bigcup_{y \in f(U)} W_y$ which is a $\sigma_1 \sigma_2$ -open set in Y. This implies that f is quasi $(1,2)^*$ b-open function.

(2.11) Theorem:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is quasi (1,2)* b-open iff for any subset B of Y and for any (1,2)* b-closed set F of X containing $f^{-1}(B)$, there exists a $\sigma_1\sigma_2$ -closed set G of Y containing B such that $f^{-1}(G) \subseteq F$.

<u>Proof:</u> ⇒

Suppose that f is quasi $(1,2)^*$ b-open. Let $B \subseteq Y$ and F be an $(1,2)^*$ b-closed subset of X such that $f^{-1}(B) \subseteq F$. Now, put G = Y - f(X - F). Since $f^{-1}(B) \subseteq F$ $\Rightarrow X - F \subseteq f^{-1}(B^c) \Rightarrow$ $f(X - F) \subseteq f(f^{-1}(B^c)) \subseteq B^c \Rightarrow$ $B \subseteq Y - f(X - F) \Rightarrow B \subseteq G$. Since f is quasi $(1,2)^*$ b-open, then G is a $\sigma_1 \sigma_2$ -closed subset of Y. Moreover, we have $f^{-1}(G) \subseteq F$.

Conversely, let U be an $(1,2)^*$ b-open set in X. To prove that f(U) is a $\sigma_1 \sigma_2$ -open set in Y. Put B=Y-f(U), then X-U is an $(1,2)^*$ b-closed set in X such that $f^{-1}(B) \subseteq X-U$.

By hypothesis, there exists a $\sigma_1\sigma_2$ -closed subset F of Y such that $B \subseteq F$ and $f^{-1}(F) \subset X - U$. Hence, we obtain

 $f(U) \subseteq Y - F$. On the other hand, since $B \subseteq F$ $\Rightarrow Y - F \subseteq Y - B = f(U) \Rightarrow$

 $Y-F \subseteq f(U)$. Thus f(U)=Y-F which is $\sigma_1 \sigma_2$ -open and hence f is a quasi $(1,2)^*$ b-open function.

(2.12) *Theorem*:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is quasi $(1,2)^*$ b-open iff $f^{-1}(\sigma_1\sigma_2c(B)) \subseteq (1,2)^*bc(f^{-1}(B))$ for every subset B of Y.

<u>Proof:</u>⇒

Suppose that f is quasi $(1,2)^*$ b-open. To prove that $f^{-1}(\sigma_1 \sigma_2 c(B)) \subseteq (1,2) * bc(f^{-1}(B))$ for everv subset В of Y. Since $f^{-1}(B) \subset (1,2) * bc(f^{-1}(B))$ for any subset B of Y, then by (2.11) there exists a $\sigma_1 \sigma_2$ -closed set F in Y such that B⊂F and $f^{-1}(F) \subset (1,2) * bc(f^{-1}B))$. Since $B \subset F \Rightarrow$ $\sigma_1 \sigma_2 c(B) \subset \sigma_1 \sigma_2 c(F) = F$. Therefore, we obtain $f^{-1}(\sigma_1\sigma_2cl(B)) \subseteq f^{-1}(F) \subseteq (1,2) * bcl(f^{-1}(B)).$ Thus $f^{-1}(\sigma_1 \sigma_2 c lB) \subset (1,2) * bc lf^{-1}(B)$ for

every subset B of Y. **Conversely,** let $B \subseteq Y$ and F be an $(1,2)^*$ b-closed subset of X such that $f^{-1}(B) \subseteq F$. Put

W= $\sigma_1 \sigma_2 c$ (B), then we have B w and f⁻¹(W)=f⁻¹($\sigma_1 \sigma_2 c$ (B))(1,2)*bc (f⁻¹(B)) (1,2)*bc (F)=F. Then by theorem (2.11) f is a quasi (1,2)* b-open function.

However the following theorem holds. The proof is easy and hence omitted.

(2.13) *Theorem*:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two functions. Then:-

- 1) If f and g are quasi (1,2)* b-open, then gof is quasi (1,2)* b-open.
- 2) If f and g are quasi (1,2)* b-open, then gof is pre-(1,2)* b-open.
- 3) If f is quasi (1,2)* b-open and g is (1,2)*open, then gof is quasi (1,2)* b-open.
- 4) If f is quasi (1,2)* b-open and g is (1,2)* b-open, then gof is pre-(1,2)* b-open.
- 5) If f is quasi (1,2)* b-open and g is pre-(1,2)* b-open, then g∘f is pre-(1,2)* b-open
- 6) If f is (1,2)* b-open and g is quasi (1,2)* b-open, then gof is (1,2)*-open.
- 7) If f is pre-(1,2)* b-open and g is quasi (1,2)* b-open, then gof is quasi (1,2)* b-open.

8) If f is $(1,2)^*$ -open and g is quasi $(1,2)^*$ b-open, then $g \circ f$ is $(1,2)^*$ -open.

(2.14) Definition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be $(1,2)^*$ b-continuous if $f^{-1}(V)$ is $(1,2)^*$ b-open set in X for every $\sigma_1\sigma_2$ -open set V in Y.

(2.15) Proposition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (1,2)* b-continuous iff $f^{-1}(V)$ is (1,2)* b-closed set in X for every $\sigma_1\sigma_2$ - closed set V in Y.

(2.16) Definition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be contra $(1,2)^*$ b-irresolute if $f^{-1}(V)$ is $(1,2)^*$ b-closed set in X for every $(1,2)^*$ b-open set V in Y.

(2.17)Theorem:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two functions. Then:-

- If gof is quasi (1,2)* b-open and g is (1,2)*-continuous and one-to-one, then f is quasi (1,2)* b-open.
- 2) If gof is quasi (1,2)* b-open and g is (1,2)*
 b-continuous and one-to-one, then f is pre-(1,2)* b-open.
- 3) If gof is contra (1,2)* b-irresolute and g is quasi (1,2)* b-open and one-to-one, then f is contra (1,2)* b-irresolute.
- 4) If gof is quasi (1,2)* b-open and f is (1,2)* b-irresolute and onto, then g is (1,2)*-open.

Proof:

1) To prove that $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is quasi $(1,2)^*$ b-open. Let U be an $(1,2)^*$ b-open subset of X,since $g \circ f$ is quasi $(1,2)^*$ b-open, then $(g \circ f)(U)$ is $\eta_1 \eta_2$ -open in Z. is (1,2)*-continuous, Since g then $g^{-1}(g \circ f(U)) = (g^{-1} \circ g)(f(U))$ is $\sigma_1 \sigma_2$ -open in Y. Since g is one-to-one, then f(U) $\sigma_1 \sigma_2$ -open in Y. Thus is $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a quasi $(1,2)^*$ b-open function.

- 2) To prove that $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is pre-(1,2)* b-open. Let U be an (1,2)* b-open subset of X, since $g \circ f$ is quasi (1,2)* b-open, then $(g \circ f)(U)$ is $\eta_1 \eta_2$ -open in Z. Since g is (1,2)* b-continuous, then $g^{-1}(g \circ f(U)) = (g^{-1} \circ g)(f(U))$ is (1,2)* b-open in Y. Since g is one-to-one, then f(U) is (1,2)* b-open in Y. Thus $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a pre-(1,2)* b-open function.
- 3) To prove that $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is contra $(1,2)^*$ b-irresolute. Let U be an $(1,2)^*$ b-open subset of Y, since g is quasi $(1,2)^*$ b-open, then g(U) is $\eta_1\eta_2$ -open in Z.

Since every $\eta_1 \eta_2$ -open set is $(1,2)^*$ b-open, then g(U) is $(1,2)^*$ b-open in Z. Since $g \circ f$ is contra $(1,2)^*$ b-irresolute, then $(g \circ f)^{-1}(g(U))$ is $(1,2)^*$ b-closed in X, since is one-one, then g $(g \circ f)^{-1}(g(U)) = f^{-1}(g^{-1} \circ g)(U) = f^{-1}(U)$ is an $(1,2)^*$ b-closed set in X, hence $f^{-1}(U)$ is $(1,2)^*$ b-closed in Χ. Thus $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is contra $(1,2)^*$ b-irresolute.

4) To prove that $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is $(1,2)^*$ -open. Let U be a $\sigma_1\sigma_2$ -open subset of Y, then U is an $(1,2)^*$ b-open subset of Y, since f is $(1,2)^*$ b-irresolute, then $f^{-1}(U)$ is an $(1,2)^*$ b-open set in X, since $g \circ f$ is quasi $(1,2)^*$ b-open, then $(g \circ f)(f^{-1}(U))=g(f \circ f^{-1}(U))$ is $\eta_1\eta_2$ -open in Z. Since f is onto, then g(U) is $\eta_1\eta_2$ open in Z. Thus $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is an $(1,2)^*$ -open function.

3. Quasi (1,2)* b-closed Functions

(3.1) Definition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be $(1,2)^*$ b-closed if the image of every $\tau_1\tau_2$ -closed subset of X is $(1,2)^*$ b-closed set in Y.

(3.2) Definition:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be quasi $(1,2)^*$ b-closed if the image of every (1,2)* b-closed set in X is $\sigma_1 \sigma_2$ -closed set in Y.

(3.3) Proposition:

Every quasi $(1,2)^*$ b-closed function is $(1,2)^*$ -closed as well as $(1,2)^*$ b-closed.

(3.4) *Remark:*

The converse of (3.3) may not be true in general. Consider the following example.

<u>Example:</u>

Let $X=Y=\{a,b,c\}$ & $\tau_1=\{X,\phi,\{a,c\}\},$ $\tau_2=\{X,\phi\},$ $\sigma_1=\{Y,\phi,\{a,c\}\}$ & $\sigma_2=\{Y,\phi,\{a\}\}.$ So the sets in $\{X,\phi,\{b\}\}$ are $\tau_1\tau_2$ -closed in X and the sets in $\{Y,\phi,\{b\},\{b,c\}\}$ are $\sigma_1\sigma_2$ -closed in Y.

Also, $(1,2)*BC(X,\tau_1,\tau_2) = \{X,\phi,\{a\},\{b\}, \{c\},\{a,b\},\{b,c\}\} \& (1,2)*BC(Y,\sigma_1,\sigma_2) = \{Y,\phi,\{b\},\{c\},\{b,c\}\}.$

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a function defined by: f(a)=a, f(b)=b & f(c)=c. It is clear that f is $(1,2)^*$ b-closed as well as $(1,2)^*$ -closed, but f is not quasi $(1,2)^*$ b-closed, since $\{a\}$ is $(1,2)^*$ b-closed in X, but $f(\{a\})=\{a\}$ is not $\sigma_1\sigma_2$ -closed in Y.

(3.5) Proposition:

Every quasi $(1,2)^*$ b-closed function is pre- $(1,2)^*$ b-closed.

(3.6) *Remark:*

The converse of (3.5) may not be true in general. In (2.6), f is pre-(1,2)* b-closed, but f is not quasi (1,2)* b-closed, since {a} is (1,2)* b-closed in X, but f({a})={a}is not $\sigma_1\sigma_2$ - closed in Y.

Thus we have the following diagram:

(3.7) *Theorem*:

A bijective function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is quasi (1,2)* b-closed iff it is quasi (1,2)* b-open.

Proof:

Let f be a quasi $(1,2)^*$ b-closed function. To prove that f is a quasi $(1,2)^*$ b-open function.Let U be an $(1,2)^*$ b-open set in $X \Longrightarrow U^c$ is $(1,2)^*$ b-closed in X. Since f is quasi $(1,2)^*$ b-closed, then $f(U^c)$ is $\sigma_1\sigma_2$ closed in Y. Therefore $(f(U^c))^c$ is $\sigma_1\sigma_2$ -open in Y. Since f is a bijective function, then $(f(U^c))^c = f(U) \Longrightarrow f(U)$ is $\sigma_1\sigma_2$ -open in Y. Thus $f:X \longrightarrow Y$ is a quasi $(1,2)^*$ b-open function.

Conversely, Suppose that $f: X \rightarrow Y$ is quasi $(1,2)^*$ b-open. To prove that f is quasi $(1,2)^*$ b-closed. Let F be an $(1,2)^*$ b-closed set in X \Rightarrow F^c is $(1,2)^*$ b-open in X. Since f is quasi $(1,2)^*$ b-open,then $f(F^c)$ is $\sigma_1\sigma_2$ -open in Y. Therefore $(f(F^c))^c$ is $\sigma_1\sigma_2$ -closed in Y. Since f is a bijective function, then $(f(F^c))^c = f(F)$ $\Rightarrow f(F)$ is $\sigma_1\sigma_2$ -closed in Y. Thus $f: X \rightarrow Y$ is a quasi $(1,2)^*$ b-closed function.

(3.8) *Theorem*:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ from a bitopological space X into a bitopological space Y is quasi (1,2)* b-closed iff $\sigma_1 \sigma_2 c l(f(F)) \subseteq f((1,2)*bc(F))$ for every subset F of X.

Proof:

 $\Rightarrow \text{Let } f \text{ be a quasi } (1,2)^* \text{ b-closed function} .$ To prove that $\sigma_1 \sigma_2 c(f(F)) \subseteq f((1,2)^* bc(F))$ for every subset F of X. By (1.6) no.2, $F \subseteq (1,2)^* bc(F) \Rightarrow f(F) \subseteq f((1,2)^* bc(F)).$ Since $(1,2)^* bc(F)$ is an $(1,2)^*$ b-closed set in X and f is quasi $(1,2)^*$ b-closed, then $f((1,2)^* bc(F))$ is $\sigma_1 \sigma_2$ -closed in Y. Thus $\sigma_1 \sigma_2 c(f(F)) \subseteq f((1,2)^* bc(F))$ for every subset F of X.

Conversely:

Suppose that $\sigma_1 \sigma_2 cl(f(F)) \subseteq f((l,2)*bcl(F))$ for every subset F of X. To prove that f is quasi (1,2)* b-closed. Let F be an (1,2)* bclosed set in X. Then by (1.6) no. 4, $F=(l,2)*bc(F) \Rightarrow f(F)=f((l,2)*bcl(F))$. By hypothesis $\sigma_1 \sigma_2 cl(f(F)) \subseteq f((l,2)*bcl(F))$ $\Rightarrow \sigma_1 \sigma_2 cl(f(F)) \subseteq f((l,2)*bcl(F)) = f(F)$. But $f(F) \subseteq \sigma_1 \sigma_2 cl(f(F))$. Consequently $f(F) = \sigma_1 \sigma_2 cl(f(F)) \Rightarrow f(F)$ is a $\sigma_1 \sigma_2$ -

Journal of Al-Nahrain University Science

closed set in Y. Thus f is a quasi $(1,2)^*$ b-closed function.

(**3.9**) *Theorem*:

A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is quasi $(1,2)^*$ b-closed iff for any subset B of Y and for any $(1,2)^*$ b-open set G of X containing $f^{-1}(B)$, there exists a $\sigma_1\sigma_2$ -open set U of Y containing B such that $f^{-1}(U) \subseteq G$.

Proof:

This proof is similar to that of theorem (2.11).

However the following theorem holds. The proof is easy and hence omitted.

(3.10) Theorem:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two functions. Then:-

- 1) If f and g are quasi (1,2)* b-closed, then gof is quasi (1,2)* b-closed.
- If f and g are quasi (1,2)* b-closed, then g∘f is pre-(1,2)* b-closed.
- If f is quasi (1,2)* b-closed and g is (1,2)*closed, then g∘f is quasi (1,2)* b-closed.
- 4) If f is quasi (1,2)* b-closed and g is (1,2)* b-closed, then gof is pre-(1,2)* b-closed.
- 5) If f is quasi $(1,2)^*$ b-closed and g is pre- $(1,2)^*$ b-closed, then $g \circ f$ is pre- $(1,2)^*$ b-closed.
- 6) If f is (1,2)* b-closed and g is quasi (1,2)* b-closed, then gof is (1,2)*-closed.
- 7) If f is pre- $(1,2)^*$ b-closed and g is quasi $(1,2)^*$ b-closed, then $g \circ f$ is quasi $(1,2)^*$ b-closed.
- 8) If f is $(1,2)^*$ -closed and g is quasi $(1,2)^*$ b-closed, then $g \circ f$ is $(1,2)^*$ -closed.

(3.11) Theorem:

Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g:(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two functions Then:-

- If gof is quasi (1,2)* b-closed and g is (1,2)*-continuous and one-to-one, then f is quasi (1,2)* b-closed.
- 2) If gof is quasi (1,2)* b-closed and g is (1,2)* b-continuous and one-to-one, then f is pre-(1,2)* b-closed.

- 3) If gof is quasi (1,2)* b-closed and f is (1,2)* b-irresolute and onto, then g is (1,2)*-closed.
- 4) If gof is contra (1,2)* b-irresolute and f is quasi (1,2)* b-closed and onto, then g is contra (1,2)* b-irresolute.

Proof:

This proof is similar to that of theorem (2.17).

References

- Kelly, J. C., "Bitopological spaces", proc. London Math. Soc., V. 13, No. 3, P.P. 71-89, 1963.
- [2] Sreeja, D. and Janaki, C. ,"On (1,2)*-πgbclosed sets", International Journal of computer Applications, V. 42,No. 5,P.P. 29-34, 2012.
- [3] Ravi, O. and Lellis Thivagar, M., "On stronger forms of (1,2)*- quotient mappings in bitopological spaces", Internat J. Math. Game Theory and Algebra, V.14, No. 6, P.P. 481-492, 2004.
- [4] Al-Zubaidy, S.I., "On A bitopological (1,2)* Proper Functions", Ibn Al-Haitham Journal for Pure and Applied Science, 2013 (to appear).
- [5] Lellis Thivagar, M., Ravi, O. and Ekici, E., "On (1,2)*- sets and decompositions of bitopological (1,2)*- continuous mappings", Kochi J. Math., V. 3, P.P. 181-189, 2008.
- [6] Ravi, O., Jeyashri, S., Pious Missier, S. and Nagendran, R., "(1,2)*-semi-normal spaces and some bitopological functions (to appear).
- [7] Al-Zubaidy, S.I., "On (1,2)* b-Generalized α-Closed Sets In Bitopological Spaces", Journal College of Education Al-Mustansiriyah University, 2013 (to appear).

الخلاصة

إن الهدف الرئيسي من هذا البحث هو تقديم أنواع خاصة من الدوال المفتوحة والدوال المغلقة في الفضاءات التبولوجيه الثنائية أسميناها بالدوال الكوازى المفتوحة- duasi (1,2) b (quasi (1,2) b-open functions) *(1,2) و الدوال الكوازي المغلقة – d *(1,2)(quasi (1,2) b-closed functions) كذلك نحن درسنا المكافئات والخواص الأساسية للدوال الكوازى المفتوحة-b *(1,2) و الدوال الكوازي المغلقة -b *(1,2).