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Abstract 

In this paper, we study certain type of fuzzy metric spaces and then prove the completeness of 

this metric space, this metric space will be denoted by (F,ρ) where F is the family of all fuzzy 

subsets of the set of fuzzy numbers and ρ is the distance function. Then the statement and the proof 

of Banach fixed point theorem in the fuzzy metric space (F,ρ) is given as a main result. 

 

1. Introduction 

The concept of fuzzy sets was introduced 

initially by Zadeh in 1965. Since then, this 

concept is used in topology and some branches 

of analysis, many authors have expensively 

developed the theory of fuzzy sets and 

application. 

I. Kramosil and J. Michalek [5] in 1975 

introduced the concept of fuzzy metric spaces, 

which opens an avenue for further 

development of analysis in such spaces. 

Consequently, in the same time some metric 

fixed point results were generalized to fuzzy 

metric spaces and given by A. George and P. 

Veeramani [6] in 1994 and M. Grabiec [7] in 

1998 and others.  

Several approaches are proposed to study 

fuzzy metric spaces depending on the 

definition of the distance function either using 

the α-level sets, or using the membership 

function, or using fuzzy numbers, etc. 

Therefore, the study of some well know 

results on fuzzy metric spaces will depend on 

the structure of the fuzziness, such as the 

completeness of such spaces, fixed point 

theorem, etc. 

In this paper, we prove the proposed fuzzy 

metric space is complete and the fixed point 

theorem is valued. 
 

2. Preliminaries 

In this section, some fundamental and 

primitive concepts related to fuzzy set theory, 

in general, and fuzzy metric space, in 

particular are given. 
 

Definition 2.1, [2]: 

If X is a collection of objects with generic 

element x, then a fuzzy subset Ã of X is 

characterized by a membership function;  

μ
Ã
:X  I, where I  [0,1], then we write a 

fuzzy set Ã by the set of points:  

Ã  {(x, µ
Ã
(x)) | x∈ X, 0  µ

Ã
(x)  1}. 

 

Remark 2.2, [2]: 

The set of all fuzzy subsets of a set X is 

denoted by  IX that is  

 IX  {Ã : Ã is fuzzy subset of X}. 
 

Definition 2.3, [2]: 

The support of a fuzzy set A  is the crisp 

set (or nonfuzzy set) of all x  X, such that 

A
(x)  > 0. 

 

Definition 2.4, [3], [10]: 

The height of a fuzzy set A  (denoted by 

hgt ( A )) is the supremum of 
A

(x)  over all 

xX. If hgt ( A )  1, then A  is normal, 

otherwise it is subnormal, and a fuzzy set may 

be always normalized by defining the scaled 

membership function: 

*
A

(x)   A
(x)

hgt(A)


,  x  X 

 

Definition 2.5, [3], [4]: 

A fuzzy point xr in a set X is a fuzzy set 

with membership function: 

µ
xr

(w)  {
r ,     for  w = x
0 ,     for  w ≠ x

 

where x  X and 0 < r  1, w is called the 

support of xr and r the value of xr. 

Two fuzzy points xr and ys are said to be 

distinct if and only if x ≠ y, i.e., their support 

sets are different from each other. 
 

Definition 2.6, [3], [4]: 

A fuzzy point xr is said to be belong to a 

fuzzy subset Ã in X, denoted by xr  Ã if and 

only if r ≤ µ
Ã
(x). 
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Definition 2.7, [9]: 
Let Ã be a fuzzy subset of X, for any 

α(0,1], the set of all elements x  X, such 

that µ
Ã
(x) ≥ α is called the α-level (or α-cut) 

set of Ã and is denoted by:  

Ãα  {x  X : µ
Ã
(x) ≥ α}.  

 

The next definition depends on the 

extension principle, which extends the 

definition of a function to fuzzy function: 
 

Definition 2.8, [2]: 

Let f be a function from the universal set X 

to the universal set Y. Let Ã be a fuzzy subset 

in X with membership function µ
Ã
(x). The 

image of Ã, written as f(Ã), is a fuzzy subset 

in Y whose membership function is given by: 

µ
f(Ã)

(y)= {
sup{µ

Ã
(x)} ,      if  f−1(y) ≠ ∅ 

xf−1(y)                                             
0                         otherwise       

 

 

Definition 2.9, [2] : 

A fuzzy subset A  of  is said to be 

convex if: 

 1 2 1 2A A A
( x (1 )x ) Min (x ), (x )      

for all x1, x2  , and all   [0, 1]. 
 

Definition 2.10, [10]: 

If a fuzzy set is convex and normalized, 

and its membership function is defined in ℝ 

and piecewise continuous such that there exist 

a unique x0  ℝ, with 0M
(x )   1, then it is 

called a fuzzy number.  
 

Remark 2.11, [10]: 

Fuzzy number is expressed as a fuzzy 

interval in the real line ℝ represented by the 

peak point b and two end points a and c, which 

is abbreviated as [a,b,c], such that the height of 

the fuzzy number at b equals 1.  

Now, we can put (Remark 2.9) as in the 

following definition in order to make the 

definition of fuzzy number more reliable.  
 

Definition 2.12, [4],[8]: 

A fuzzy number M̃ with the membership 

function: 

µ
M̃
(x) = {

fL(x);        if  a ≤ x ≤ b

fR(x);        if  b ≤ x ≤ c
0           other wise 

  

where fL(x) is a continuous increasing 

function in [a,b], fR(x) is a continuous 

decreasing function in [b,c] and fL(a) =
fR(c) = 0, fL(b) = fR(b) = 1, is called general 

fuzzy number.  

The family of the above kind of fuzzy 

numbers will be denoted by: 

 FG  {[a, b, c]:  a  b  c; a, b, c  ℝ}.  
 

Definition 2.13, [4],[8]: 

Let M̃ be any general fuzzy number, then if 

fL(x) = (x − a) (b − a)⁄ , a ≤ x ≤ b and 

fR(x) = (c − x) ∕ (c − b), b ≤ x ≤ c, then we 

call this fuzzy number as triangular fuzzy 

number which is denoted by M̃ = (a, b, c) with 

a < 𝑏 < 𝑐. 
The family of all triangular fuzzy numbers 

is denoted by FT, where: 

FT = {(a,b,c): ∀ a < 𝑏 < 𝑐, a, b, c ℝ}. 
 

Remark 2.14, [4],[8]: 

All -levels of a fuzzy point a, form a 

family given by: 

FP()  {a ∶ aℝ} 
and if   1, then this generates a fuzzy 

number (a, b, c ), with a  b  c, which is 

denoted by ã = (a, a, a). 
i.e., FP(1)  {a1 ∶ aℝ} = {ã = (a, a, a)| aℝ} 
and let FP = ⋃ FP()0<≤1 . 

 

Remark 2.15, [4], [8]: 

Let F be the family of all fuzzy sets in 

general fuzzy numbers FG and fuzzy points 

FP , such that FG ∩ FP ⊂ F and FG ∪ FP  ⊂ F.  
 

Notation 2.16, [8]: 

For each , 0 <  ≤ 1, there is a one-one 

and onto mapping between FP() and ℝ, 

which maps a  F onto a  ℝ. 

The next definition is a modified approach 

for the distance function between two fuzzy 

numbers, which will be used later in defining 

the fuzzy metric space. 
 

Definition 2.17, [8]: 

Let Ã, B̃F where Ã = [a1, a2, a3], B̃ =
[b1, b2, b3], then the distance between Ã and B̃ 

is defined as: 

ρ(Ã, B̃) = 1

2
 ∫ |xÃL(α) −
1

0
xB̃L(α)|dα+

                    1
2
 ∫ |xÃR(α) −
1

0
xB̃R(α)|dα  

where α(0,1], and  

xÃL(α) = a1 + (a2 − a1)α is α-cuts of Ã from 

the left-hand side. 
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xB̃L(α) = b1 + (b2 − b1)α is α-cuts of B̃ from 

the left-hand side. 

xÃR(α) = a3 − (a3 − a2)α is α-cuts of Ã from 

the right-hand side. 

xB̃R(α) = b3 − (b3 − b2)α is α-cuts of B̃ from 

the right-hand side. 
 

Proposition 2.18, [4], [8]: 

1- If a, bβ ∈ FP, 0 <  < 𝛽 ≤ 1, then: 

ρ(a, bβ) = ∫ |a − b|dα



0

+∫ |b|dα

β



 

 = |a − b| + (β− )|b|. 
2- If ã = (a, a, a), b̃ = (b, b, b) ∈ FP(1), then 

ρ(ã, b̃) = |b − a|. 
 

As an illustration, consider the following 

example: 
 

Example 2.19: 

Let Ã  (1,3,5) and B̃   (2,4,6) be two 

fuzzy numbers with membership functions:  

µ
Ã
(x) =

{
 
 

 
 fL(x) =

x − 1

2
;        if  1 ≤ x ≤ 3

fR(x) =
5 − x

2
;        if  3 ≤ x ≤ 5

0           otherwise 

 

 

µ
B̃
(x) =

{
 
 

 
 fL(x) =

x − 2

2
;        if  2 ≤ x ≤ 4

fR(x) =
6 − x

2
;        if  4 ≤ x ≤ 6

0           otherwise 

 

 

then in order to find the distance  between Ã  
and B̃, we must find the α-cuts of Ã and B̃, 
where α(0,1], as follows: 

For Ã the left-hand side is xÃL(α) = a1 +
(a2 − a1)α  1+ 2 α, and the right-hand side is 

xÃR(α) = a3 − (a3 − a2)α  5  2α. 

Similarly, for B̃ the left-hand side is 

xB̃L(α) = b1 + (b2 − b1)α = 2 +2α, and the 

right-hand side is xB̃R(α) = b3 − (b3 − b2)α 

 6  2α. 

Then the distance between Ã and B̃ is: 
 

ρ(Ã, B̃) =
1

2
 ∫ |xÃL(α) −
1

0
xB̃L(α)|dα+

                    
1

2
∫ |xÃR(α) −
1

0
xB̃R(α)|dα  

             =  
1

2
∫ | 1 +  2 α − 2 −
1

0
2α|dα + 

                 
1

2
∫ |
1

0
5-2α−6 + 2α| dα          

             = 
1

2
∫ 1dα
1

0
+
1

2
∫ 1dα
1

0
 = 1 

Theorem 2.20, [8]: 

Let ρ: F × F → ℝ+, then the distance ρ on 

F satisfies the following three axioms of the 

distance function: 
 

(a) ρ(Ã, B̃) = 0 if and only if  Ã = B̃. 

(b) ρ(Ã, B̃) = ρ(B̃, Ã). 

(c) ρ(Ã, B̃) ≤ ρ(Ã, C̃) + ρ(C̃, B̃),  Ã,B̃,C̃ F. 

so, (F, ρ) is a fuzzy metric space. 
 

Remark 2.21, [8]: 

Two fuzzy metric spaces (FP(1), ρ) and 

(ℝ, ρ′) are said to be isometric, which is 

denoted by (FP(1), ρ) ≅ (ℝ, ρ′), if there is a 

function f : (FP(1), ρ) → (ℝ, ρ′), such that 

f(ã) = a, ∀  ã ∈ FP(1), which is also a one-one 

and onto mapping and: 
 

ρ(ã, b̃) = |b − a|  

  ρ′(a, b) 

 = ρ′ (f(ã), f(b̃)).  
 

3. The Completeness of the Fuzzy Metric 

Space and the Banach Fixed Point 

Theorem  

In order to investigate fixed point theorem 

in the fuzzy metric space (F, ρ), we must first 

show that the fuzzy metric space (F, ρ) is 

complete. So some additional basic definitions 

are introduced. For simplicity, the fuzzy point 

x will be denoted by P̃. 
 

Definition 3.1: 

Let {P̃n}, n   be a sequence of fuzzy 

points in F, then {P̃n} is said to be converge to 

P̃0  (written as P̃n → P̃0) if and only if for each 

 > 0, ∃ k ∈ ℕ such that ρ(P̃n, P̃0) < ε, ∀ n >

k. 
 

Definition 3.2: 

The sequence {P̃n} is called Cauchy 

sequence in (F,) if and only if for each 𝜀 >

0, ∃ k ∈  ℕ such that ρ(P̃n, P̃m) < ε, ∀ n,m >

k. 
An important characterization result which 

may be considered as the main result of this 

chapter is the next theorem, which relates 

between the convergence of a sequence of 

fuzzy points with the convergence of two 

sequences in ordinary sense. This theorem is 

of great importance, which will be used later 
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on and seems to be new, to the best of our 

knowledge. 
 

Theorem 3.3: 

A sequence of fuzzy points {P̃n}, n   is 

converge to P̃ if and only if there exists two 

nonfuzzy sequences, namely the sequence of 

supports {xn}  X and monotonic sequence of 

levels {n}  (0,1], n , such that xn  x 

and n  , x  X,   (0, 1]. 
 

Proof: 

 If {P̃n} is converge to P̃, so for all  > 0, 

there exists k  , such that (P̃n, P̃) < , for 

all n  k. Hence: 

(P̃n,P̃) = n|xn − x| + (n − )|x| <  

and since n|xn − x|  0 and (n − )|x|  0; 

and from the properties of the positive real 

numbers, there exists 1 > 0 and 2 > 0, such 

that k  max{k1, k2}, and: 
 

|xn − x| < 1, |n − | < 2, for all n  k 

Then, xn  x, and n  . 

 If xn  x and n   

Hence, for all  > 0, there exist k1, k2  , 

such that: 

|xn − x| < 
12c


, |n − | < 

22c


, where n  k  

max{k1, k2} and n and |x| are bounded by two 

non zero positive real numbers c1 and c2. 

Therefore, for all  > 0, there exist k  max 

{k1, k2}  , such that: 

 

(P̃n,P̃)  n|xn − x| + (n − )|x| 

  n

12c


 + |x|

22c


  

  c1

12c


 + c2

22c


 

 ,  n  k 

Hence, {P̃n} is converge sequence of fuzzy 

points.     

Similarly, as in the proof of theorem (3.3), 

we can prove state and prove the next 

proposition: 
 

Proposition 3.4: 

A sequence of fuzzy points {P̃n}, n   is 

Cauchy sequence if and only if there exists 

two nonfuzzy Cauchy sequences, namely the 

Cauchy sequence of supports {xn}  X and 

monotonic Cauchy sequence of images {n}  

(0, 1], n  . 
 

Theorem 3.5: 

Every convergent sequence of fuzzy points 

{P̃n}, n   in a fuzzy metric space (F,) is a 

Cauchy sequence. 
 

Proof: 

Let {P̃n}, n   be a Cauchy sequence in 

(F,). 

Then using theorem (3.3), there exist 

sequence of supports {xn}  X and monotonic 

sequence of images {n}  (0, 1], n  , 

such that  

xn  x and n  , x  X,   (0, 1]. 
 

Since {xn} is convergent nonfuzzy sequence, 

hence it is a Cauchy sequence in X 

Also, since {n} is convergent sequence of 

images in (0, 1]   

Now, using proposition (3.4), the sequence of 

fuzzy points {P̃n}, n   is a Cauchy 

sequence.     
 

Definition 3.6: 

A fuzzy metric space (F, ρ) is said to be 

complete if and only if every Cauchy sequence 

in (F, ρ) is converge. 
 

Theorem 3.7: 

The fuzzy metric space (F, ρ) is complete. 
 

Proof: 

To prove (F, ρ) is complete, we must prove 

any Cauchy sequence in F is convergent. 

Let {p̃n} be any Cauchy sequence of fuzzy 

points, such that p̃1 = x11 , p̃2 = x22 , …, 

p̃n = xnn , …. 

Consider the following three cases: 

1- If {p̃n} ∈ FP(1), for all n  ℕ. 
Then p̃1 = x1, p̃2 = x2, … , p̃n = xn, … 

Since {p̃n} is a Cauchy sequence, then we 

have ∀ ε > 0, ∃ k ∈ ℕ, such that: 

ρ(p̃n, p̃m) < ε, ∀ n,m > k. 

And since {p̃n} ∈ FP(1) for all nℕ, 

implies from (proposition (2.18)(2)) 

ρ(p̃n, p̃m) = |xn − xm| < ε, ∀ n,m > k. 

Thus {xn} is Cauchy sequence in ℝ, but ℝ 

is complete metric space, then {xn} is a 

convergent sequence. 
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2- If {p̃n} ∈ FP(); 0 <  < 1 

Then  p̃1 = x1 , p̃2 = x2 , … , p̃n = xn , …      

Since {p̃n} is a Cauchy sequence, and  

 > 0, then from Archimedean property for 

any ε > 0, ∃ k ∈ ℕ such that  ρ(p̃n, p̃m) <
ε, ∀n,m > k.   

For p̃n = xn , p̃m = xm
FP(); 0<  < 1, 

their α-cuts, 0 < α ≤ 1, and from the 

definition of the fuzzy points, are: 

xp̃nL(α) =  xP̃nR(α) = xn, if 0 < 𝛼 ≤  

xP̃nL(α) =  xP̃nR(α) = 0, if  < 𝛼 ≤ 1 

xP̃mL(α) =  xP̃mR(α) = xm, if 0 < 𝛼 ≤  

xP̃mL(α) =  xP̃mR(α) = 0, if  < 𝛼 ≤ 1 

Therefore, by (proposition (2.18)(1)) the 

distance between p̃n, p̃m is: 

ρ(p̃n, p̃m)  ∫ |


0
xn − xm|dα+ ∫ |

1


0|dα 

  |xn − xm| 
Since ρ(p̃n, p̃m) < ε, ∀n,m > 𝑘, implies 

ρ(p̃n, p̃m) =|xn − xm| < ε, ∀n,m > 𝑘,  

0 <  < 1 

Therefore |xn − xm| < ε, ∀ n,m > 𝑘 

And hence {xn} is Cauchy sequence in ℝ, 

but ℝ is a complete metric space, then {xn} 
is a convergent sequence. 

3- If {p̃n} ∈ FP, then p̃1 = x11 , p̃2 = x22, 

…, p̃n = xnn , p̃m = xmm
,…; such that 0<

i ≤ 1, ∀ i = 1,2,3, …., where from 

proposition 2.18(1); it is supposed that {i} is 

a monotonic increasing sequence of levels, 

then for m > n, we have m > n or  m  

n > 0. Since {p̃n} is a Cauchy sequence in F, 

and suppose that: 

n ε+ (m  n )|xm| > 0, then ∃ k ∈ ℕ, such 

that: 

ρ(p̃n, p̃m) < n ε+ (mn )|xm|, ∀n,m > k, 

by (proposition (2.18)(1)), we have: 

 ρ(p̃n, p̃m) n |xn − xm| + (m − n )|xm| 
< n 𝜀 + (mn )|xm|,  ∀ n,m > k 

 n |xn − xm| < n ε, ∀ n,m > k 

 |xn − xm| < ε, ∀ n,m > k 

 ρ′(xn,  xm) < ε,   ∀ n,m > k 

Implies {xn} is Cauchy sequence in ℝ, but ℝ 

is a complete metric, therefore {xn} is a 

convergent sequence. 

Thus in all cases {p̃n} is a convergent 

sequence, and therefore (F, ρ) is a complete 

fuzzy metric space.     

Now, we are ready to investigate the 

Banach fixed point theorem in the fuzzy 

metric space (F, ρ). 
 

Theorem 3.8: 

Let (F, ρ) be a complete fuzzy metric 

space, and f: (F, ρ) →(F, ρ)    satisfy 

ρ(f(p̃), f(q̃)) ≤ rρ(p̃, q̃), where 0 ≤ r < 1. Then f 

has a unique fixed point p̃. 
 

Proof: 

For any fuzzy point p̃
0
 F. Let p̃

1
= f(p̃

0
),

p̃
2
= f(p̃

1
) = f (f(p̃

0
)) = f

2(p̃
0
), …, p̃

n
=

f
n(p̃

0
)  

So, we have a sequence of fuzzy points 

{p̃
0
, p̃

1
, p̃

2
, … } .  

Now, we show that for each p̃
0
, {p̃

n
} is Cauchy 

sequence.  

If m > n, ρ(p̃
m
, p̃

n
) = ρ(fm

 (p̃
0
), fn(p̃

0
))                                                                   

                  ≤rnρ(fm−n (p̃
0
), p̃

0
 )  

                  = rnρ(p̃
m−n

, p̃
0
) 

                  ≤ rn{ρ(p̃
0
, p̃

1
) + ρ(p̃

1
, p̃

2
) +

                                    …+ ρ(p̃
m−n−1

, p̃
m−n

)} 

                  ≤ rnρ(p̃
0
, p̃

1
) {1+ r + r2 +

                                   +⋯+ rm−n−1} 

                  ≤
rnρ(p̃0,p̃1

)

1−r
 

Since r < 1, ∀ ε > 0, ∃n ∈ ℕ and as n→∞, then 
rnρ(p̃0,p̃1

)

1−r
 <  

Then ρ(p̃
m
, p̃

n
) < 

rnρ(p̃0,p̃1
)

1−r
 < , ∀ n,m > k 

Thus {p̃
n
} is Cauchy sequence. Since (F, ρ) is 

complete fuzzy metric space, there exists p̃ 

such that {p̃
n
} → p̃.  

Similarly if n  > m. 

Now, we show that p̃ is fixed point in F, then 

we must prove f(p̃) = p̃. 

 ρ(f(p̃), p̃) ≤ ρ(f(p̃), p̃
n
) + ρ(p̃

n
, p̃) 

                    ρ (f(p̃), f(p̃
n−1
)) + ρ(p̃

n
, p̃) 

                   ≤ r ρ(p̃, p̃
n−1
 ) + ρ(p̃

n
, p̃) 

Since {p̃
n
} → p̃, thus ρ(f(p̃), p̃) ≤ rε + ε =

r(1+ ε). Therefore ρ(f(p̃), p̃) = 0, implies 

f(p̃) = p̃. 
Next, we must show that p̃ is the unique fixed 

point of f, suppose there exists another fixed 

point q̃ F, such that f(q̃)  q̃. 

ρ(p̃ , q̃ ) = ρ(f(p̃), f(q̃)) ≤ rρ(p̃ , q̃ )  
Thus ρ(p̃ , q̃ ) ≤ rρ(p̃ , q̃ ) 
Therefore ρ(p̃ , q̃ ) = 0 implies p̃ = q̃.  
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Thus, there is a unique fixed point p̃ of f in  

F.     
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