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Abstract 

A bundle of light rays, completely parallel to the optical axis, has been used to plot profiles of 

the Cartesian surfaces with constant paraxial curvature and varying asphericity factor. To 

accomplish this study, a programming code of skew ray tracing has been constructed to trace rays 

through all types of Cartesian or quadric surfaces of revolution. The results of this work show a 

remarkable utility of ray-tracing procedure to plot distinguished Cartesian surfaces profiles. 
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Introduction  

Ray tracing procedures, in optics and 

optical design text books [1-11] are a mainstay 

to exhibit the performance of optical systems 

and the mathematical tools essential for rays-

aberrations evaluations which are necessary 

for correcting these systems before being 

constructed. In symmetrical optical systems 

[4], there are, mainly, three different types of 

ray tracing procedures for the different types 

of the incoming rays. These procedures are the 

paraxial, meridianal, and the skew ray tracing. 

In this paper, the skew ray tracing method 

has been considered to plot the profiles the 

profiles of quadric surfaces of revolution or 

the Cartesian surfaces (Cartesian surfaces are 

reflecting or refracting surfaces that form 

perfect images). In general, the surfaces of 

mirrors or lenses are quadric surfaces of 

revolution. Different surfaces profiles are 

obtained by varying either the paraxial 

curvature C or the asphericity factor ε. The 

equation that represents a surface of revolution 

about the z–axis (the optical axis), passing 

through the origin (passing through the x-y 

plane that is tangent to the optical element 

surface and having curvature C at that point is 

[4]: 
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The parameter  determines the asphericity 

factor as follows [4]: 

  1 for oblate ellipsoid surfaces, 

0    1 for prolate ellipsoid surfaces,  

=1 for spherical surface,  

 =0 for paraboloid surface, and 

  0 for hyperboloid surfaces. 

The utility of equation (1) is to give a 

range for asphericities while keeping the 

paraxial curvature C constant, which is 

essential in designing conic surfaces [4]. 

In this work, the length segment values  

(Δ values, see Eq.3) in the skew ray tracing 

equations in Ref. [4] are considered to plot the 

profiles of the Cartesian surfaces (Cartesian 

surfaces are reflecting or refracting surfaces 

that form perfect images). The Δ values 

represent the distance values from the x-y 

plane that is tangent to the surface of the 

optical element at its vertex. Thus, Δ values 

are used as a measure to indicate the effect of ε 

on the surface shape. To achieve the goal of 

this work, the paraxial curvature C has been 

considered constant and the aperture diameter 

to be fixed as far as possible.  The appendix in 

this paper contains a part of the programming 

code. This part is for tracing rays reflected 

from an oblate ellipsoid surface.    

 

Skew Ray Tracing  

It is considered as the ray tracing method 

that gives the exact analysis; because it uses 

solid geometry [4, 5]. The skew ray is the most 

general case of light rays income an optical 

system as it is defined as  the ray that is not  

co-planer with the optical axis [5] 

(geometrically, there is no plane which can 

contain both the optical axis and the skew ray).  

Skew Ray Tracing equations are divided 

into two sets of equations. The first set is for 

ray transfer between surfaces and second set is 

for reflection or refraction. 
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Transfer between Surfaces  
It can be expressed by [4]: 
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L, M, and N are the direction cosines of the 

ray along x-axis, y-axis, and z-axis 

respectively; xo, and yo are the coordinates of 

ray intersection with the tangent x-y plane; x-1 

and y-1 are the coordinates of coming ray. The 

ray intersects the optical element surface at 

coordinates given by [4]: 
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where Δ is given by [12]: 
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where F and G are given by[4]: 
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Reflection (or Refraction) Equations Set 
To obtain reflection or refraction equations 

through a surface, we start with determining 

the components of the unit normal (, , )  as 

[12]:  
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The cosine of the angle of incidence cosI 

can be obtained by the scalar multiplication 

with the direction cosines of the ray tracing. It 

can be expressed as [12]: 
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The angle of reflection or refraction can be 

obtained by [4]: 
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The non-primed parameters are those of 

the previous surface. The new ray direction 

cosines in order to complete the set of 

equations for transfer between surfaces are 

given by [4]: 
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where  
 

InInk coscos    ................................ (11) 

 

The direction cosines should be checked in 

order to assert the tracing validity. This can be 

done by [1]: 
 

1)()()( 222  NML   ........................ (12) 

 

Results and Discussion 

The results of varying asphericitry factor 

(ε) on the profiles of the Cartesian surfaces 

with constant radius of curvature (r=5m), i.e, 

constant curvature (for C=1/r) are listed in 

Tables (1) and (2). 

Table (1) gives the values of Δ(cm) as a 

function of 1m aperture diameter size (the ray 

height y is ranging from -50cm to 50cm) for 

the case of oblate ellipsoids (ε>1), where ε has 

the values of 20, 40, 60, and 80. Table (2) 

gives the values of Δ (cm) as a function of 9m 

aperture diameter size (the ray height y is 

ranging from -450cm to 450cm) for the other 

cases of the Cartesian surfaces; the values of ε 

for each case are indicated in Table (2).  

The chosen aperture diameter of 1m for the 

oblate ellipsoids differs from that of other 

cases where the aperture diameter is 9m. This 

is because, in the case of oblate ellipsoids with 

r=5m, the ray tracing procedure couldn’t be 

proceeded for light ray heights beyond an 

aperture of 1m diameter (i.e., beyond the 

interval 50cm  y -50cm). This, indeed, 

emphases that the oblate ellipsoids become 

more and more deep dishes (surfaces) such 

that light ray of heights beyond the interval 
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indicated above wouldn’t intersect these 

surface with r=5m and this in turn suspended 

the ray tracing procedure. 

To represent the profiles of the Cartesian 

surfaces graphically, the values of Δ for each 

case of those surfaces given in Tables (1) and 

(2) to be plotted versus the aperture diameter. 

The graphical representation of the profiles  

of the Cartesian surfaces is exhibited in  

Figs. (1-4). These figures exhibit the profiles 

of oblate ellipsoids, spherical surface and 

paraboloid, prolate ellipsoids, and 

hyperboloids respectively.  

Fig.(1) shows that the profiles of oblate 

ellipsoids surfaces which are plotted against 

aperture diameter of 1m for the reason 

explained formerly. Figs. (2, 3) and (4) show 

the profiles of Cartesian surfaces with r=5m 

against 9m aperture diameter. The difference 

in the aperture diameters in the cases of ε>1 

and other cases, with constant r, emphases that 

the Cartesian surfaces profiles become more 

sensitive and highly responding to ε when ε>1 

than other cases.  

In the cases when ε <1, the profiles of the 

Cartesian surfaces become more and more 

flattened as ε decreases. This is indicated in 

the results of Tables (1) and (2) and Figs. (1) 

to (4) illustrate this fact graphically. Fig.(4), 

the case of hyperboloid surfaces, emphases 

that the surfaces become more and more 

flattened and shows that as the absolute value 

of ε goes to infinity the Cartesian surface 

becomes a plane. 

 

Conclusions 

First, In addition to the utilities of ray 

tracing in optical design, this work exhibits 

another utility of ray-tracing which is the 

ability of ray tracing procedure to plot 

distinguished profiles of optical Cartesian 

surfaces of the same paraxial curvature with 

varying asphericity factor ε. 

Second, from the case of oblate ellipsoids, 

the paraxial curvature C of an optical element, 

in comparison with the asphericity factor ε, is 

the dominant parameter in shaping the profiles 

of the Cartesian surfaces. 

Third, in the case of hyperboloid surfaces, 

when the asphericity factor goes to infinity the 

surface becomes plane.  

Fourth, Different surfaces' shapes, 

absolutely, have different surfaces’ 

performance. So, varying ε leads to change the 

surface performance consequently.  

 

Appendix  

The programming language is QBASIC 

 
Open "file path\ file name" for output  as # 1 

r = - 500  :  C=1/r : n(1) = 1 :n(2) = -1  :  n(3) = 1 

 input  e 

For h= - 50 t0 50 step 5 

If h=0 Goto 7 

NN =1 : MM= 0 :  LL = 0 

Yp=h 

F=C*(X^2+Y^2) 

G= NN-C*(LL*Xp+MM*Yp)) 

Delta=F/(G+(G^2-C*F*(1+(e-1)*NN^2))^-.5) 

X=Xp+LL*Delta 

Y=Yp+MM*Delta 

Z=NN*Delta 

denom = ( 1 – 2* (e-1)* C*Z + e( e-1)* C^2 *Z^2 ) 

cosi =( NN – C*( X*LL + Y*MM+ 

Z*NN))/denom 

K=( n(2)*cosi – n(1)* cosi ) 

alpha = - (C*X) / denom 

beta = - (C*Y) / denom  

gamma = ( 1 - C*e*Z ) / denom 

LL = (K*alpha + LL*n(1)) / n(2) 

MM = (K*beta + MM*n(1)) / n(2) 

NN = (K*gamma + NN*n(1)) / n(2) 

Print as # 1,   Y,Z 

7 Next 

Close #1 
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Table (1) 

Δ values as a function of 1m aperture diameter forming oblate ellipsoids with r=5m. 
 

 Δ(cm) 

y(cm) ε=10 ε=20 ε=40 ε=60 ε=80 

50 2.565835 2.63932 2.817542 3.062871 3.454915 

40 1.626454 1.654765 1.718071 1.792861 1.883938 

30 0.9082492 0.9168109 0.9349665 0.9546855 0.9762443 

20 0.4016129 0.4032522 0.4066134 0.4100904 0.4136913 

10 0.1001002 0.1002008 0.1004032 0.1006073 0.100813 

-10 0.1001002 0.1002008 0.1004032 0.1006073 0.100813 

-20 0.4016129 0.4032522 0.4066134 0.4100904 0.4136913 

-30 0.9082492 0.9168109 0.9349665 0.9546855 0.9762443 

-40 1.626454 1.654765 1.718071 1.792861 1.883938 

-50 2.565835 2.63932 2.817542 3.062871 3.454915 

 

 

Table (2) 

Δ values as a function of 9m aperture forming hyperboloids, paraboloid, prolate ellipsoids, and 

spherical with r=5m. 
 

 

Δ (cm) 

Hyperboloids Paraboloid Prolate ellipsoids Spherical 

y(cm) ε = -1000 ε = -100 ε = -10 ε = -1 ε = -0.01 ε=0 ε= 0.2 ε= 0.4 ε= 0.6 ε= 0.8 ε=1 

450 13.73903 40.27693 100.831 172.6812 202.0916 202.5 211.4415 222.2598 235.8851 254.1901 282.0551 

350 -10.57926 30.35534 71.44958 110.3278 122.3503 122.5 125.658 129.1744 133.135 137.6603 142.9286 

250 7.42149 20.4951 43.54144 59.017 62.46099 62.5 63.30142 64.14588 65.03796 65.98301 66.9873 

150 4.269696 10.81139 18.92024 22.01533 22.49494 22.5 22.60217 22.70623 22.81224 22.92027 23.0304 

50 1.158312 2.071068 2.440442 2.493781 2.499938 2.5 2.501251 2.502505 2.503761 2.50502 2.506281 

-50 1.158312 2.071068 2.440442 2.493781 2.499938 2.5 2.501251 2.502505 2.503761 2.50502 2.506281 

-150 4.269696 10.81139 18.92024 22.01533 22.49494 2.5 22.60217 22.70623 22.81224 22.92027 23.0304 

-250 7.42149 20.4951 43.54144 59.017 62.46099 62.5 63.30142 64.14588 65.03796 65.98301 66.9873 

-350 10.57926 30.35534 71.44958 110.3278 122.3503 122.5 125.658 129.1744 133.135 137.6603 142.9286 

-450 13.73903 40.27693 100.831 172.6812 202.0916 202.5 211.4415 222.2598 235.8851 254.1901 282.0551 
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 الخلاصة
أستخدمت حزمة أشعة ضوئية، موازية للمحور البصري 
تماماً، لعرض مقاطع سطوح عناصر بصرية )عدسات أو 
مرايا( كارتيزية )أي لها مقطع مخروطي( والتي لها إنحناء 

(curvatureثابت )  ،وعامل تكوّرمتغير. لإنجاز هذا العمل
( skew ray-tracingتم بناء شفرة برمجية لأقتفاء الأشعة )

وذلك لأقتفاء الأشعة البصرية عبر جميع انواع السطوح 
ة ـنٍ ذي معادلـر منحـالكارتيزية او السطوح الناتجة عن تدوي

 ةـة الثانيـن الدرجـم
(quadric surface of revolution)نتائج هذا  . تظهر

العمل، إنّ لعملية أقتفاء الأشعة البصرية فائدة ملحوظة لرسم 
مقاطع متمايزة )الفرق بينها واضحٌ و جليّ( من السطوح 

 الكارتيزية.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


