Journal of Al-Nahrain University

Vol.17 (2), June, 2014, pp.122-127

Science

Plotting the Profiles of Cartesian Surfaces by Ray-tracing

Nour Mohammed Hasan Yaseen and Ahmed Kamal Ahmed
Department of Physics, College of Science, Al-Nahrain University, Baghdad-Irag.

Abstract

A bundle of light rays, completely parallel to the optical axis, has been used to plot profiles of
the Cartesian surfaces with constant paraxial curvature and varying asphericity factor. To
accomplish this study, a programming code of skew ray tracing has been constructed to trace rays
through all types of Cartesian or quadric surfaces of revolution. The results of this work show a
remarkable utility of ray-tracing procedure to plot distinguished Cartesian surfaces profiles.
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Introduction

Ray tracing procedures, in optics and
optical design text books [1-11] are a mainstay
to exhibit the performance of optical systems
and the mathematical tools essential for rays-
aberrations evaluations which are necessary
for correcting these systems before being
constructed. In symmetrical optical systems
[4], there are, mainly, three different types of
ray tracing procedures for the different types
of the incoming rays. These procedures are the
paraxial, meridianal, and the skew ray tracing.

In this paper, the skew ray tracing method
has been considered to plot the profiles the
profiles of quadric surfaces of revolution or
the Cartesian surfaces (Cartesian surfaces are
reflecting or refracting surfaces that form
perfect images). In general, the surfaces of
mirrors or lenses are quadric surfaces of
revolution. Different surfaces profiles are
obtained by varying either the paraxial
curvature C or the asphericity factor e. The
equation that represents a surface of revolution
about the z—axis (the optical axis), passing
through the origin (passing through the x-y
plane that is tangent to the optical element
surface and having curvature C at that point is

[4]:

The parameter ¢ determines the asphericity
factor as follows [4]:

¢ > 1 for oblate ellipsoid surfaces,

0 <& < 1 for prolate ellipsoid surfaces,

e=1 for spherical surface,

¢ =0 for paraboloid surface, and
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¢ < 0 for hyperboloid surfaces.

The utility of equation (1) is to give a
range for asphericities while keeping the
paraxial curvature C constant, which is
essential in designing conic surfaces [4].

In this work, the length segment values
(A values, see Eq.3) in the skew ray tracing
equations in Ref. [4] are considered to plot the
profiles of the Cartesian surfaces (Cartesian
surfaces are reflecting or refracting surfaces
that form perfect images). The A values
represent the distance values from the x-y
plane that is tangent to the surface of the
optical element at its vertex. Thus, A values
are used as a measure to indicate the effect of ¢
on the surface shape. To achieve the goal of
this work, the paraxial curvature C has been
considered constant and the aperture diameter
to be fixed as far as possible. The appendix in
this paper contains a part of the programming
code. This part is for tracing rays reflected
from an oblate ellipsoid surface.

Skew Ray Tracing

It is considered as the ray tracing method
that gives the exact analysis; because it uses
solid geometry [4, 5]. The skew ray is the most
general case of light rays income an optical
system as it is defined as the ray that is not
co-planer with the optical axis [5]
(geometrically, there is no plane which can
contain both the optical axis and the skew ray).

Skew Ray Tracing equations are divided
into two sets of equations. The first set is for
ray transfer between surfaces and second set is
for reflection or refraction.



Transfer between Surfaces
It can be expressed by [4]:

L
Xy = X, +W(d -7,)

M
Yo =Ya +W(d - Z—l)

L, M, and N are the direction cosines of the
ray along x-axis, y-axis, and z-axis
respectively; xo, and Yo are the coordinates of
ray intersection with the tangent x-y plane; X1
and y.1 are the coordinates of coming ray. The
ray intersects the optical element surface at
coordinates given by [4]:

X=X, +LA
Y=Y +MA} 3)
z=NA

where A is given by [12]:
A= F (@)

G++/G2—CF(l+ (¢ —1)N?)

where F and G are given by[4]:
F=C(X2 4 Y2) coooemeesseeeesssseeesessseen (5)
CE N of (ISR Y (VS S (6)

Reflection (or Refraction) Equations Set
To obtain reflection or refraction equations
through a surface, we start with determining

the components of the unit normal («, g, ) as
[12]:

o= - Cx
J1-2C(e-1)z+C?s(e —1)2?
_ -Cy
J1-2C(e -1z +C?s(c —1)2?
1-C«
}/:
J1-2C(e-1)z +C?e(e -1)2°

The cosine of the angle of incidence cosl
can be obtained by the scalar multiplication
with the direction cosines of the ray tracing. It
can be expressed as [12]:

N —C(Lx + My + N& 2)

cosl =
J1-2C(¢ -1)z+C?e (¢ -1)72
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The angle of reflection or refraction can be
obtained by [4]:

n'cosl’=+/(n)2 =n’*(L=C0S? 1) ..ovccerr

The non-primed parameters are those of
the previous surface. The new ray direction
cosines in order to complete the set of
equations for transfer between surfaces are
given by [4]:

n'L'—nL =ka
N'M'=NM = KB oo (10)
n'N"—nN =ky
where
K=n"cosl'—Nncosl ..., (11)

The direction cosines should be checked in
order to assert the tracing validity. This can be
done by [1]:
(LY2+(M)2+(N)? =1 oo
Results and Discussion

The results of varying asphericitry factor
(¢) on the profiles of the Cartesian surfaces
with constant radius of curvature (r=5m), i.e,
constant curvature (for C=1/r) are listed in
Tables (1) and (2).

Table (1) gives the values of A(cm) as a
function of 1m aperture diameter size (the ray
height y is ranging from -50cm to 50cm) for
the case of oblate ellipsoids (¢>1), where € has
the values of 20, 40, 60, and 80. Table (2)
gives the values of A (cm) as a function of 9m
aperture diameter size (the ray height y is
ranging from -450cm to 450cm) for the other
cases of the Cartesian surfaces; the values of ¢
for each case are indicated in Table (2).

The chosen aperture diameter of 1m for the
oblate ellipsoids differs from that of other
cases where the aperture diameter is 9m. This
is because, in the case of oblate ellipsoids with
r=5m, the ray tracing procedure couldn’t be
proceeded for light ray heights beyond an
aperture of 1m diameter (i.e., beyond the
interval 50cm<y <-50cm). This, indeed,
emphases that the oblate ellipsoids become
more and more deep dishes (surfaces) such
that light ray of heights beyond the interval
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indicated above wouldn’t intersect these
surface with r=5m and this in turn suspended
the ray tracing procedure.

To represent the profiles of the Cartesian
surfaces graphically, the values of A for each
case of those surfaces given in Tables (1) and
(2) to be plotted versus the aperture diameter.
The graphical representation of the profiles
of the Cartesian surfaces is exhibited in
Figs. (1-4). These figures exhibit the profiles
of oblate ellipsoids, spherical surface and
paraboloid, prolate ellipsoids, and
hyperboloids respectively.

Fig.(1) shows that the profiles of oblate
ellipsoids surfaces which are plotted against
aperture diameter of 1m for the reason
explained formerly. Figs. (2, 3) and (4) show
the profiles of Cartesian surfaces with r=5m
against 9m aperture diameter. The difference
in the aperture diameters in the cases of £>1
and other cases, with constant r, emphases that
the Cartesian surfaces profiles become more
sensitive and highly responding to € when £>1
than other cases.

In the cases when ¢ <1, the profiles of the
Cartesian surfaces become more and more
flattened as ¢ decreases. This is indicated in
the results of Tables (1) and (2) and Figs. (1)
to (4) illustrate this fact graphically. Fig.(4),
the case of hyperboloid surfaces, emphases
that the surfaces become more and more
flattened and shows that as the absolute value
of &€ goes to infinity the Cartesian surface
becomes a plane.

Conclusions

First, In addition to the utilities of ray
tracing in optical design, this work exhibits
another utility of ray-tracing which is the
ability of ray tracing procedure to plot
distinguished profiles of optical Cartesian
surfaces of the same paraxial curvature with
varying asphericity factor e.

Second, from the case of oblate ellipsoids,
the paraxial curvature C of an optical element,
in comparison with the asphericity factor ¢, is
the dominant parameter in shaping the profiles
of the Cartesian surfaces.

Third, in the case of hyperboloid surfaces,
when the asphericity factor goes to infinity the
surface becomes plane.
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Fourth, Different  surfaces’ shapes,
absolutely, have different surfaces’

performance. So, varying € leads to change the
surface performance consequently.

Appendix
The programming language is QBASIC

Open "file path\ file name" for output as # 1
r=-500: C=1/r:n(1)=1:n(2)=-1 : n(3)=1
input e

For h=-50t0 50 step 5

If h=0 Goto 7

NN=1:MM=0: LL=0

Yp=h

F=C*(X"2+Y"2)

G= NN-C*(LL*Xp+MM*Yp))
Delta=F/(G+(G"2-C*F*(1+(e-1)*NN”"2))"-.5)
X=Xp+LL*Delta

Y=Yp+MM*Delta

Z=NN*Delta

denom = (1-2* (e-1)* C*Z + e(e-1)* C"2 *Z"2)
cosi =( NN — C*( X*LL + Y*MM+
Z*NN))/denom

K=('n(2)*cosi — n(1)* cosi )

alpha = - (C*X) / denom

beta = - (C*Y) / denom

gamma = (1-C*e*Z)/denom

LL = (K*alpha + LL*n(1)) / n(2)

MM = (K*beta + MM*n(1)) / n(2)

NN = (K*gamma + NN*n(1)) / n(2)
Printas#1, Y,Z

7 Next

Close #1



Table (1)
A values as a function of 1m aperture diameter forming oblate ellipsoids with r=>5m.
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50 2.565835 2.63932 2.817542 3.062871 3.454915
40 1.626454 1.654765 1.718071 1.792861 1.883938
30 0.9082492 0.9168109 0.9349665 0.9546855 | 0.9762443
20 0.4016129 0.4032522 0.4066134 0.4100904 | 0.4136913
10 0.1001002 0.1002008 0.1004032 0.1006073 0.100813
-10 0.1001002 0.1002008 0.1004032 0.1006073 0.100813
-20 0.4016129 0.4032522 0.4066134 0.4100904 | 0.4136913
-30 0.9082492 0.9168109 0.9349665 0.9546855 | 0.9762443
-40 1.626454 1.654765 1.718071 1.792861 1.883938
-50 2.565835 2.63932 2.817542 3.062871 3.454915
Table (2)

A values as a function of 9m aperture forming hyperboloids, paraboloid, prolate ellipsoids, and
spherical with r=5m.

A (cm)

Hyperboloids

Paraboloid

Prolate ellipsoids

Spherical

13.73903

e=-10

40.27693 | 100.831

172.6812 | 202.0916

&=0

211.4415

&=0.4 &=0.6

222.2598 | 235.8851

&=1

254.1901 282.0551

-10.57926

30.35534 | 71.44958

110.3278 | 122.3503

125.658

129.1744 | 133.135

137.6603 142.9286

7.42149

20.4951 | 43.54144

59.017 62.46099

63.30142

64.14588 | 65.03796

65.98301 66.9873

4.269696

10.81139 | 18.92024

22.01533 | 22.49494

22.60217

22.70623 | 22.81224

22.92027 23.0304

1.158312

2.071068 | 2.440442

2.493781 | 2.499938

2.501251

2.502505 | 2.503761

2.50502 2.506281

1.158312

2.071068 | 2.440442

2.493781 | 2.499938

2.501251

2.502505 | 2.503761

2.50502 2.506281

4.269696

10.81139 | 18.92024

22.01533 | 22.49494

22.60217

22.70623 | 22.81224

22.92027 23.0304

7.42149

20.4951 | 43.54144

59.017 62.46099

63.30142

64.14588 | 65.03796

65.98301 66.9873

10.57926

30.35534 | 71.44958

110.3278 | 122.3503

125.658

129.1744 | 133.135

137.6603 142.9286

13.73903

40.27693 | 100.831

172.6812 | 202.0916
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235.8851

254.1901 282.0551
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Fig. (1) Oblate
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