Certain Types of K-Spaces

Zahra Ismaal Salman

Ministry of Higher Education and Scientific Research, Science College of Education,

Missan University.

Abstract

In this work, we introduce and study several types of K-spaces and several properties of these types are proved. Among the obtained results are the following:

1- Let X be any space and Y be a K-space, then every compact map $f: X \longrightarrow Y$ is a closed map.

2- Let X be any space and Y be an sK-space, then every compact map $f: X \longrightarrow Y$ is s-closed map.

1. Introduction

In 1979, S. Kasahara [6] introduced the concept of operator associated with a topology Γ of a space X as a map T from Γ to P(X), and introduced the concept of T-compact space as a subset A of a topological space (X, Γ) is T-compact if for every open cover Ω of A, there exist a finite subcollection {C₁,C₂,...,C_n} of Ω , such that $A = \bigcup_{i=1}^{n} T(C_i)$.

Following the Kasahara's ideas, in 1991 H. Ogata [7] introduced the concept of T-open sets and the concept of (T,L) continuous function. Also, H. Ogata introduces the notion of T-T_i space, which generalize to T_i-space for $i = 0, \frac{1}{2}, 1, 2$; and studied some topological properties of such space.

In 1998, E. Rosas, J. Vielma [8] contained study by used S. Kasahara [6] definitions in some what modified form and his result to prove properties similar to the usual ones in general topology. And in 1999, modified the definition by allowing the operator T to be defined in P(X) as a map T from P(X) to P(X), such that $U \subseteq T(U)$, for every $U \in \Gamma$. Several researcher papers published in recent years using T-operator due to Ogata [7].

2. Preliminaries

In this section, some fundamental and basic concepts related with this paper are presented for completeness purpose:

<u> Definition (2.1), [2]:</u>

A space Y is said to be K-space, if:

- 1. Y is a T_1 -space.
- 2. Every compactly closed subset of Y is closed.

In this work, we will introduce and study several types of K-spaces, where we mean by cl(A) and int(A) the closure and the interior of a subset A of a topological space X, respectively.

Definition (2.2), [2]:

Let Y be a topological space, $W \subseteq Y$, then W is called compactly closed if $W \cap K$ is compact for every compact set K in Y.

Notice that if W is closed in Y, then W is compactly closed. The converse is not necessarily true and this motivates the following definition:

Definition (2.3), [3]:

Let Y be a T_2 -space, then Y is called a K-space if every compactly closed set is closed.

Definition (2.4), [4]:

Let X be apace, let $A \subseteq X$, then:

1. A is Semi-open if $A \subseteq cl$ (int (A)).

2. A is Per-open if $A \subseteq int (cl (A))$.

3. A is α -open if A \subseteq int (cl (int (A))).

The compliment of semi-open (pre-open, α -open) set is called semi-closed (pre-closed, α -closed) set.

Definition (2.5), [4]:

Let f: X \longrightarrow Y be a function then f is closed (semi-closed, pre-closed, α -closed) if the image of every closed set in X is closed (semi-closed, pre-closed, α -closed).

Definition (2.6), [1]:

f: X \longrightarrow Y is called a proper map if f is continuous, closed and $f^{-l}(y)$ is compact in X for all $y \in Y$.

Definition (2.7), [3]:

f: $X \longrightarrow Y$ is called a compact map if f is continuous and the inverse of each compact set K in Y is compact in X.

3. Main Results

We begin, by proving that the property of begin a K-space is a topological property.

Theorem (3.1):

Let X be a K-space and let f: $X \longrightarrow Y$ be a homeomorphism, then Y is also a K-space.

Proof:

It is clear that Y is a T_2 – space

Now, suppose that $W \subseteq Y$ is compactly closed

Hence, $W \, \cap \, K$ is compact for each compact set K in Y

Now, $f^{-1}(W \cap K)$ is compact in X, but:

 $f^{-1}(W \cap K) = f^{-1}(W) \cap f^{-1}(K)$

This means that, $f^{-1}(W)$ is a compactly closed in X, but X is a K-space, Hence $f^{-1}(W)$ is a closed in X

Therefore, $f(f^{-1}(W)) = W$ is closed in Y this proves that Y is K-space.

Theorem (3.2):

Let X be a space, and $A \subseteq X$ then A is compactly closed in X if f is the inclusion map i: $A \longrightarrow X$ is a compact map.

Proof:

 (\Rightarrow) Suppose A is compactly closed in X and let K be a compact set in X

Now, $i^{-1}(K) = A \cap K$, so $A \cap K$ is compact which means that i: $A \longrightarrow X$ is a compact map.

(⇐) Assume that i: A \longrightarrow X is compact map, let K ⊆ X be compact hence $i^{-1}(K)$ is compact but $i^{-1}(K) = A \cap K$, so A ∩ K is compact, \forall K. This means that A is compactly closed. ■

Theorem (3.3):

Let X be space and Y be a K-space, then every compact map f: $X \longrightarrow Y$ is a closed map.

Proof:

Suppose W is a closed set in X and K be compact in Y

Now, $f^{-1}(K)$ is compact in X

Hence, $W \cap f^{-1}(K)$ is compact

Now, f $(W \cap f^{-1}(K)) = f(W) \cap K$ is compact in Y

This implies that, f(W) is compactly closed, but Y is a K-space, hence f(W) is closed in Y

Hence, f is a closed map. ■

Corollary (3.4):

Every compact map f from any space X into a K-space Y is a proper map.

Now, we introduce the flowing definition:

Definition (3.5):

- 1. X is an sK-space if every compactly closed set in X is semi-closed (s-closed).
- 2. X is a pK-space if every compactly closed set in X is pre-closed (α -closed).
- 3. X is an α K-space if every compactly closed set in X is α -closed.

<u>Remark (3.6):</u>

It is known that if $A \subseteq X$ is an α -open set, then A is semi-open and $A \subseteq X$ is α -open if and only if A is semi-open and pre open. Hence X is an α K-space if f X is sK-space and pK-space.

Theorem (3.7):

Let X be any space and let Y be sK-space (pK-space, α K-space) then every compact map f: X \longrightarrow Y is s-closed (p-closed, α -closed)

Proof:

Let $W \subseteq X$ be closed set

Let $K \subseteq Y$ be compact set

Now, $f^{-1}(K)$ is compact and $W \cap f^{-1}(K)$ is compact

But, $f(W \cap f^{-1}(K)) = f(W) \cap K$ is compact, for each compact K this means that f(W) is compactly closed in Y

But Y is sK-space

Hence, f(W) is semi-closed this means that f: X \longrightarrow Y is s-closed

Similarly, if Y is pK-space (α K-space), then f: X \longrightarrow Y is p-closed (α -closed).

Now, we introduce the following definition:

Definition (2.8):

Let $f:X \longrightarrow Y$ be a continuous function, then f is said to be:

- i) s-proper, if:
 - 1. f is s-closed.

2. $f^{-1}(y)$ is compact, $\forall y \in Y$.

- ii) p-proper, if:
 - 1. f is p-closed.

2. $f^{-1}(y)$ is compact, $\forall y \in Y$.

- iii) α-proper, if:
 - 1. f is α -closed.

2. $f^{-1}(y)$ is compact, $\forall y \in Y$.

Now, the following corollary to theorem (3.7) may be stated:

Corollary (3.9):

Let X be any space and Y be an sK-space (pK-space, α K-space). Then every compact map f: X \longrightarrow Y is s-proper (p-proper, α -proper).

4. T*K-Space

In this section, we introduce the concept of T* K-space first, but first we recall the following definition:

Definition (4.1), [5]:

Let (X, τ) be a topological space and let T: $p(X) \longrightarrow p(X)$ be a function such that $W \subseteq T$ (W), for each open set W in X. Then T is called an operator associated with the topology τ on X and the triple (X,τ,T) is called operator topological space.

It is remarkable that if $A \subseteq X$ (which is not necessarily open in X satisfies $A \subseteq T(A)$, then we say that A is T*-open and the complement of T*-open is called T*-closed.

Example (4.2):

Consider (\Box, τ_u) , where \Box is the set of real numbers and τ_u is the usual topology on \Box .

Define T: $p(\Box) \longrightarrow p(\Box)$, as follows: T(A) = cl (int (A)), A $\subseteq \Box$

then T is an operator associated with τ_u Let B = [0,1)

Then B is not open in τ_u but B satisfies $B \subseteq (B)$

So B is T*-open (semi-open).

Definition (4.3):

Let (X,τ,T) be an operator topological space, then X is called T*K-space if every compactly closed set in X is T*-closed.

<u> Theorem (4.4):</u>

Let X be any space and let (Y,τ,L) be L*K-space (T is a topology on Y, and L is an operator associated with τ), then every compact map f: X \longrightarrow (Y, τ,L) is a L*-closed (that is f(W) is L*-closed in Y for each W closed in X).

Proof:

Let $W \subseteq X$ be closed let $K \subseteq Y$ be compact

Now $f^{-1}(K)$ is compact in X since W is closed, then $W \cap f^{-1}(K)$ is compact

Also, f (W \cap f⁻¹(K)) = f (W) \cap K is compact in Y

This means that f(W) is compactly closed in Y

But Y is L*K-space

Hence f(W) is L*-closed

This means that f: $X \longrightarrow (Y,\tau,L)$ is a L*-closed.

References

- [1] Bourbaki, "Element of Mathematics", Spring-Verlag (1966).
- [2] Dugundji, "Topology", Allyn-Bacon, (1966).
- [3] Hadi J. Mustafa and D. Ibrahim, "Compact Mappings", M.Sc. Thesis, college of Education, Al-Mustansiriyah University (2002).
- [4] Hadi J. Mustafa and H. J. Ali, "Semiproper mappings", M.Sc. Thesis, collage of Education, Al-Mustansiriyah University (2001).
- [5] Hadi J. Mustafa and A. Abdul-Hassan, "T-Open and New Type of Spaces", M.Sc. Thesis, College of Science, Mu'tta University Jordan, (2004).
- [6] Kasahara S., "Operation-Compact Space", Math. Japan., 24 (1979), 97-105.
- [7] Ogata H., "Operation on Topological Spaces and Associated Topology", Math. Japon, 36 (1) (991), 175-184.
- [8] Rosas E. and Vielma J., "Operator-Compact and Operator-Connected Spaces", Scientiae Mathematicae, 1(2) (1998), 203-208.