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Abstract

In this paper, a mathematical model, consists from a stage structured predator interacting with
prey which is assumed to live in two distinct habitats, and the predator has the tendency to switch
among these habitats, is proposed and analyzed. The existence and uniqueness of the solution of the
proposed model are discussed. The existence and the stability analyses of all possible equilibrium
points are studied. Because of difficulty of analytical computation the global stability of these
equilibrium points and the persistence of the model will be studied numerically.
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Introduction formulate the dynamic equations for such
In a natural ecosystem, the interaction model the following assumptions are made.
between the prey and their predator is a Al) The prey population is assumed to live in
complex dynamical phenomenon. This two distinct habitats whose population
complexity is attributed largely to the diverse density at time t is denoted by

individual  behavior of the ecological x(t) and y(t).

populations. As far as the predator population A2) The predator population is divided into
is concerned, such behavior manifests itself two  classes, immature  predator
ma!nly_in the form of predation_characte_ristic population, whose population density at
which is measured by the predation functional time t is denoted by z,(t), and mature

response. Beginning with the pioneering works
of Alfred Lotka and Vito Volterra in 1920, a
good volume of literature concerns itself with
the functional response of the predator, how
predators react to different prey densities and
how this reaction changes predation rate [1-4].
Tansky [5] investigated mathematical model
of one-predator and two —prey system which

predator population, whose population
density at time t is denoted by z,(t) and
the predator consumes prey from these
habitats with a switching tendency.

A3) The immature predator population
transfer to mature predator population at a
rate E,z,, where E; (E; >0) represents

has SWitching property of predation_ B. the ConvelrSion rate coefficient. Finally,
Mukhopadhyay and R. Bhattacharyya [6] both th_e immature and mature predator
studied an ecological food chain, where the populations decreases due to the natural
prey species is segregated into two distinct death rates E, (E,>0) and r (r>0)
habitats and the predator has the tendency to respectively. Thus, depending on the
switch among these habitats, the authors above assumptions the evolution
analyze such a food chain model by study the equations for our model can be written as:
Hopf-bifurcation of this model. In this paper dx, az,x"x
we will study the model of Tanksy with stage P EX = (1a)
X"+y

structure for predator. q .

_ Y gy-2Y Y (1b)
Mathematical model dt X"+y

In this section, an ecological model of one- dz ax"z.x
. 1 2
predator and two—prey system which has EZ—ESZﬁ SR
switching property of predation with stage Y (1c)
structure for predator is proposed. In order to N bz,y"y _Eg
n n 471
X" +y

YA
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dz
d_t2 =E,Z —TZ, oo (1d)
where E, >0 and E, >0are the growth

rates of prey population, the functions

() and (—),
1+ ()" 1+ ()"
X y
have the characteristic property of
switching mechanism. Biologically, these

functions signify the fact that the predatory
rate, namely the frequency with which an
individual of the prey species is attacked by a
predator, decreases when the population of
that species become rare compared to the
population of the other species, a represent the
predation coefficient of the first species and b
represent the predation coefficient of the
second species n (n>1) is the intensity of
predator switching.

Then system (1) can be turned into the
following dimensionless form:

L 0 7 2a
daT 7oy +y; )
dy, YaYs Yo
22 = —W, TEEEZE e 2b
gr Ty 0)
d n
s 3Ys T W, yﬁyzlyi
dT Yi tY;

W Iy,

YotYa (2¢)

dy, w,
d_yT4:W4y3_W5y4 ............................................ (2d)

2

T=Et W=t w,=b W=¢
where 1 LR TR T TR
w, =£=; and w, =" .are the dimensionless

: E

1
parameters.
System (2) needs to analyzed with a
specific initial condition, which may be taken
as any point in the region

RY={(¥1 Y2 Y5 ¥a) €R* 1y, 20 =1,234}.

Existence and stability analysis of system (2)

The stage structured prey-predator model
given by system (2) has at most four
nonnegative  equilibrium  points, namely

E, =(0,0,0,0),
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Elz(yl’o’ )_/3,)74),E2 =(O! y21y3!y4) and

By =(¥1: Y2, Ys: Ya)-

The equilibrium point E, always exists,
however the equilibrium point E; exists in the
positive part of y,y,y, —surface where

o (wy w)w,
1=( N e (3a)
W4
W,W
s T s (3b)
w,
V=l (3¢c)

The equilibrium point E, exists in the positive
part of y,y,y, —surface where
UL

T T T YRR PV RUR PR 4a
S (42)
e (4b)

W4
W
U0 = s (4c)
W2
Finally the positive equilibrium  point
Es = (Y1, Y2,¥s. Ys) Where
W2
W WA M (5a)
Y = e
(]
W W, || — +W,
Wl
W +W“)(1+W?W5 ............................... (5b)
y2 N+l
A W + W,
Wl
yi = WaWs (W1+1j ..................................... (5¢)
w, (w,
y4_&+l ................................................. (Sd)
W2

In the following, the local dynamical
behavior of system (2) around each of the
above equilibrium points is discussed. First the
Jacobian matrix of system (2) at each point is
determined and then the eigenvalues for the
resulting matrix are computed. The Jacobian
matrix of system (2) at the equilibrium point

E, = (¥,.0,¥5,Y,) is given by:
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0 0 0 -y,
0w 0 0
JE)={wy! 0 —(w;+w,) W, Yy
0 0 it w

W,

Accordingly the characteristic equation of
J(E,) is given by

(W, - )P +ALX +AL+A)=0
Where

A =—(b, +by) =W+ W, +W, >0, oo (6a)
A =b,b,—-bb, =0 . (6b)
A =—-(b.b,b,,) = «V\@Lfln)wf?)nﬂ S0 cvrerreerreireennens (6¢)

W4
with

bzz = _(Ws +W4)' bss =W

_ W,
b23 :W2y11b32 =T
W,

b13 =—Y and b21 = Wzyln .

Clearly from the characteristic polynomial

A,, =W, >0, the eigenvalue of J(E,)in the

y
y, —direction.Also, we have

A=AA -A, =-A, <0 and hence
unstable equilibrium point.

The Jacobian matrix of the system (2) at
the positive equilibrium point
E, =(0,Y,,Y,,Y,) can be written as:

E,is

1 0 0 0
W1 0 _Wz Vz
J(E;)=|0 WW, = (W, +w,) Wgy
0 0 Wy —w,
W,

Acco_rdingly the characteristic equat_ion of
J(E,)is given by

Q- +A+AL+A)=0

where
A =—(Cy +Cp +Cyg) =Wy + W, +We =W, e (7a)
AZ = C11(-;22 + C22033 - CZSCISZ + C11C33
=—-w, (W, +w, +w;) <O0.
................................ (7b)
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A3 = —C;1C,,C55 + C;;C53C5, —C13C5,C5;
= w,(w;+w,)>0
................................ (7¢)
With
Cii =W, G5 = — (W & Wy )W J
W,
Coy = WiW,, Cpp = —(W; +W,)
C.. — W, Wy (W3 + W4) W,
23 — y Y32 —
w, W,
and c;; =—W;.

Note that, due to Routh-Hurwitz criterion,
the necessary and sufficient conditions for E,

to be locally asymptotically stable in the
Int.R*, are A >0, A;>0  and
A=AA, —A;>0.

Straightforward computation shows that, if
the following condition holds

Then we obtain A, >0. But condition (8a)
implies that

A=AA, - A

=—W, (W; + W, )[w, +W, +w, —w, +1] <0

That is E, is unstable equilibrium point.

Finally, the Jacobian matrix of the system
(2) at the positive equilibrium point
E,=(Y:, Y5, Y3, Y,), Where y" fori=1234
are given in equations(5a-5d) can be written

as:
J (Ez) = (aij )4><4
where
F\N | F n * o o
2 -1- 0% [1+—(f\2)j, A= (%) +(%)
n \n+l gy k-1, x *\N+1
a12=—(yl) A(ZyZ) y4 >0,313=0,314=——(y1A) <0
#\N-17, *\n+l * #\N | ¥ *\N
a21 _ nWZ(yl) Az(yZ) y4 >O, azz :Wl_Wz(yz) y4 (1+ n(yAl) )
W *\n=1
ay=0,8,= Z(XZ) 0



_ WY,
1 Az

A

=Sl

()" (¥2)" (+Dyy —w,ny;) +(y1)*']

{A—n(yz)”(wz—fg—lﬂ
2

(YD) (v2)" (W, (n+ D)y, —ny;) +(y)™"]

8

_ WY,
2 Az
Yi

2\ %\ * *
=Tk {A+ n(y;)" [1——W v H
272

B =~ W,) <0,3, = 22 ((4)"™ + W, (¥3)"™) >0

8,

W,
a,=0,a,=0, a43=W4>0, a, =-W, <0.
2

Accordingly the characteristic equation of
J(E,) is given by

AH+AL+ALX+AAL+A, =0

where

A =—(,F7,) e (9a)
A2 S e o ) O P (gb)
A\; = VoVs VY4~ Qugls  rrrrrerrrrsnnn (90)
2y - 0T WL VAL Wt WL VAR (9d)

with

=y +ay, 7, =a,;+3a,, <0,

V3 =8y — 838y, )y = G338y, — 83483,
Vs = Q1851 T 8p 85, Vg = Q1p8y, — 8148y
V7 = 4485 — 83,85,

Note that, due to Routh-Hurwitz criterion,
the necessary and sufficient conditions for E,
to be locally asymptotically stable in the
Int.R*, are A >0 fori=1234., and
A=AAA-A -AA>0.
Straightforward computation shows that, if the
following condition holds

a, <0 iff

WS (W] +W5) Y, +nwiwgyy > (W +w;)?

a,, <0 iff

n+1,

W, (W] W3 )+ Y > w (] -+ W)’
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W (W Wo )[(W] +W5) + W,y +Woy;) + R >R,
Where

Ry =wWW;y; (W] +W;)* (W] +w;)(n-1),

n+1

Ry = nwi'wj (Y, ) (W' + Wz )(Wa "™ +W'W, )

(10d)
Wy WG (W -+ W, ) (W] +W5) > g Yy (W5 +wi' ™)

Conditions (10a)-(10e) guarantees' that
7, <0 for 1=1356,7 andy, >0.

And hence A >0 fori=1234.
Finally, substituting the values of A; for

i=123 in A=AAA —A;—A’A, and then

simplifying the resulting term we get that

A=(r7s =727 +agYs 0 +72)(172) —agys) +
(73 +74)27172 +a((ay7¢ "'33277)(71"'72)2 t
(=773 +7274)7s]

obviously A>0 if and only if in addition to

conditions (10a)-(10e) the following two
conditions holds:

(R 20} 20 2k 1y 2 (10f)
=7Vt
CHLTTINE S g o vas o (100)

(7 +7)

Consequently the following theorem for
locally stability of E, can be proved easily.

Theorem 2:
Assume that the positive equilibrium point
E, of system (2) exists. Then E, is locally

asymptotically stable in the Int.R? if the
conditions (10a)-(10e), (10f) and (10g) are
satisfied.

In the following section the dynamical
behavior of system (2) will be studied
numerically because of difficulty of analytical
computations.

Numerical analysis

In this section the global dynamics of
system (2), for n=2,n=3 and n=4 is studied
numerically. System (2) is solved numerically
for different sets of parameters and for the
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initial point (1.5,0.8,0.9,0.9), and then their
time series are drown.
For the following set of parameters

w =01 w,=01w,=01 w,=01 w=02 (11)

The time series of system (2) are drown in
Fig.(1) (a)-(f) for n=2, Fig.(2) (a)-(f) for n=3
and Fig.(3)(a)-(f) for n=4.

Fig.(1):(a)-(f) The time series of the attractor
initiated at (1.5,0.8,0.9,0.9) for the intensity of
predator switching n=2.
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(al) The trajectory of y: as a function of time.
(a2) The trajectory of y. as a function of time.
(a3) The trajectory of ys as a function of time.
(a4) The trajectory of ys as a function of time.
Fig.(al)-(a4) Time series of the attractor
initiated at (1.5,0.8,0.9,0.9) for the set of
parameters values (11) which shows that the
solution of system (2) approaches to stable
point E, =(0.72,0.72,0.39,1.99).
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(b1) The trajectory of y: as a function of time.
(b2) The trajectory of y. as a function of time.
(b3) The trajectory of ys as a function of time.
(b4) The trajectory of y4 as a function of time.
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Fig.(b1)-(b4) shows that system (2) has
periodic dynamic in theIntR*for the data

given in (11) with w;=0.35.

(b)
12 T
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(b) Periodic attractor in the Int.R?. for the set
of parameters values (11) with w1=0.4 .
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(c) Time series of the attractor initiated at
(1.5,0.8,0.9,0.9) for the set of parameters
values (11) with w»=0.30 which shows that the
solution of system (2) approaches to stable
point E, =(0,0,0,0).
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(d1) The trajectory of y: as a function of time.
(d2) The trajectory of y2 as a function of time.
(d3) The trajectory of yz as a function of time.
(d4) The trajectory of y4 as a function of time.



Fig.(d1)-(d4) Time series of the attractor
initiated at (1.5,0.8,0.9,0.9) for the set of
parameters values (11) with ws=0.5 shows that
the solution of system (2) approaches to stable
point E, =(2.182,2.181,0.400009,1.9997) .
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(€2)
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& 04

1st prey

05

x10°

(e1) The trajectory of y: as a function of time.
(e2) The trajectory of y» as a function of time.
(e3) The trajectory of ys as a function of time.
(e4) The trajectory of ys as a function of time.

Fig.(el)-(e4) Time series of the attractor
initiated at (1.5,0.8,0.9,0.9) for the set of
parameters values (11) with w4=0.9 shows that
the solution of system (2) approaches to stable
point

E, = (0.40036,0.40037,0.0404043,20001) in IntR’.

(f1)
45 4

f2)

x10°

(f1) The trajectory of y1 as a function of time.
(f2) The trajectory of y- as a function of time.
(f3) The trajectory of y3 as a function of time.
(f4) The trajectory of ya as a function of time.

Fig.(f1)-(f4) Time series of the attractor
initiated at (1.5,0.8,0.9,0.9) for the set of
parameters values (11) with ws=0.99 shows
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that the solution of system (2) approaches to
stable point.
E, =(3.6,3.6,1.98,2) in Int.R".
According to the above, the effect of the other
parameters on the dynamics of system (2) is also
studied in case of varying the parameters and
obtained results are summarized in the following
tables

Table (1)

Numerical behaviors and persistence of
system (2) as varying in some parameters
keeping the rest of parameters fixed as in eq.
(11) for the initial point (1.5,0.8,0.9,0.9) and
n=2.

Persistence
of system

)

Persists

Numerical
behavior of
system (2)
Approaches to
periodic
dynamics in
Int.R?
Approaches to
stable point in
Int.R?

Approaches to
periodic
dynamics in
Int.R?
Approaches to
stable point

E, =(0,0,0,0)

Parameters
varied in
system(2)

0.01<w, <0.02

0.02<w, <0.15 Persists

Persists

0.15<w, <09

Not persist

09<w, <24
0.01<w, <021

Approaches to Persists
stable point in

Int. R

Approaches to
periodic
dynamics in
Int. R
Approaches to
stable point

E, =(0,0,0,0)

Approaches to
stable point in
Int. R?.

Approaches to
stable point in
Int.R*.

Persists

0.21<w, <026

Not persist
027<w, <6

0.1<w, <0.99

Persists

0.01<w, <0.99 Persists

0.1<w, <0.99 Persists

Approaches to
stable point in
Int. R?.
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In the following the comparison between,
the effect of the other parameters on the
dynamics of system (2) for n=2, n=3 and n=4
in case of varying the parameters and obtained
results are summarized in the following table.

Table (2)
In the following the comparison between, the
effect of the other parameters on the
dynamics of system (2) for n=2, n=3 and =4 is
studied in case of varying the parameters and
obtained results are summarized in the
following table.

0.01< wy <0.02

0.02<w <015

0.15<w; <09

09<w <24

0.01<w; <0.02

0.02<w <0.14

0.14<w <1.83

183<w <24

0.01<w <0.02

0.02<w <0.11

0.11<w; <1.70

170<w <24

Approach to periodic

dynamicsin Int.Rf.

Approach to stable

point in Int.Rf.

Approach to periodic
dynamicsin IntR’.

Approach to stable
point Eg =(0,0,0,0).

001<w,<0.21

0.21<w, <0.26

0.27<w, <6

001< Wy <020

020<1y <026

026<, <6

0.01<w, <0.24

0.20<w, <0.26

0.26 <w, <6

Approach to stable
point in Int.Rf.
Approach to periodic

dynamicsin Int.Rf’.
Approach to stable
point Eg =(0,0,0,0).

0.1<w; <0.99

0.1<w5<0.99

0.1<w3 <0.99

Approach to stable

point in Int.Rf.
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Table (3)

In the following the comparison between, the
effect of the other parameters on the
dynamics of system (2) for n=2 and n=10 is
also studied in case of varying the parameters

and obtained results are summarized in the
following table.

Parameters
varied

in system (2)
for

n=2

Numericasl
behavior
of system (2)

Parameters
varied

in system
(2) for
n=10

Numericasl
behavior
of system (2)

0.01<w <0.02

0.02<w <0.15

Approach to per

dynamicsin Int.R
Approach to stable
point in Int.Rf.
Approach to periodic|
dynamicsin Int.Rf.
Approach to stable
point Eg =(000,0).

bdic
4 0.01<w, <097
A8

097<w, <05

05<w, <24

Approach to perio

dynamicsin Int.Rf

Approach to stable
point Eq =(0,0,0,0).

Approach to periodic

dynamicsin Int.Rf.

0.01<w, <021

0.21<wy <0.26

027<wy <6

Approach to stable

point in Int.Rf.

Approach to periodic|

dynamicsin Int.Rf.

Approach to stable
point Eg =(0,0,0,0)

0.01<w, <0.07

0.07<p<0.26

0.27< Wy <6

Approach to stable

point in Int.Rf.

Approach to periodic

dynamicsin Int.Rf.

Approach to stable
point Eq = (0,0,0,0).

0.1<w3 <099

Approach to stable

point in Int.Rf.

01<wy <03

0.4< w5 <0.99

Approach to periodig
dynamicsin Int.Rf.
Approach to stable

point in Int.Rf.

0.1<w, <0.99

0.1<w, <0.99

0.1<w, <0.99

Approach tostable

point in Int.Rf.

0.1<w; <0.99

0.1<w; <0.99

0.1<w; <0.99

Approach to stable

point in Int.Rf.

YAV

0.01<w, <0.99

Approach to stable

point in Int.Rf.

001<w, <06

0.7<Wy <099

Approach to periodig
dynamicsin Int.Rf.
Approach to stable

point in Int.Rf.

001< <099

Approach tostable
point in Int.Rff.

001< w5 <06

0.7<W5<0.99

Approach to periodig
dynamicsin Int.Rf.
Approach tostable

point in Int.Rf.

Conclusion

In this paper, a mathematical model has
been proposed and analyzed to study the
impact of switching on the dynamics behavior
of a stage structured predator interacting with
prey which assumed to live in two distinct
habitats, the dynamical behavior of system (2)
has been investigated locally, but because of
difficulty of analytical computations, the



global stability and persistence of system (2)
studied numerically.

Now, Table (2) and Table (3) illustrates the
effect of changing the parameters on the
dynamics of system (2). We observe that when
the intensity of predator switching increases
w, and w,which represent the growth rate of
second prey and the predation coefficient
respectively play a vital role in persistence of
system (2), see Table (3), but when the
intensity of predator switching decreases the
persistence of system (2) valid in the same
varying of parameters w,, fori=12,..,5,see
Table (2).
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