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Abstract

In this paper, we introduce two types of cancellation modules namely fully cancellation and
naturally cancellation. Some characterizations of these concepts are given and some properties of
these concepts in the class of multiplication modules are presented. Also the direct sum of fully
cancellation module and the behaviour of fully cancellation (naturally cancellation) are discussed.
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1. Introduction

Let M be an R-module, where R is a
commutative ring with unity. Gilmer in [7]
introduced the concept of cancellation ideal
where, an ideal | of a ring R is said to be
cancellation if whenever J and K are ideals of
R, J.I = K.I, then J = K. Also, D.D. Anderson
and D.F. Anderson in [2], studied the concept
of cancellation ideals. In 1992, A.S. Mijbass in
[11], give the generalization of this concept
namely  cancellation  module  (weakly
cancellation module), where an R-module is
called cancellation (weakly cancellation) if
whenever | and J are ideals of R, LM = J.M
implies | = J (I+anngrM = J+ annrM).

In 2000, B.N. Shihab [14], introduce and
studied restricted (and weakly restricted)
cancellation module, if whenever | and J are
two ideals of R, with IM = JM and IM#0, then
I =J (I+annrM = J+ anngM).

Next, in [12], L.M, Selman, B.N. Shihab
and T. Rashed introduced and studied
cancellation, Relatively cancellation module,
where an R-module is called an R-module M
is called Relatively cancellation whenever
IM = KM, with I is a prime ideal of R and K is
any ideal of R, implies | = K.

In this paper, we introduce two types of
cancellation modules namely fully cancellation
and naturally cancellation, where M is called a
fully cancellation module if for every
submodule A, B of M, IA = IB implies A = B.
naturally cancellation module is introduce by
using the naturally product of submodules
which is introduced in [3], where for each
submodules A and B of M, the naturally
product of A and B (denoted by A.B) is define
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by (A:(g M)(B:r M)M. We that M is a
naturally cancellation module if for each
submodules A, B, C of M, A.B = A.C implies
B=C.

In $2 Of this paper, some characterizations
related with these concepts are given. Also
some relationships between these concepts and
cancellation modules are presented.

In $3, we discuss the direct sum of fully
cancellation modules.

In $4 we study the behavior of fully
(naturally)  cancellation  modules  under
localization.

2. Fully (Naturally) Cancellation

Modules

In this section, we will introduce a new
concept (to the best of our knowledgment)

namely fully cancellation and naturally
cancellation.
We give some basic results and

characterizations of these concepts and some
relationships between them.

Definition 2.1:

Let M be an R-module .The module M is
called fully cancellation if for every non zero
ideal I of R and for every submodules N and
W of M such that IN=IW then N=W.

Definition 2.2:

Let M be an R-module .M is called
naturally cancellation if whenever N, W1 and
W are submodule of M such that N. W1 = N.
W- then W1= Wo.




Remarks and Examples 2.3:

1- Z- as Z-module is a fully cancellation
module, since if we take 1=nZ, N=< mi;>
and W=<m; >, where m;, m2 €Z. Now,
assume that IN=IW then n m1 Z=m my Z,
which implies n m: = n mz a and
n mz=nmg b (for some a, beZ) .Hence n
m: = n mzb a, then 1=b a and consequently
either, a=b=1 or a=b=-1. In each case we get
n m1 = n mzwhich leads to m; = m,. Hence
N=W.

2- The Z-module Z4 is not fully cancellation,
since if we take 1=4Z, N = (2) and

W=( Z, ) then (42)(2)=(4) (Zs) but

(2)#Zs.

3-Let M be a fully cancellation R-module
which is not simple, then M is faithful. To
prove this let r € ann M. Supposes r # 0,
then rM = 0, and let N be proper submodule
of M. Hence rN=0, thus rM = rN and this
implies M = N, which is contradiction.

4- Any submodule N of a fully cancellation
R-module M is fully cancellation.
To prove this let | be a non-zero ideal of a
ring R. For any two submodules M1, M2 of
N, if IM1 = IM2 and since M1 and M are
submodules of M which is fully cancellation
module, then Mi =M2.Thus N is fully
cancellation.

5- The homomorphic image of the fully
cancellation module is not necessary be a
fully cancellation module. For example:

Letn:Z — =Zy, Z IS

full
<4 > y

cancellation but Z, is not fully cancellation

by (Rem & Ex 2.3 (1) & (3)).

1-If My =My then M is a fully cancellation
module if M, is a fully cancellation

module.
2-Not every fully cancellation is naturally
cancellation module as the following
example shows.
Consider Q as a Z-module. Q is not a
naturally cancellation module, since if

we take A=%Z,B=%ZandC=Z

which are submodules of Q. Then
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ACz(%Z:Q)(%Z:Q)QzO but B#C. Also,

one can easily show that Q as a Z-module is
fully cancellation. Let I = (n) where neZ. If
IA = IB where A, B < Q then for every xeA,
nxelA=IB, thus nx = ny (for some yeB).
Hence x = yeB. Therefore AcB and similarly
BcA, hence A = B. Thus Q as a Z-module is

fully cancellation but is not naturally
cancellation.
Recall that an R-module is called

multiplication if for each N <M, there exists
an ideal | of R such that N = IM. Equivalently,
M is a multiplication R-module if for
eachN<M,N=(N:p

M)M, where (N:g M) ={reR:rMc

N} [4]1[5]-

The next theorem shows that the two
concepts are equivalent if the module M is
multiplication.

Theorem 2.4:

Let M be a multiplication R-module, then
M is naturally cancellation if and only if M is
fully cancellation.

Proof (<) Let N,W1 and W> are submodules
of M such that N. W1 = N. W, ,then
(N:RM)(W1:r MM = (N:r M)(W2:r M)M but
(W1:r M)M = W; and (W2:r M)M = W, ,then
(N:r M)W1=(N:r M)W2 ,hence W1= WS, since
M is a fully cancellation module.

(=) Let I be a non zero ideal of R and N,
W be two submodules of M such that IN = IW.
Now, since IN=I(N:r M)M = (N:r M)IM =
(N:r M)(IM:rg M)M = N.IM and similarly
IW = W.IM thus N.IM = W.IM. But M is
naturally cancellation, so N = W .Therefore M
is fully cancellation.[]

The following examples
above theorem.

illustrate the

Example 2.5:

1- Z as Z-module is fully cancellation and
since Z is multiplication Z-module then by
Th. (2.4) Z is a naturally cancellation
module.

2- Consider Zpoo as Z-module. We know that

Z. . as Z-module is not multiplication, also

pOO
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it is not fully cancellation, since (P?)
1 2
(5 +2 =%
P

(i + Z) but notice that (i +2)#
P p2

1 .
(E+Z)' Also, Zpoo as Z-module is not

naturally cancellation, since for every A, B,
And C submodules of Z,,; such that B#C, we

have (B: Zpoo) ZIOOO =0 and A.C = (A: Zpoo)
(C Zpw) Zp=0 .This that
A.B=A.Cbut B#C.

The following is a characterization of fully

cancellation modules. Compare this result with
[11, Th.1.9]

Theorem 2.6:

Let M be an R-module. Let N and W are
two submodules of M, let | be a non zero ideal
of R .Then following statements are equivalent

1- M is fully cancellation module.
2- If INc IW then NcW.
3- If I<a>cIW then aeW, where aecM.

4- (IN:g W) =(N:g W).

means

Proof:
1) =)

If INcIW, then IW = IN+IW =
.(N+W)[9,Prop 2.1(4)]. Since M is a fully
cancellation module then W = N+W and this
means that NcW.

(2) =) Clear
@) =)

If IN = IW, to prove N = W. Let aeN,
then I<a>cINcIW, by (3) acW. Thus NcW.
Similarly WcN. Hence N =W
(1) =(4)

Let r e(IN:r IW), then rIWcIN. So,
I'WcIN and since (1) implies (2), we have
rW cN, therefore re(N:g W). Hence
(IN:g IW) c

(N:g W). The reverse conclusion is clear.
Thus (IN:g W) =(N:x W).

(4) =(1)

Let IN = IW, then by (4) (IN:;g W) =
(N:g W). But (IN:g IW) =R (since IN = IW).
Thus R = (N:g W) and so WcN. Similarly,
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(IW:g IN) = (W:g N), thusR=(W:g N)and
hence NcW. Thus N =W. [

The following proposition gives a new
characterization a bout naturally cancellation
module when it is multiplication R-module.

Theorem 2.7:

Let M be multiplication R-module. A, B
and C are submodules of M and acM. Then
the following statements are equivalent

1- M is a naturally cancellation R- module

2- M is a fully cancellation R-module

3- If AB < A.C, where AB and C are
submodules of M .Then B < C.

4-If A.(a) c A.B then aeB

5- (A.B:rA.C) = (B:rC)

Proof:
(1)3(2): (see Th2.4)
2)=(3):

Let AB < A.C where A.B,C <M . then
(A:r M)(B:RM)Mc(A:r M)(C:rRM)M. Since M
is multiplication, (A:r M)Bc(A:r M)C. But M
is fully cancellation by (2), so BcC.

(3)=(4): Itis clear
(2)=(5):

Let ae(B:r C) Then aCcB, hence
a(C:M)Mc(B:M)M, since M is multiplication.
It follows that a.(A:r M) (C:r M)Mc(A:r M)
(B:r M)M that is a.(A.C) < A.B. Thus
ae(A.B:r A.C). Now, if ac(A.B:r A.C) then
a(A.C) < A.B, hence a.(A:r M)Cc (A:r M)B,
since M is multiplication. By (2), M is fully
cancellation, so by Th 2.6 aCc B. Thus
ae(B:C).

(5)=(2):

Let AB = AC, for AB,C <M .Thus
(A.B:rRA.C) = R. By (5) , we get R=(B:C) and
Cc B. Similarly (A.B:rA.C) = R=(C:r B) and
hence BcC. Thus B = C.

(4)=(2):

Let AB = A.C. Then R = (A.B:r A.C) By
Cond (4), (AB:r A.C) = B:r C). Thus
R = (B:ir C) and hence Cc B. Similarly
A.C=AB impliesR = (A.C:r A.B) = (C:r B).
Thus B<C. Therefore B = C.[]

The following proposition shows that
every multiplication submodule of fully
cancellation module is naturally cancellation.



Proposition 2.8:

Let M fully cancellation R-module and let
K be multiplication submodule of M then K is
naturally cancellation module.

Proof:

Since K<M and M is a fully cancellation
R-module, K is a fully cancellation (Rem &
Ex 2.3(4)). But K is a multiplication
R-module, so K is naturally cancellation, by
Th.2.4.0

An ideal | of a ring R is called cancellation
ideal if Al = Bl then A = B, where A and B are
two ideals of R [7].

Next, we end this section by some
relationships  between  fully  (naturally)
cancellation and cancellation modules.

Proposition 2.9:

Let M be a multiplication and cancellation
R-module. If every ideal of R is cancellation
then M is naturally cancellation R-module.

Proof:

Let A, B and C are submodules of M such
that A.B = A.C. Then (A:r M)(B:r M)M =
(A:r M)(C:r M)M. Since M is cancellation
module then we get (A:r M) (B:r M) = (AR
M) (C:r M). By assumption (A:r M) is a
cancellation ideal, thus (B :r M) = (C:rM).
This implies (B MM = (C:ir M)M a
multiplication module so that B = C and
hence M is M is a naturally cancellation
R-module. [

Corollary 2.10:

Let M be a finitely generated faithfull
multiplication R-module if every ideal of R is
a cancellation module, then M is naturally
cancellation ideal.

Proof:

Since M is a finitely generated faith. mult,
M is a cancellation R-module by [5.Th3.1].
Hence the result follows by prop 2.8.

Proposition 2.11:

Let M be a fully cancellation R-module. If
M is a cancellation module, then every non
zero ideal of R is a non zero cancellation ideal.

Proof:

Let | be a non zero ideal of R such that
IJ = IK where J, K are any two ideals of R. To
prove that J = K. We have UM =IKM, but M
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is fully cancellation R-module implies
JM = KM. Also, since M is cancellation
module, then J = K. Thus | is cancellation
ideal of R. [J

Corollary 2.12:
Let M be a multiplication cancellation
R-module. Then M is fully cancellation if and

only if every non zero ideal of R is
cancellation ideal.
Proof: (=)

It follows directly by proposition 2.11

(<)

By Prop.2.9, M is a naturally cancellation
module. And by Th. 24, M is a fully
cancellation R-module. [

An element x in an R-module A is called a
torsion element if rx = 0 for some non zero
divisor element reR [9].

In the following proposition we introduce a
necessary condition for a module to be fully
cancellation modules.

Proposition 2.13:

Let M be module over principal ideal ring
R such that every element in M is non torsion.
Then M is a fully cancellation module.

Proof:

Let | be a non zero ideal of R and A, B are
submodules of M such that IA = IB. By
assumption [ = (x), for some x#0, xeR. Hence
(X)A = (X)B. Now, for any acA we have
xae (x)B. So, xa = xb, for some beB, thus
X (a-b) = 0. If a-b#0 then x#0 since a-b is
non torsion which is a contradiction. Thus
(a-b) =0, that is a = b and so A = B. Therefore
M is a fully cancellation module. []

The following lemma will be used in our
work later on.

Lemma 2.14:

Let M be a module over an integral domain
R. if M = <m>, for some non torsion element
meM. then every non zero element of M is
non torsion.

Proof:

Let xeM, x#0, and suppose that x is
torsion element. So, there exists reR,r#0, such
that rx = 0. But xe<m>, so x = tm, for some
teR. Thus rx = rtm = 0. But m is not torsion
element thus rt = 0. Also, since R is an integral
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domain and 1#0 then t = 0. Thus tm = x =0
which is a contradiction. [

Corollary 2.15:

Let M be a module over a PID (principal
ideal domain) R. If M=<m> where m is non
torsion element then M is a fully cancellation
module.

Proof:

By lemma 2.14, every non zero element of
M is non torsion; hence by Prop. 2.12 M is a
fully cancellation module.[]

Example 2.16:
Consider Z2 as Z-module. We know tr_lat Z

is a PID domain principal. Also, Z, = <1> ,

but 1 is torsion element (Since 2. 1 = 6). And
Z> as Z-module is not fully cancellation since

@)(1) = (2)(0) but (1) %0).

3. Direct Sum of Fully Cancellation
Modules
In this section we discuss the direct sum of
fully cancellation modules.

Proposition 3.1:
Let M= M; @ M, be an R-module, where

M1, M are two submodules of M such that
ann Mz +ann Mz =R.Then M1 and M are fully
cancellation R-modules if and only if M is
fully cancellation.

Proof (=)

To prove M is fully cancellation. Let | be a
non zero ideal of R and A,B are submodules of
M such that 1A = IB. Since ann Mi+ann M>=R
then by [1,Th 4.2 P.28] we get A= A; @A,
and B= B;®B,for some Ai, B: are
submodules of M1 and Az, B> are submodules
of M2.Thus I( A;©A5) =1( Bi®B,). Hence
A1 @1A; =1B1® 1.B,.This implies that
IA; = IB1 and 1A2 = IB2 .But M1 and M are
fully cancellation R-modules then A; = B and
Az = B,. Hence A = B.

(<) Itis clear by (Rem &Ex 2.3(3)). [

Recall that a submodule N of an R-module
M is called fully invariant if for each feEnd
(M), and for each N<M, f(N)cN,[6].

The following proposition also shows that
the direct sum of fully cancellation modules is
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also fully cancellation, under another

condition.

Proposition 3.2:
Let M= M; @ M,be an R-module, where

M1, M2 are two submodules of M such that
M1, M2 are fully invariant submodules. Then
Mz, M2 are fully cancellation R-modules if and
only if M is a fully cancellation R-module.

Proof: (=)
Let A, B are submodules of M and let | be a
non zero ideal of R. Suppose that 1A = IB.
Since M1, M2 are fully invariant submodules,
then A=(AN M) ®(ANM>) and B=(BM
Mi)@ (BN M,)[1]. Therefore I(ANM;)@
(ANMy)=1(BNM)@(BMNM5). So
I(ANM;) = I(BNMy) and I(ANM,) =
I(B(MM5). Hence A(NM; =B M; and
ANM, =B[1My, since M1, M; are fully
cancellation. Thus A = B.

(«<) It follows by (Rem & Ex.2.3 (2)) [

4. Localization of Fully Cancellation
(naturally Cancellation) Modules

In this section, we study the localization of
fully (naturally) cancellation modules, also we
study the behaviour of a module if its
localization is fully.

This section start with the following
lemma which is a generalization of
Prop.4.13,P 70 in [10].

Lemma 4.1:

Let M be an R-module, and let A, B are
submodules of M. Then A = B if and only if
Ap =By ,for every maximal ideal P of R.

Proof: (=) Clear
(<) To prove that A = B, let acA, then

a eAp c Bp for every maximal ideal P of R.
1

thus —:t3 for sometID ¢P,beB. Hence
p

there exists Cp & P such that

Cptpa=bt, e B, put cpty =1, € P .For every

maximal ideal P of R, there

existry ¢ P,r,ae B. Now, let E be the ideal
by{ Mo :P is maximal ideal of R}, then E = R



because if E#£R,3 J, a maximal ideal of R such
that Cc<J. So g e J this is contradiction.

Hence C=R and so 1=ajrp +asry, +..+2aklp,

for some keZ,

aeB.Thus AcB, Similarly BcA, and
hence A=B. [

The following proposition shows that a
finitely generated R-module is naturally
cancellation if My is a naturally cancellation
Rp —module. Compare with [11,Th.3.3].

therefore

Proposition 4.2:

Let M be a finitely generated R-module,
and let Mp be a naturally cancellation
Rp—module (for every maximal ideal P of R),
then M is a naturally cancellation R —module.

Proof:

Let A,B,C are submodules of M. Assume
AB = A.C then (A.B), = (A.C)p for every
maximal ideal P of R; that is

[(A:M)(B:M)M]p=[(A:M)(C:M)M]p. Then
by [13, P.172 Exc 9.11(i)] (A:M), (B:M), M,
= (A:M), (C:M) p M,. But M finitely generated
so by [11, Lemma 9.12(ii) P.172] (A pirp
Mp)(Bp: ro Mp) Mp = (Ap: RoMp)(Cp: RoMp) Mp .
This means A, . Bp=A, .Cp, for every maximal
ideal P of R. Hence B,=C,. Thus by lemma
(41),B=C.0

The converse of the last proposition will be
given through the next proposition.

Proposition 4.3:

Let M be a finitely generated naturally
cancellation R—module. Then M is a naturally
cancellation Rp —module provided that if
Up =V, then U =V, for every submodules
U,V of M.

Proof:

Let Up, Vp, Ap, Bp are submodules of M,
and assume that Up .Ap=U, .Bp. Hence (U pirp
Mp)(Ap: rp Mp) Mp = (Up: rpMp)(Bp: RoMp) Mp .
Since M is finitely generated, then (U:r
M)p(A: r M)p Mp = (U: RM)p(B: rRM)p Mp .
Hence [(U:r M)(A: r M) M]p =[(U: rRM)(B:
rRM) M]p .Thus (U.A), = (U.B)p [2].Then by
hypothesis U.AA = U.B and M is naturally
cancellation then A = B. Thus Ap=Bj. [
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Now, we will study this property on the
fully cancellation module. Compare this result
with Prop.4.2 ,Prop.4.3.

Proposition 4.4:

Let M be R-module, then M, is fully
cancellation (for every maximal ideal P of R)
iff M is a fully cancellation R-module.

Proof: (=)

Suppose that 1A = IB, where | is an ideal
of R and A, B are submodules of M. Then
(1A)p = (IB)p ,for every maximal ideal P of R.
Then I, Ap = I, Bp [11, Exc 9.11(i) P.172]. But
M is fully cancellation, so Ap = By, for every
maximal ideal P of R. Thus by lemma (4.1) we
have A = B.

(<) Let P be any maximal ideal, | be an
ideal of R and let A be submodule of M, we

a
P's
ring Rp, Ap, Bp are submodules of R, —module

have 1, —ely By where Iy is an ideal of the

M, and EeAp . Thus for any xel, we have
S

5e Ipandi.ge |p-Bp and then xa
1 1ls S

N k. b:
ﬁﬂ,where Kiel,bjeB,sj¢P,
i=1 i i

n - -
tj g P .Thus ﬁ:Zk'—t/)'where s =si.t;.
S : .
i=1 Sj

Therefore
ﬁ _ klblul + k2b2U2 +...+ knann where
S \'

V=S]_/.32/...Sn/,

Ug :sl/.s3/...sn/ ,Up :51/.52/...sn_1/ .Thus
there exists K ¢ P such that kxav = (kqby

Uy +kobous +...+ Kk bpup)sk, but kxave
IA, (kibquq + kobous +...+ kb, uy)sk e IB.
But M is fully cancellation so by Th 2.6 [6] we

a
have ae B. Thus — e Bp. Therefore Mp is
S

fully cancellation R, —module. [
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