Some Types of Contra- gp- Closed Functions in Topological Spaces

Dunya M. Hammed and Mayssa Z. Salman Department of Mathematics, College of Education, Al- Mustantansiriya University.

Abstract

In this paper, we introduce a new type of contra-closed functions which is the contra-gp-closed functions, as well as we using this function to give and study other types of contra-gp-closed functions namely (contra-gp*- closed function, contra-gp**- closed function, contra-pre gp-closed function and contra-pre gp*- closed function) and find the relation between these functions. Also, we will proved several properties of these functions types.

1-Introduction

In 1996, Maki et al [11] introduced the notion of gp- closed sets and investigated their basic properties. They used these sets to define gp- closed functions and study some of their properties. Dontcher [5] introduced the notions of contra- continuity and strong S- closedness in topological spaces. He obtained very interesting and important results concerning contra-continuity. While the concepts (contrafunctions and contra-preclosed closed functions) were discussed and introduced by (Baker. C.W (1997) in [1], Caldas. M (2004) in [4]) respectively.

In this paper, we introduce and study new type of contra-closed functions namely contragp- closed function in topological space and we use this function to give other types which are (contra-gp*- closed, contra-gp**- closed, contra-pre-gp- closed and contra-pre gp**-closed) functions. Moreover, show the relation between these types of functions. Furthermore, we study and proved some properties of these functions.

Throughout this paper (X,τ) and (Y,σ) (or simply X and Y) represents non-empty topological spaces, For a subset A of a space X. cl (A), int (A) and A^c denoted the closure of A, the interior of A and the complement of A in X respectively.

2-Preliminaries

Some definitions and basic concepts related to this paper.

Definition (2-1), [2]:

A subset **A** of a topological space (X,τ) is said to be **preopen** if $A \subseteq \operatorname{int}(\operatorname{cl}(A))$ and **preclosed set** if $\operatorname{cl}(\operatorname{int}(A)) \subseteq A$.

The **pre closure** of a subset A of (X,τ) is the intersection of all preclosed sets containing A and is denoted by **pcl** (A).

Definition (2-2), [8]:

A subset **A** of a topological space (X,τ) is said to be **generalized preclosed** (briefly, gpclosed) if $pcl(A)\subseteq U$ if for some open set U of (X,τ) such that $A\subset U$.

The complement of gp-closed is called **gp-open set**.

Remark (2-3), [3], [8]:

In any topological space (X,τ) , it is clear:

- 1. Every open (closed) set is preopen (preclosed) set, but the converse need not to be true in general.
- 2. Every preopen (preclosed) set is gp-open (gp-closed) set, but the converse need not to be true in general.

To illustrate the above remark, consider the following example:

Example (2-1):

Let $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Then the set $A = \{a,b,c\}$ is preopen set and gp- open set in (X,τ) , but is not open set in (X,τ) . Also, $A^c = \{c\}$ is a preclosed set and gp- closed set in (X,τ) , but is not closed and let $B = \{a,c\}$ is gp- open set in (X,τ) , but is not preopen, also $B^c = \{b,d\}$ is a gp- closed set in (X,τ) , but is not preclosed set in (X,τ) .

Remark (2-4), [8], [9]:

In any topological spaces (X,τ)

- 1-The union of any collection of gp-closed sets in (X,τ) is gp-closed.
- 2-The intersection of two gp-closed sets in (X,τ) is not necessary to be gp-closed.

Definition (2-5), [6]:

The topological space (X,τ) is said to be **locally indiscrete** if every open subset in (X,τ) is a closed set.

Definition (2-6), [10]:

The topological space (X,τ) is said to be **submaximal** if every dense set of (X,τ) is an open set.

Theorem (2-7), [10]:

Let (X,τ) be a topological space, then (X,τ) is submaximal space if and only if every preopen set in (X,τ) is open.

Corollary (2-8), [10]:

Let (X,τ) be a submaximal space, then every preclosed set in (X,τ) is a closed set.

Remark (2-9):

Dontch [7] proved that a space (X,τ) is **semi-pre-** $T_{1/2}$ - **space** if and only if every gp-closed is preclosed set.

Definitions (2-10), [3], [9]:

A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is said to be:

- 1. **closed** if f(A) is closed in (Y,σ) for every closed set A of (X,τ) .
- 2. **preclosed** if f(A) is preclosed set in (Y,σ) for every closed set A of (X,τ) .
- 3. **gp- closed** if f(A) is gp- closed in (Y,σ) for every closed set A of (X,τ) .
- 4. **Pre gp- closed** if f(A) is gp- closed set in (Y,σ) for every preclosed A set of (X,τ) .

Definition (2-11), [1], [4]:

A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is said to be:

- 1. **contra- closed** if f(A) is an open set in (Y,σ) for every closed set A of (X,τ) .
- 2. **contra- preclosed** if f(A) is a preopen set in (Y,σ) for every closed set A of (X,τ) .

Remark (2-12), [4]:

The following examples show that closed functions (resp. preclosed functions) are independent of contra- closed functions (resp. contra- preclosed functions).

Example (2-2):

Let $X=\{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{a,c\}\}$. Define a function $f: (X,\tau) \rightarrow (X,\tau)$ by f(a)=a, f(b)=c and f(c)=b. It is easily that f is closed function

and preclosed function but is not contraclosed and contra- preclosed function.

Example (2-3):

Let $X = \{a,b,c\}, \tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}\}$. Define a function $f: (X,\tau) \to (X,\tau)$, by f(a) = f(c) = b and f(b) = a. It is observe that f is contraclosed function and contrapreclosed function but is not closed function.

Remark (2-13), [4]:

Every contra- closed function is contrapreclosed, but the converse is not true. It is easy see that in the following example:

Example (2-4):

Let $X=\{a,b,c\}$, $\tau=\{X,\phi,\{a\},\{a,c\}\}$. Define a function $f:(X,\tau) \to (X,\tau)$, by f(a)=f(b)=a and f(c)=b. We observe that f is contrapreclosed function, which is not contractosed.

3-Contra-gp- closed function types

In this section, a new type of contraclosed functions namely contra-gp- closed function will be given, and use this function to introduce and study some other types of functions which are (contra-gp*- closed, contra-gp*- closed, contra-pre gp*- closed, contra-pre gp*- closed) functions, and study some of their properties and relations among them.

Now, the definition of contra-gp- closed function will be introduce, which is a modification to the definition of contra- closed function that appeared in [1].

Definition (3-1):

A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is said to be **contra-gp- closed** if f(A) is a gp- open set in (Y,σ) for every closed set A in (X,τ) .

Proposition (3-2):

Every contra- preclosed function is contragp- closed function

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ be a contra- preclosed function and let A be a closed set in (X,τ) . Thus, f(A) is a preopen set in (Y,σ) . By using remark (2-3) we get f(A) is gp- open set in (Y,σ) .Hence, $f: (X,\tau) \to (Y,\sigma)$ is contra-gp-closed function.

The converse is not true in general, as the following example show:

Example(3-1):

Let $X = \{a,b,c\}, \tau = \{X,\phi,\{a\},\{a,c\}\}$. Define a function $f \colon (X,\tau) \to (X,\tau)$ by f(b) = c and f(a) = f(c) = a. It is easily see that f is a contragp-closed function, but is not contrapreclosed. Since for the closed set $A = \{b\}$ in (X,τ) , $f(A) = f\{b\} = \{c\}$ is a gp- open set in (Y,τ) , but is not preopen set in (X,τ) .

Corollary (3-3):

Every contra- closed function is contra-gp-closed function.

Proof:

It is clear.

The converse of the above corollary need not be true, in the above example (3-1) a function f is contra- gp- closed function, but not contra – closed.

Now, some other types of contra-gpclosed function are given, and start first by the following definition.

Definition (3-4):

A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is said to be **contra-gp*- closed** if f(A) is an open set in (Y,σ) for every gp- closed set A in (X,τ) .

Proposition (3-5):

Every contra-gp*-closed function is contra-closed function.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ be a contra-gp*-closed function and let A be a closed set in (X,τ) . By remark (2-3), we get A is a gp-closed set in (Y,σ) . Since f is contra-gp*-closed function. Thus, f(A) is an open set in (Y,σ) . Hence, $f: (X,\tau) \to (Y,\sigma)$ is a contra-- closed function.

Corollary (3-6):

Every contra- gp*- closed function is contra- preclosed function.

Proof:

It is clear.

Corollary (3-7):

Every contra-gp*- closed function is contra-gp- closed function.

Proof:

It is clear that from corollary (3-6) and proposition (3-2).

Remark (3-8):

Vol.17 (2), June, 2014, pp.189-198

The converse of proposition (3-5), corollary (3-6) and corollary (3-7) respectively need not be true.

Example (3-2):

 $X=Y=\{a,b,c\},$ Let τ $=\{X,\emptyset\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}\$ and let $f:(X, \tau) \rightarrow (Y, \sigma)$ be the identity function. It is observe that f is contra- closed (contra- pre- closed and contra-gp-closed) function but not contra-gp*-closed function. Since for gp- closed set $A=\{c\}$ in (X,τ) , we see that $f(A) = f({c}) = {c}$ is not open set in (Y, σ) .

Definition (3-9):

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be **contra-gp**- closed function** if f(A) is a gp- open set in (Y,σ) for every gp- closed set in (X,τ) .

Proposition (3-10):

Every contra-gp**-closed function is contra-gp- closed function.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ be a contra-gp*-closed function and let A be a closed set in (X,τ) , by remark (2-3), we get, A is a gp-closed set in (X,τ) . Since f is contra-gp**-closed function. Then f(A) is a gp- open set in (Y,σ) . Hence, f is contra-gp-closed.

The converse of the proposition (3-10) is not true.

Example (3-3):

Let $X = \{a,b,c\}$, $\tau = \{X,\phi,\{a\},\{a,c\}\}$. Define a function $f:(X,\tau) \to (X,\tau)$ by f(a)=b, f(b)=c and f(c)=a. Then f is contra-gp- closed but is not contra-gp**- closed function. Since for a gp- closed set $A = \{a,b\}$ in (X,τ) , we see $f(A) = f(\{a,b)\} = \{b,c\}$ is not gp- open set in (X,τ)

Now, the following proposition show the relation between contra-gp**- closed function and contra-gp*- closed function.

Proposition (3-11):

Every contra-gp*-closed function is contra-gp**- closed function.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ by a contra-gp*-closed function and let A be a gp-closed set in (X,τ) . Thus, f(A) is an open set in (Y,σ) , and by using remark (3-2), we get f (A) is a gp-open set in (Y,σ) . Hence, f: $(X,\tau) \rightarrow Y,\sigma$ is contra-gp**- closed function.

The converse of the above proposition need not be true.

Example (3-4):

Let $X=\{a,b,c\},\tau=\{X,\phi,\{a\},\{a,c\}\}$. Define a function $f: (X,\tau) \to (X,\tau)$ by f(a)=b, f(b)=a and f(c)=c. It is observe that f is a contra-gp**-closed function, but is not contra-gp**- closed function. Since for a gp- closed set $A=\{c\}$ in (X,τ) , we see $f(A)=f(\{c\})=\{c\}$ is not open set in (X,τ) .

Remark (3-12):

The concepts of(contra-closed and contra- preclosed) functions are independent to contra-gp**- closed functions. As shown in the following example.

Example (3-5):

- (i) From example (3-2). It is observe that f is contra- closed and contra- preclosed, but is not contra-gp**- closed function. Since for a gp-closed set $A=\{b\}$ in (X,τ) , we see, $f(A)=f(\{b\})=\{b\}$ is not gp-closed set in (Y,σ) .
- (ii) Let $X=\{a,b,c\}, \tau=\{X,\phi,\{a\},\{a,c\}\}.$ Define a function $f: (X,\tau) \to (Y,\sigma)$ by f(a)=f(c)=a and f(b)=c. It is observe that f is a contra-gp**- closed function, but is not contra- closed and contra-preclosed. Since for a closed set $A=\{b\}$, then $f(A)=f(\{b\})=\{c\}$ is not open and preopen set in (X,τ) .

Now, we give another types of contra-gpclosed function is called contra- pre gp- closed function.

Definition (3-13):

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be **contra- pre gp- closed** if f(A) is a gp- open set in (Y,σ) for every preclosed set in (X,τ) .

Proposition (3-14):

Every contra-pre gp- closed function is contra-gp- closed.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ by a contra-pre gp-closed function and let A be a closed set in X, by using remark (2-3) ,we get A is a preclosed set in (X,τ) . Since f is contra-pre gp-closed function. Thus, f(A) is a gp-open

set in (Y,σ) . Therefore, f is a contra-gp- closed function.

The following example show that the converse of proposition (3-14) need not true in genera.

Example (3-6):

Let $X=\{a,b,c\},\tau=\{X,\phi,\{a\},\{a\ c\}\}.$ Define a function $f\colon (X,\tau)\to (X,\tau)$ by f(a)=f(c)=b and f(b)=a. It is easily see that f is a contra-gp- closed but is not contra-pre gp-closed function. Since for the preclosed set $A=\{c\}$ in (X,τ) , but $f(A)=f(\{c\})=\{b\}$ is not gp- open set in (X,τ) .

The following preposition give the condition to make the converse of a proposition (3-14) is true.

Proposition (3-15):

If $f: (X,\tau) \to (Y,\sigma)$ is contra-gp- closed function and a space (X,τ) is a submaximal space. Then f is contra- pre gp- closed function.

Proof:

Let A be a preclosed set in (X,τ) and since (X,τ) is a submaximal space, then by using corollary (2-8) ,we get A is a closed set in (X,τ) . Since f is a contra-gp- closed function. Thus, f(A) is a gp- open set in (Y,σ) . Hence, f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra-pre gp- closed function.

Remark (3-16):

It is clear that the concepts contra- closed (contra- preclosed) function are independent to contra- pre gp- closed function. In the example (3-2) a function f is contra- closed (and contra-preclosed) function but it is not contra- pre gp- closed function. Since for a preclosed set $A=\{b\}$ in (X,τ) , we see $f(A)=f(\{b\})=\{b\}$ is not gp- open set in (Y,σ) . Also in example (3-3) it is clearly that f is contra- pre gp- closed function, but it is not contra- closed (and contra-preclosed) function. Since for a closed set $A=\{b\}$ in (X,τ) , then $f(A)=f(\{b\})=\{c\}$ is not open set and preopen set in (X,τ) .

Now, in the following result given the condition to make every contra- closed (and contra- preclosed) function is contra- pre gp-closed function.

Corollary (3-17):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra- closed or contra- function and (X,τ) is a submaximal space. Then f is contra- pre gp-closed function.

Proof:

Let A be a preclosed set in (X,τ) . Since (X,τ) is a submaximal space and by using corollary (2-8), we get A is a closed set in (X,τ) . Since f is a contra-gp- closed function. Thus, f(A) is an open set in (Y,σ) and by remark(2-3) we have f(A) is gp- open set in (Y,σ) . Hence, f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra-pre gp- closed function.

Similarly, we prove the following corollary:

Corollary (3-18):

If $f: (X,\tau) \to (Y,\sigma)$ is contra- preclosed closed function and let (X,τ) is a submaximal space, then f is contra- pre gp- closed function.

The following proposition show the relation between contra- pre gp-closed function and contra- gp*- closed (contra- gp**- closed) function respectively.

Proposition (3-19):

Every contra-gp**- closed function is contra- pre gp- closed function.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ be a contra-gp**-closed function and let A be a precluded set in (X,τ) , and by using remark (2-3) we get A is a gp- closed set in (X,τ) . Since f is contra-gp**-closed function. Then f(A) is a gp- open set in (Y,σ) . Hence, $f: (X,\tau) \to (Y,\sigma)$ is contra-pre gp- closed function.

The converse of proposition (3-19) need not be true in general, as the following example show:

Example(3-7):

Let $X=\{1,2,3\}$, $\tau=\{X,\phi,\{1\},\{1,3\}\}$. Define a function $f:(X,\tau) \to (X,\tau)$ by f(1)=2, f(2)=3 and f(3)=1. It is observe that f is contrapre gp-closed function, but its not contrapre closed function.

Since for a gp- closed set $A=\{1,2\}$ in (X,τ) , we see that $f(A)=f(\{1,2\})=\{2,3\}$ is not gp- open set in (X,τ) .

From proposition (3-11) and (3-19) we get the following corollary and it is prove easy. Thus, we omitted its proof:

Corollary (3-20):

Every contra-gp**-closed function is contra- pre gp- closed function

Remark (3-21):

The converse of corollary (3-20) is not necessarily true. In example (3-7) a function f is contra- pre gp- closed function, but is not contra- gp^{**} - closed function. Since for a gp- closed set $A=\{2\}$, it is observe that $f(A)=f(\{2\})=\{3\}$ is not open set in (X,τ) .

The following proposition addition the condition in order to the converse of proposition (3-19) is true:

Proposition (3-22):

If $f: (X,\tau) \to (Y,\sigma)$ is contra- pre gp-closed function and let (X,τ) is a semi- pre $T_{1/2}$ -space. Then f is contra- gp**- closed function.

Proof:

Let A be a gp- closed set in (X,τ) . Since (X,τ) is semi- pre $T_{\frac{1}{2}}$ - space and by using remark (2-9) we get A is a preclosed set in (X,τ) . Since f is contra-pre gp- closed function. Thus, f(A) is a gp- open set in (Y,σ) . Therefore, a function $f: (X,\tau) \to (Y,\sigma)$ is contra- gp^{**} - closed.

Now, will be given another type of contrapre gp- closed function is called contrapre gp*- closed function.

Definition (3-23):

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be **contra- pre gp*- closed** if f(A) is a preopen set in (Y,σ) for every gp- closed set A in (X,τ) .

Proposition (3-24):

Every contra-pre gp*- closed function is contra-preclosed.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ by a contra-pre gp^* -closed function and let A be a closed set in (X,τ) , and by remark (2-3) we get A is a gp-closed set in (X,τ) . Since f is contra- pre gp^* -closed function. Thus, f(A) is a preopen set in (Y,σ) . Therefore, $f: (X,\tau) \to (Y,\sigma)$ is a preclosed function.

Remark (3-25):

The converse of proposition (3-24) need not be true. In example (3-2), a function f is contra-preclosed function, but it is not

contra- pre gp*- closed function. Since for a gp- closed set $A=\{b\}$ in (X,τ) , we see $f(A)=f(\{b\})=\{b\}$ is not preopen set in (Y,σ) .

Corollary (3-26):

Every contra- pre gp*- closed function is contra- gp- closed.

Proof:

It is follows from proposition (3-24) and proposition (3-2).

Remark (3-27):

The converse of corollary (3-26) need not be true .In example (3-6), it is observe that f is contra-gp- closed function, but is not contra-gp*- closed. Since for gp- closed set $A=\{c\}$ in (X,τ) , we see $f(A)=f(\{c\})=\{b\}$ is not preopen set in (X,τ) .

Proposition (3-28):

Every contra- pre gp*- closed function is contra- pre gp- closed.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ by a contra-pre gp- closed function and let A be a preclosed set in X. By using remark (2-3) we get A is a gp- closed set in (X,τ) . Since f is contra- pre gp*- closed function. Thus, f(A) is a preopen set in (Y,σ) , and by using remark (2-3) we have f(A) is a gp- open set in (Y,σ) . Therefore, a function $f: (X,\tau) \to (Y,\sigma)$ is contra-pre gp-closed.

Remark (3-29):

The converse of the proposition(3-28) is not true, It is observe that in example (3-7), f is contra-pre gp- closed function but it is not contra- pre gp*- closed.

Proposition (3-30):

Every contra- pre gp**- closed function is contra- gp**- closed.

Proof:

It is clear.

Remark (3-31):

The converse of proposition (3-30) need not be true. In example (3-4), a function f is contra- pre gp*- closed function, but is not contra- gp*- closed function. The following proposition show the relation between contra- gp*- closed function and contra-closed function:

Proposition (3-32):

Every contra- gp*- closed function is contra- pre gp*- closed.

Proof:

Let $f: (X,\tau) \to (Y,\sigma)$ by a contra-gp*-closed function and let A be a gp- closed set in (X,τ) . Thus, f(A) is an open set in (Y,σ) . By using remark (2-3), we get f(A) is a preopen set in (Y,σ) . Therefore, a function

f: $(X,\tau) \rightarrow Y,\sigma$) is contra- pre gp*- closed. The following example shows the converse of proposition (3-32) is not true in general.

Example (3-8):

Let $X=\{a,b,c\},\tau=\{X,\phi,\{a\},\{a,c\}\}\}$. Define a function $f: (X,\tau) \to (X,\tau)$ by f(a)=b and f(b)=f(c)=a. We observe that f is contra-pre gp^* - closed function, but is not contra- gp^* -closed function. Since for a gp-closed set $A=\{a,b\}$ in (X,τ) , we see that $f(A)=f(\{a,b\})=\{a,b\}$ is not open set in (X,τ) .

The following proposition addition the condition in order to the converse of proposition (3-32) is true.

Proposition (3-33):

If $f: (X,\tau) \to (Y,\sigma)$ by a contra-pre gp^* -closed function and (Y,σ) is a submaximal space. Then f is contra- gp^* - closed.

Proof:

Let A be a gp- closed set in (X,τ) . Thus f(A) is a preopen set in (Y,σ) . Since (Y,σ) is a submaximal space and by using theorem (2-7) we get f(A) is an open set in (Y,σ) . Hence, $f: (X,\tau) \rightarrow (Y,\sigma)$ is contra-pre gp^* - closed function.

The following example show that contraclosed function and contra-pre gp*-closed function are independent.

Example (3-9):

Let $X=Y=\{a,b,c\}\}, \tau=\{X,\phi,\{a\},\{a,c\}\}$ and $\sigma=\{Y,\phi\}$. Define a function $f:(X,\tau)\to (Y,\sigma)$ by f(a)=band f(b)=f(c)=a. Then f is contra-pre gp^* - closed. But f is not contra- closed. Since for a closed set A=X in (X,τ) , we see that $f(A)=f(X)=\{a,b\}$ is not open set in (Y,σ) . Also, In example (3-2) f is contra- closed, but is not contra- pre gp^* - closed. Since for gp- closed set $A=\{c\}$ in (X,τ) , we see $f(A)=f(\{c\})=\{c\}$ is not preopen.

The following proposition addition the condition to make every contra-pre gp*- closed function is contra- closed function.

Proposition (3-34):

If $f: (X,\tau) \to (Y,\sigma)$ is contra-pre gp^* - closed function and Y is a sub maximal space. Then f is contra- closed.

Proof: Let A be a gp- closed set in (X,τ) and by remark (2-3) we get A is gp- closed set in (X,τ) . Thus, f(A) is a preopen set in (Y,σ) . Since (Y,σ) is a submaximal space and by theorem (2-9) we get f(A) is an open set in (Y,σ) . Hence, f is contra- closed function.

Remark (3-35):

The following diagram shows the relation between contra-gp- closed function types.

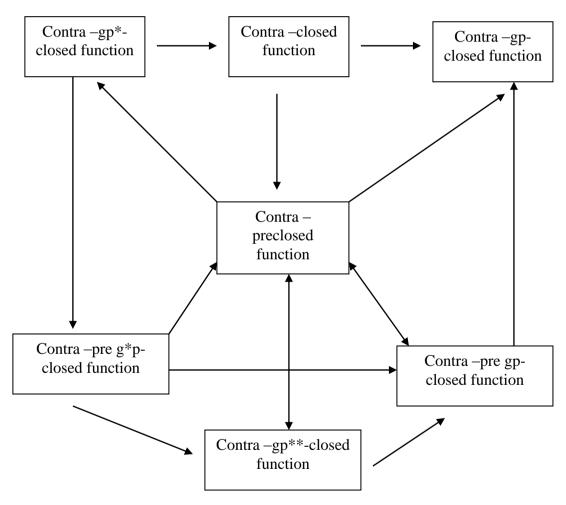


Diagram (1).

4-Composition of contra-gp-closed function

In this section, will be give the composition of these types of contra-gp-closed function with closed (preclosed, gp-

closed and pre gp- closed) function respectively.

Proposition (4-1):

Let $f: (X,\tau) \rightarrow (Y,\sigma)$ and

g: $(Y,\sigma)\rightarrow (Z,\mu)$ be any two functions. Then gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra-gp- closed function, if f is a closed function and g is

1-contra-gp- closed function.

2-contra-gp*- closed function.
3-contra-gp**- closed function.

4-contra-pre gp- closed function.

5-contra- pre gp*- closed function.

Proof:

- (1) let A be a closed set in (X,τ) . Thus, f(A)is a closed set in (Y,\sigma). By using remark (2-3) we get f(A) is a preclosed set in (Y,σ) . Since g is contra- gp- closed function. Then g(f(A)) is a gp- open set in (Z,μ) . But g(f(A)) = gof(A). Hence, gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra-gp-closed function.
- (2) Since g is contra-gp*- closed function, and by using corollary (3-7) we get g is contra-gp- closed, and by step-1- we obtain gof a contra-gp- closed.
- (3) Since g is contra-gp*- closed function and by using proposition (3-10) we get g is contra-gp- closed function and by stepobtain the composition $gof:(X,\tau)\rightarrow(Z,\mu)$ is a contra-gp-closed function.
- (4) Since g is contra-pre gp- closed function, and by proposition (3-14) we have g is contra-gp- closed function and by step-1we get

gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra-gp- closed function.

(5) Since g is g is contra-pre gp*- closed function and by using corollary (3-26) we obtain g is contra-gp- closed function and by step-1- we have $gof:(X,\tau)\rightarrow(Z,\mu)$ is a contra-gp- closed function.

Similarly, we proof the following corollaries.

Corollary (4-2):

Let $f: (X,\tau) \rightarrow (Y,\sigma)$ and $g: (Y,\sigma) \rightarrow (Z,\mu)$ be any two functions. Then gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra-gp- closed function if f is a preclosed function and g is

- 1. contra-gp*- closed function.
- 2. contra-gp**- closed function.
- 3. contra-pre gp- closed function
- 4. contra—pre gp*- closed function.

Corollary (4-3):

Let $f: (X,\tau) \rightarrow (Y,\sigma)$ and

g: $(Y,\sigma)\rightarrow (Z,\mu)$ be any two functions. Then gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra-gp- closed function if f is gp- closed function and g is

1-contra gp*-closed function.

2-contra gp**-closed function.

Corollary (4-4):

Let $f: (X,\tau) \rightarrow (Y,\sigma)$ and $g: (Y,\sigma) \rightarrow (Z,\mu)$ be any two functions. Then their composition gof: $(X,\tau) \rightarrow (Z,\mu)$ is a contra-pre gp- closed function if f is pre gp- closed function and g is

1- contra gp*-closed function.

2- contra gp**-closed function.

3- contra – pre gp*-closed function.

Proposition (4-5):

Let $f:(X,\tau)\to (Y,\sigma)$ is contra-gp*- closed function and $g:(Y,\sigma)\rightarrow(Z,\mu)$ is a contra-closed function . if (Y,σ) is a locally indiscrete, then gof: $(X,\tau) \rightarrow (Z,\mu)$ is contra- gp*- closed (and contra- pre gp*- closed) function.

Proof:

Let A be a gp- closed set in (X,τ) . Thus, f(A) is an open set in (Y,σ) . Since (Y,σ) is a locally indiscrete. Then f(A) is a closed set in (Y,σ) , and since g is a contra-closed function. Then g(f(A)) is an open set in (Z,μ) . But g(f(A)) = gof(A).

Therefore, gof: $(X,\tau) \rightarrow (Z,\mu)$ is contra- gp*closed function, and by using proposition (3-32) we get, gof: $(X,\tau) \rightarrow (Z,\mu)$ is contrapre gp*- closed function.

Proposition (4-6):

If f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra-gp*- closed function, $g:(Y,\sigma)\rightarrow(Z,\mu)$ is a contra-preclosed function and (Y,σ) is locally indiscrete, then gof: $(X,\tau) \rightarrow (Z,\mu)$ is contra-pre gp*- closed (and contra- gp**- closed) function.

Proof:

Let A be a gp- closed set in(X,τ). Thus, f(A) is an open set in (Y,σ) . Since (Y,σ) is a locally indiscrete. Then f(A) is a closed set in (Y,σ) , and since g is a contra-preclosed function. Then g(f(A)) is a preopen set in Z. Since g(f(A)) = gof(A).

Hence, gof: $(X,\tau) \rightarrow (Z,\mu)$ is contra-pre gp*- closed function. And by using proposition (3-30) we get, $gof:(X,\tau)\rightarrow(Z,\mu)$ is contra gp**- closed function.

Similarly, we prove the following propositions:

Preposition (4-7):

If $f: (X,\tau) \rightarrow (Y,\sigma)$ is contra-gp*- closed function , $g:(Y,\sigma) \rightarrow (Z,\mu)$ is a contra-gp-closed function and (Y,σ) is locally indiscrete. Then $gof:(X,\tau) \rightarrow (Z,\mu)$ is contra- gp^{**} - closed function.

Proposition (4-8):

If f: $(X,\tau) \rightarrow (Y,\sigma)$, g: $(Y,\sigma) \rightarrow (Z,\mu)$ are contra-gp*- closed functions and let (Y,σ) is a locally indiscrete, Then gof: $(X,\tau) \rightarrow (Z,\mu)$ is (contra- gp*- closed, contra- pre gp*- closed and contra-gp**- closed) function respectively.

Remark (4-9):

If $f: (X,\tau) \rightarrow (Y,\sigma)$ is a preclosed function and

- **1-**g:(Y, σ)→(Z, μ) is a contra-gp- closed function. Then gof:(X, τ)→(Z, μ) is not contra-gp- closed function.
- **2-** g: $(Y,\sigma) \rightarrow (Z,\mu)$ is a contra-pre gp*- closed function. Then gof: $(X,\tau) \rightarrow (Z,\mu)$ is not (contra- closed, contra- preclosed and contra-gp- closed) function respectively.

The following proposition and results give the condition to make Remark (4-9) it is true:

Proposition (4-10):

If $f: (X,\tau) \rightarrow (Y,\sigma)$ is a preclosed function , $g:(Y,\sigma) \rightarrow (Z,\mu)$ is a contra-gp- closed function and (Y,σ) is submaximal space. Then $gof:(X,\tau) \rightarrow (Z,\mu)$ is contra- gp- closed function.

Proof:

Let A be a closed set in (X,τ) . Thus, f(A) is a preclosed set in (Y,σ) . Since (Y,σ) is a submaximal space and by using corollary (2-8) we get f(A) is a closed set in (Y,σ) . Since g is contra-gp- closed function. Then g(f(A)) is a gp- open set in (Z,μ) . Since g(f(A)) = gof(A). Therefore, $gof:(X,\tau) \rightarrow (Z,\mu)$ is contra-gp-closed function.

Proposition (4-11):

If $f:(X,\tau)\rightarrow(Y,\sigma)$ is a preclosed function, $g:(Y,\sigma)\rightarrow(Z,\mu)$ is a contra- pre gp^* - closed and (Z,μ) is submaximal space.

Then $gof:(X,\tau) \rightarrow (Z,\mu)$ is contra- closed function.

Proof:

Let A be a closed set in (X,τ) . Thus, f(A) is a preclosed set in (Y,σ) , and by remark (2-3) we get, f(A) is a gp- closed set in (Y,σ) . Since g is a contra-pre gp*- closed function. Then g(f(A)) is a preopen set in (Z,μ) .

Since (Z,μ) is a is submaximal space and by theorem (2-7) we get, g(f(A)) is an open set in (Z,μ) . Since, g(f(A))=gof(A). Hence, $gof:(X,\tau)\rightarrow(Z,\mu)$ is contra- closed function.

The following corollary has easy proof. Thus it is omitted.

Corollary (4-12):

If $f: (X,\tau) \rightarrow (Y,\sigma)$ is a preclosed function, $g:(Y,\sigma) \rightarrow (Z,\mu)$ is a contrapre gp^* -closed function, and (Z,μ) is submaximal space. Then $gof:(X,\tau) \rightarrow (Z,\mu)$ is

- (i) contra-preclosed function.
- (ii) contra-gp- closed function.

Remark (4-13):

If f: $(X,\tau)\rightarrow (Y,\sigma)$ is contra-gp*- closed function and g: $(Y,\sigma)\rightarrow (Z,\mu)$ is pre gp- closed function. Then gof: $(X,\tau)\rightarrow (Z,\mu)$ is not necessarily gp- closed function.

The following proposition the condition to make remark (4-13) its true:

Proposition (4-14):

If $f: (X,\tau) \rightarrow (Y,\sigma)$ is contra-gp*-closed function, $g:(Y,\sigma) \rightarrow (Z,\mu)$ is pre gp-closed function, X is semi- pre $T_{1/2}$ -space and (Y,σ) is

a locally indiscrete gof: $(X,\tau) \rightarrow (Z,\mu)$ is gp- closed function.

Proof:

Let A be a closed set in (X,τ) . Since (X,τ) is semi - pre $T_{1/2}$ - space and by remark (2-9)

we get A is gp- closed wet in (X,τ) . Thus f(A) is an open set in (Y,σ) . Since (Y,σ) is locally indiscrete and by define (2-5) we obtain f(A) is closed set in (Y,σ) , and by remark (2-3) we have f(A) is a preclosed set in (Y,σ) . Since g is a pre gp- closed function. Then g(f(A)) is a gp-closed set in (Z,μ) . But g(f(A)) = gof(A). Hence, $gof:(X,\tau) \rightarrow (Z,\mu)$ is a gp-closed function.

References

[1] Baker. C.W; "Contra- open function and contra- closed functions", Math. Today, 15, 19-24; 1997.

- [2] Cao. J, Ganster. M, konstadilaki. Ch and Reill. I; "On preclosed sets and their generalized", Houston J. Math August9, 1-10; 1999.
- [3] Chambers. J and remark; "On open-closed mapping", Fund. Math lxxiv, 197-208; 1972.
- [4] Cladas. M and Navalagi. G; "On weak forms of preopen and preclosed functions", Archivum Mathematicum (BRNO), 40, 119-128; 2004.
- [5] Dontcher. J; "Contra- continuous functions and strongly S- closed spaces", internet. J. Math. Math Sci. 19, 303-310; 1996.
- [6] Dontcher. J; "Survey on preopen sets", the proceedings of the yatsushira topological conference, 1-18; 1998.
- [7] Dontcher. J; "On generalized semipreopen sets"; mem. Fac. Sci. kochi univ, ser. A. math, 16, 35-48; 1995.
- [8] Donthcer. J and Maki. H; "On the behavior of gp- closed sets and their generalizations", mem. Fac. Sci. kochi univ. ser A, math., 19, 57-72; 1998.
- [9] Jin. H, yong. B and Young .L; "On gp-closed sets and pre gp-continuous functions", Indian J. pure apple. Math., 33(1), January, 3-12; 2002.
- [10] Mahmoud. R.A; "Between SMPC-functions and sub maximal spaces", Indian J. pure Apple. Math, 32 (3), 325-330; 2001.
- [11] Maki. H, Umebara. J and Noiri. T; "Every topological space pre $T_{\frac{1}{2}}$ ", mem. Fac. Sci. kochi univ. Ser. A. math., 17, 33-42; 1996.

الخلاصة

في هذا البحث، سنقدم نوع جديد من الدوال- ضد المغلقة وتسمى دالة- ضد المغلقة- gp و سنستخدم هذه الدالة لتقديم ودراسة أنواع أخرى من الدوال ضد المغلقة- gp، دالة- ضد المغلقة- gp، دالة- ضد الشبه *gp، دالة- ضد الشبه المغلقة- gp و دالة- ضد الشبه المغلقة- gp) وإيجاد العلاقة فيما بينها، كذلك سوف نبرهن بعض خواص تلك الدوال.