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Abstract 

In this paper, a mathematical model, consists from a stage structured predator interacting with 

prey which is assumed to live in two distinct habitats, and the predator has the tendency to switch 

among these habitats, is proposed and analyzed. The existence and uniqueness of the solution of the 

proposed model are discussed. The existence and the stability analyses of all possible equilibrium 

points are studied. Because of difficulty of analytical computation the global stability of these 

equilibrium points and the persistence of the model will be studied numerically. 
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Introduction 

In a natural ecosystem, the interaction 

between the prey and their predator is a 

complex dynamical phenomenon. This 

complexity is attributed largely to the diverse 

individual behavior of the ecological 

populations. As far as the predator population 

is concerned, such behavior manifests itself 

mainly in the form of predation characteristic 

which is measured by the predation functional 

response. Beginning with the pioneering works 

of Alfred Lotka and Vito Volterra in 1920, a 

good volume of literature concerns itself with 

the functional response of the predator, how 

predators react to different prey densities and 

how this reaction changes predation rate [1-4]. 

Tansky [5] investigated mathematical model 

of one-predator and two –prey system which 

has switching property of predation. B. 

Mukhopadhyay and R. Bhattacharyya [6] 

studied an ecological food chain, where the 

prey species is segregated into two distinct 

habitats and the predator has the tendency to 

switch among these habitats, the authors 

analyze such a food chain model by study the 

Hopf-bifurcation of this model. In this paper 

we will study the model of Tanksy with stage 

structure for predator. 

 

Mathematical model 

In this section, an ecological model of one-

predator and two–prey system which has 

switching property of predation with stage 

structure for predator is proposed. In order to 

formulate the dynamic equations for such 

model the following assumptions are made. 

A1) The prey population is assumed to live in 

two distinct habitats whose population 

density at time t is denoted by 

)()( tyandtx . 

A2) The predator population is divided into 

two classes, immature predator 

population, whose population density at 

time t is denoted by )(1 tz , and mature 

predator population, whose population 

density at time t is denoted by )(2 tz  and 

the predator consumes prey from these 

habitats with a switching tendency. 

A3) The immature predator population 

transfer to mature predator population at a 

rate 13 zE , where 3E  ( 03 E ) represents 

the conversion rate coefficient. Finally, 

both the immature and mature predator 

populations decreases due to the natural 

death rates 4E  ( 04 E ) and r ( 0r ) 

respectively. Thus, depending on the 

above assumptions the evolution 

equations for our model can be written as: 
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where 00 21  EandE are the growth 

rates of prey population, the functions  
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have the characteristic property of 

switching mechanism. Biologically, these 

functions signify the fact that the predatory 

rate, namely the frequency with which an 

individual of the prey species is attacked by a 

predator, decreases when the population of 

that species become rare compared to the 

population of the other species, a represent the 

predation coefficient of the first species and b 

represent the predation coefficient of the 

second species n (n>1) is the intensity of 

predator switching.  

Then system (1) can be turned into the 

following dimensionless form: 
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1

4

4 E

E
w  ; and 

1

5
E

r
w  .are the dimensionless 

parameters. 

System (2) needs to analyzed with a 

specific initial condition, which may be taken 

as any point in the region 

}4,3,2,1;0:),,,{( 4

4321

4  iyRyyyyR i . 

 

Existence and stability analysis of system (2) 

The stage structured prey-predator model 

given by system (2) has at most four 

nonnegative equilibrium points, namely 

)0,0,0,0(0 E , 

),,0,( 4311 yyyE  , )~,~,~,0( 4322 yyyE   and 

),,,( 43213

 yyyyE .  

The equilibrium point 0E  always exists, 

however the equilibrium point 1E  exists in the 

positive part of 431 yyy surface where 
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The equilibrium point 2E  exists in the positive 

part of 432 yyy surface where 
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Finally the positive equilibrium point 
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 yyyyE ,where 































2

1

2
41

5

1

2
432

1 1

)1)((

w
w

w
ww

w
w

w
www

y
n

n

  ........................... (5a) 

































2

1

2
4

5

1

2
43

2 1

)1)((

w
w

w
w

w
w

w
ww

y
n

n

  ............................... (5b) 











 1

2

1

4

52

3
w

w

w

ww
y   ..................................... (5c) 

1
2

1

4 

w

w
y   ................................................. (5d) 

In the following, the local dynamical 

behavior of system (2) around each of the 

above equilibrium points is discussed. First the 

Jacobian matrix of system (2) at each point is 

determined and then the eigenvalues for the 

resulting matrix are computed. The Jacobian 

matrix of system (2) at the equilibrium point 

),,0,( 4311 yyyE   is given by:  
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Accordingly the characteristic equation of 

)( 1EJ is given by  
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Where 
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Clearly from the characteristic polynomial 

012
 wy , the eigenvalue of )( 1EJ in the 

directiony 2 .Also, we have 

03321  AAAA  and hence 1E is 

unstable equilibrium point. 

The Jacobian matrix of the system (2) at 

the positive equilibrium point 

)~,~,~,0( 4322 yyyE   can be written as:  
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Note that, due to Routh-Hurwitz criterion, 

the necessary and sufficient conditions for 2E  

to be locally asymptotically stable in the 
4. RInt , are 01 A , 03 A  and 

0321  AAA . 

Straightforward computation shows that, if 

the following condition holds 
 

5431 wwww    .............................. (8a) 
 

Then we obtain 01 A . But condition (8a) 

implies that  
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That is 2E is unstable equilibrium point. 

Finally, the Jacobian matrix of the system 

(2) at the positive equilibrium point 

),,,( 43213

 yyyyE , where 4,3,2,1 iforyi
 

are given in equations(5a-5d)   can be written 

as: 
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Note that, due to Routh-Hurwitz criterion, 

the necessary and sufficient conditions for 2E  

to be locally asymptotically stable in the 
4. RInt , are .4,3,2,10  iforAi , and 
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Straightforward computation shows that, if the 

following condition holds 
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Conditions (10a)-(10e) guarantees' that 

   07,6,5,3,10 4   andifori . 

And hence 4,3,2,10  iforAi .  

Finally, substituting the values of iA  for 

3,2,1i  in 4
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3321 AAAAAA   and then 

simplifying the resulting term we get that  
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obviously 0  if and only if in addition to 

conditions (10a)-(10e) the following two 

conditions holds: 
 

1 2 1 2 43 5( ) a        ................................ (10f) 
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Consequently the following theorem for 

locally stability of 3E  can be proved easily. 

 

Theorem 2: 

Assume that the positive equilibrium point 

3E  of system (2) exists. Then 
3E  is locally 

asymptotically stable in the 4. RInt  if the 

conditions (10a)-(10e), (10f) and (10g) are 

satisfied. 

In the following section the dynamical 

behavior of system (2) will be studied 

numerically because of difficulty of analytical 

computations. 
 

Numerical analysis 

In this section the global dynamics of 

system (2), for n=2,n=3 and n=4 is studied 

numerically. System (2) is solved numerically 

for different sets of parameters and for the 
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initial point (1.5,0.8,0.9,0.9), and then their 

time series are drown. 

For the following set of parameters  
 

1 2 3 4 50.1, 0.1 0.1, 0.1, 0.2w w w w w      ........... (11) 
 

The time series of system (2) are drown in 

Fig.(1) (a)-(f) for n=2, Fig.(2) (a)-(f) for n=3 

and Fig.(3)(a)-(f) for n=4. 
 

Fig.(1):(a)-(f) The time series of the attractor 

initiated at (1.5,0.8,0.9,0.9) for the intensity of 

predator switching n=2. 
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(a1) The trajectory of y1 as a function of time. 

(a2) The trajectory of y2 as a function of time. 

(a3) The trajectory of y3 as a function of time. 

(a4) The trajectory of y4 as a function of time. 

Fig.(a1)-(a4) Time series of the attractor 

initiated at (1.5,0.8,0.9,0.9)  for the set of 

parameters values (11) which shows that the 

solution of system (2) approaches to stable 
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(b1) The trajectory of y1 as a function of time. 

(b2) The trajectory of y2 as a function of time. 

(b3) The trajectory of y3 as a function of time. 

(b4) The trajectory of y4 as a function of time.  

 

Fig.(b1)-(b4) shows that system (2) has 

periodic dynamic in the 4.


RInt for the data 

given in (11) with w1=0.35. 
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(b) Periodic attractor in the .. 4


RInt  for the set 

of parameters values (11) with w1=0.4 . 
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(c) Time series of the attractor initiated at 

(1.5,0.8,0.9,0.9) for the set of parameters 

values (11) with w2=0.30 which shows that the 

solution of system (2) approaches to stable 
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(d1) The trajectory of y1 as a function of time. 

(d2) The trajectory of y2 as a function of time. 

(d3) The trajectory of y3 as a function of time. 

(d4) The trajectory of y4 as a function of time.  
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Fig.(d1)-(d4) Time series of the attractor 

initiated at (1.5,0.8,0.9,0.9)  for the set of 

parameters values (11) with w3=0.5 shows that 

the solution of system (2) approaches to stable 

point )9997.1,400009.0,181.2,182.2(
3
E . 
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(e1) The trajectory of y1 as a function of time. 

(e2) The trajectory of y2 as a function of time. 

(e3) The trajectory of y3 as a function of time. 

(e4) The trajectory of y4 as a function of time.  

 

Fig.(e1)-(e4) Time series of the attractor 

initiated at (1.5,0.8,0.9,0.9)  for the set of 

parameters values (11) with w4=0.9 shows that 

the solution of system (2) approaches to stable 

point 
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(f1) The trajectory of y1 as a function of time. 

(f2) The trajectory of y2 as a function of time. 

(f3) The trajectory of y3 as a function of time. 

(f4) The trajectory of y4 as a function of time.  

 

Fig.(f1)-(f4) Time series of the attractor 

initiated at (1.5,0.8,0.9,0.9) for the set of 

parameters values (11) with w5=0.99 shows 

that the solution of system (2) approaches to 

stable point. 
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According to the above, the effect of the other 

parameters on the dynamics of system (2) is also 

studied in case of varying the parameters and 

obtained results are summarized in the following 

tables 
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In the following the comparison between, 

the effect of the other parameters on the 

dynamics of system (2) for n=2, n=3 and n=4 

in case of varying the parameters and obtained 

results are summarized in the following table. 
 

Table (2) 

In the following the comparison between, the 
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studied in case of varying the parameters and 
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Table (3) 
In the following the comparison between, the 

effect of the other parameters on the 

dynamics of system (2) for n=2 and n=10 is 

also studied in case of varying the parameters 

and obtained results are summarized in the 

following table. 
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Conclusion 

In this paper, a mathematical model has 

been proposed and analyzed to study the 

impact of switching on the dynamics behavior 

of a stage structured predator interacting with 

prey which assumed to live in two distinct 

habitats, the dynamical behavior of system (2) 

has been investigated locally, but because of 

difficulty of analytical computations, the 
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global stability and persistence of system (2) 

studied numerically. 

Now, Table (2) and Table (3) illustrates the 

effect of changing the parameters on the 

dynamics of system (2). We observe that when  

the intensity of predator switching increases  

1w  and 2w which represent the growth rate of 

second prey and the predation coefficient 

respectively play a vital role in persistence of 

system (2), see Table (3), but when the 

intensity of predator switching decreases the 

persistence of system (2) valid in the same 

varying of  parameters 5,...,2,1, iforwi ,see 

Table (2). 
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 الخلاصة
يتضمن هذا البحث اقتراح وتحليل نموذج رياضي يتكون 
من مفترس ذو مراحل عمرية مركبة يتفاعل مع فريسة افترض 
انها تعيش في بيئتين مختلفتين والمفترس يميل للتبديل بين 
البيئتين. تمت مناقشة وجود ووحدانية الحل للنموذج المقترح. 

اط الثابتة لهذا النموذج. كما قمنا بدراسة وجود واستقرارية النق
ولصعوبة الحسابات التحليلية لدراسة الاستقرارية الشاملة 

 والاصرار للنظام درست عدديآ.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


