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Abstract 

The aim of this paper is to prove the existence and the uniqueness of the solution for some types 

of fractional non-local problems, namely the non-linear non-local initial value problems for 

fractional Fredholm-Volterra integro-differential equations. Also, the generalized Taylor expansion 

method is used to solve the non-local initial value problem that consists of the linear fractional 

Fredholm-Volterraintegro-differential equation together with the linear non-local initial condition 

with some illustrative examples. 
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Introduction 

The nonlocal conditions for the initial 

value problems appear when values of the 

function on the interval are connected to 

values inside the domain. Such problems are 

known as nonlocal problems, [1]. Many 

researchers studied the nonlocal problems, say 

[1] discussed the existence and uniqueness for 

the solutions of the nonlocal initial value 

problems for the non-linear ordinary 

differential equations, [4] used the finite 

difference method to solve special types of 

nonlocal problems for partial differential 

equations, [7] used the homotopy perturbation 

method to solve some types of the non-local 

initial value problems of fractional differential 

and integro-differential equations. 

The fractional nonlocal Problems have 

been studied by several researchers such as 

[11] discussed the Nonlocal Cauchy problem 

for fractional evolution equations, [3] 

discussed the Riemann-Liouville fractional 

integro-differential equations with fractional 

nonlocal integral boundary conditions, [11] 

discussed the nonlocal problems for fractional 

differential equations in Banach space, [2] 

discussed the Nonlinear fractional differential 

equations with nonlocal fractional integro-

differential boundary conditions. 
 

Existence and Uniquenees of the Solutions 

for the Non-Local Initial Value Problems 

for Non-Linear Fractional Fredholm-

Volterra Integro-Differential Equations 

Recall that if u is an absolutely continuous 

function on [a,b], the left and the right hand 

Caputo fractional derivative of u of order  

α > 1, can be defined as: 

(n)x1 u (y)C
D u(x) dy,

n 1a a(n ) (x y)

  a x b                       


      

 

 

 

and 
 

(n)n b( 1) u (y)C
D u(x) dy,

b n 1x(n ) (x y)

  a x b                        


      

 

 

 

respectively, where n1 < α ≤ n, n is a 

non-negative integer, [8]. 

In this section we shall discuss the 

existence of the unique solution for the non-

linear non-local initial value problem that 

consists of the non-linear fractional Fredholm-

Volterra integro-differential equation of order 

α: 

..........................................(1.1)

bC
D u(x) f (x, u(x)) k(x, y, u(y))dy

a a

x
(x, y, u(y))dy

a


  

 l

 

 
 

Together with the non-linear non-local 

initial condition: 
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b

a

u(a) w(x,u(y))dy..................(1.2) 
 

where u ∈ C[a, b],  k: [a, b] × [a, b] × R 

  R and l : [a, b] × [a, b]  × R    
 

R are continuous functions, f: [a,b]× R   

R,w: [a, b] × R   R are continuous 

functions and 
C

a
D 



 
is the left hand Caputo 

fractional derivative of u of order α, 

0 1   . To do this we shall give the 

following theorem. 

 

Theorem (1.7): 
Consider the non-linear non-local initial 

value problem given by equations (2.1)-(2.2). 

If the following conditions are satisfied: 

(1) f and w satisfy the Lipschitz condition with 

respect to the second argument with 

Lipschitz constants F and W respectively. 

(2) kand satisfy Lipschitz condition with 

respect to the third argument with Lipschitz 

constants K and L respectively. 

(3) 
  1

F(b a) K L (b a)
W(b a) 1.

( 1)

 
   

  
    

Then the non-linear non-local initial value 

problem given by equations (2.1)-(2.2) has a 

unique solution. 

 

Proof: 

It is known that C[a,b] is a Banach space 

with respect to the following norm: 
 

C[a,b]
a x b

u sup u(x)
 

 . 

 

It is easy to check that the non-local initial 

value problem given by equations (1.1)-(1.2) 

is equivalent to the non-linear integral 

equation: 
 

b
u(x) w(y, u(y))dy

a

x1 1
(x y) f (y, u(y))dy

a( )

x b1 1
(x y) k(y, s, u(s))ds dy

a a( )

yx1 1
(x y) (y, s, u(s))ds dy

a a( )

 


 

 


  

 


 

 

 
  

 
  

l

 

  .............................. (1.3) 

Let A be an operator that is defined by 
 

b
Au(x) w(y, u(y))dy

a

x1 1
(x y) f (y, u(y))dy

a( )

x b1 1
(x y) k(y, s, u(s))ds dy

a a( )

yx1 1
(x y) (y, s, u(s))ds dy

a a( )

 


 

 


  

 


 

 

 
  

 
  

l

 

b
Au(x) Av(x) w(y, u(y)) w(y, v(y)) dy

a

x1 1
(x y) f (y, u(y)) f (y, v(y)) dy

a( )

x b1 1
 (x y) k(y, s, u(s)) k(y, s, v(s)) ds dy

a a( )

yx1 1
(x y) (y, s, u(s)) (y, s, v(s)) ds dy

a a( )

   


  

 


   

 


  

 

 
  

 
  

l l
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b
W u(y) v(y) dy

a

xF 1
(x y) u(y) v(y) dy

a( )

x bK 1
   (x y) u(s) v(s) ds dy

a a( )

yxL 1
(x y) u(s) v(s) ds dy

a a( )

  


  

 


   

 


  

 

 
  

 
  

W u v (b a)
C[a,b]

xF 1
(x y) dy u v

C[a,b]a( )

xK(b a) 1
(x y) dy u v

C[a,b]a( )

xL(b a) 1
(x y) dy u v

C[a,b]a( )

   


  

 

 
  

 

 
 

 

 
 
 

 
 
 

 
 
 

  1
F(b a) K L (b a)

W(b a) .

( 1)

u v
C[a,b]

 
   

  

  



 
 
 

  

 

Since 

  1
F(b a) K L (b a)

W(b a) 1
( 1)

 
   

  
  

 
one can have A is a contraction operator. 

Therefore by using the Banach fixed point 

theorem, there exists a unique solution to the 

integral equation (1.3) which is the unique 

solution for the equations (1.1)-(1.2) 

 

Some Basic Concepts of Generalized Taylor 

Formula 
In this section we shall give some basic 

concepts for the generalized Taylor formula. 

 

Theorem (1.4):, (Generalized Taylor 

Formula), [5] 

Suppose that 

 
i

C
D u C[a, b],  i=0,1,...,N+1

a


  

where 1 < α ≤ 1, then 

  
 

  
 

( )

( )

1
( )

10
( )

( 1)
( )

( 1) 1

i
C

D u a
a i

x a
iN

u x
Ni C

D u c
a N

x a
N

















 







 

  

 

where a ≤ c ≤ x  ∀ x ∈ (a, b]. 

 

Remarks, [5]: 

(1) For α = 1, theorem (3.2) reduces to the 

classical Taylor formula. 

(2) The generalized Taylor series for u ∈ C 

[a, b] takes the form: 

 
 

( )

( )
0 1

i
C

D u a
a

i
x a

i i











  

 
 
 

 

(3) Suppose that  

 
i

C
D u C[a, b],  i=0,1,...,N+1

a


  

 

and 1< α ≤ 1, then  

  
 

i
C

D u (a)
aN i

u(x) u (x) (x a)N
i 0 i 1





  
   

 

Furthermore, the error term ( )NR x  has the 

form:  

  
 

1

( )
( 1)

( ) ( )
( 1) 1

N
C

D u a
a N

R x x aN
N












 
  

 

where a ≤ c ≤ x  ∀ x ∈ (a, b]. 

 

The Generalized Taylor Expansion Method 

for Solving Linear Fractional Fredholm-

Volterra Integro-Differential Equations 

with Non-local Initial Condition 

In this section we will use the generalized 

Taylor expansion method to solve the non-

local initial value problem that consists of the 

linear fractional Fredholm-Volterra integro-

differential equation of order α of the second 

kind: 
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C
D u(x) g(x)

a

b x
k(x, y)u(y)dy (x, y)u(y)dy,

1 2a a

  0< 1 ................................................(1.4)


 

  

 

l

 

 

together with the linear non-local initial 

condition: 
 

.............................
b

u(a) u(y)dy (1.5)
1 2a

   
 

where g, u∈C[a, b],  

𝑘: [𝑎, 𝑏] × [𝑎, 𝑏] 𝑅, ℓ: [𝑎, 𝑏] × [𝑎, 𝑏] 

𝑅 are continuous functions, 
C

D u(x)
a


  is the left hand Caputo derivative 

of u of order α, 𝜇1,  𝜇2, λ1, 𝜆2 are known 

constants. 

To do this, we assume that the solution u 

of the non-local initial value problem given by 

equations (1.4)-(1.5) can be approximated as a 

generalized Taylor’s formula: 

  
 

i
C

D u (a)
aN i

u(x) u (x) (x a) ,  N
i 0 i 1

 a x b





  
   

 

 

  .............................. (1.6) 
 

By substituting equation (1.6) into 

equations (1.4)-(1.5), one can have: 

 
  

i bN 1 C i
D u (a) k(x, y)(y a) dy1ai 0 ai 1

C
D u(x) g(x)

a

x i
  (x, y)(y a) dy

2 a

 
   
   


 


 







 

and 

 
  

 
  

i bN 1 C i
u(a) D u (a) (y a) dy1 2ai 0 ai 1

i 1 iN (b a) C
       = D u (a)1 2ai 0 i 2

 
     
   


 

  
   

 

So 

 
  

i bN 1 C i
D u (a). k(a, y)(y a) dy1ai 0 ai 1

C
D u(a) g(a)

a

 
  
   


 

 
 

  
  .............................. (1.7) 

 

and  

 

 
 

1 (b a) u(a)
1

i 1 iN (b a) C
D u (a)

1 2ai 1 i 2

   


 

   
   

  

 
 
 

  
  .............................. (1.8) 

Let 

 

b i1a k(a, y)(y a) dy,
i,0 ai 1

 i=0,1,...,N, f 1 (b a)
0 1

 
 
  

   

 

and 
 

i 1
(b a)

f ,   i=1,2,...,N
1i

i 2
.




 
  

 

Then equations (1.7)-(1.8) become: 

 
iN C

a D u (a)
i,0 a

i 0

i 1

C
(1 a ) D u(a) g(a)

1,0 a


 






 

 
 
 

  ............... (1.9) 

 

and 

 
iN C

f D u (a) ............(1.10)
2i ai 0


  



 
 
 

 

Let 

b i
m (x) k(x, y)(y a) dy, p (x)

i ia

x i
(x, y)(y a) dy,  i=0,1,...,N

a


 


  l

 
 

Then 
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j j
C C

D m (x) D p (x)1 2i ia aN

i 0 i 1

j 1 j
C C

D u (x) D g (x)
a a

.

i
C

D u (a) 
a

 
   


   


 

  




   
   
   

 
 
 
 
 

 
 
 

 

where j=1,2,...,N 1 . 

So, 

     
     

 

  

j j
C C

D m (a) D p (a)1 i 2 ia aN

i 0 i 1

j 1 j
C C

D u (a) D g (a)
a a

.

i
C

D u (a) 
a

 
   


   


 

  




 
 
 
  

  

  ............................ (1.11)

 

 

where j=1,2,...,N 1 . 

Let  

     
 

j j
C C

D m (a) D p (a)1 i 2 ia a

ai, j
i 1

,

 i=0,1,...,N, j=1,2,...,N 1.

                             

 
   

 

  



Then equation (1.11) becomes  

 

 

 

j 1
C

D u (a)
a

iN C
a D u (a)

i, j ai 0

j
C

D g (a),  j=1,2,...,N 1
a







 



 

 
 
 

 
 
 

 
 
 

  

  ............................ (1.12)

 

Thus, by evaluating equation (1.24) at 

each j=1,2,…,N1 and by using equations 

(1.9)-(1.11), one can have the following linear 

system of N+1 equations with (N+1) 

unknowns  
N

i
C

D u (a)
a

i 0






  
  
  

: 

AU=B  ..................................................... (1.13) 

 

where 

f f f f f f
0 1 2 3 N 1 N

a 1 a a a a a
0,0 1,0 2,0 3,0 N 1,0 N,0

a a 1 a a a a
0,1 1,1 2,1 3,1 N 1,1 N,1

a a a 1 a a aA 0,2 1,2 2,2 3,2 N 1,2 N,2

a a a a 1 a a
0,N 2 1,N 2 2,N 2 3,N 2 N 1,N 2 N,N 2

a a a a a 1 a
0,N 1 1,N 1 2,N 1 3,N 1 N 1,N 1 N,N 1









 


      


      









,  









 

 

  

 

 

  

  

u(a)

C
D u (a)

a

2
C

D u (a)
a

3
C

D u (a)U=
a

(N 1)
C

D u (a)
a

(N)
C

D u (a)
a


















 
 
 
  
  
  

  
  
  

 
 
 
 
 
    
 

and 

 
  

 

  

  

2

g(a)

C
D g (a)

a

2
C

D g (a)
aB=

(N 2)
C

D g (a)
a

(N 1)
C

D g (a)
a



















 
 
 
 
 
  
   

 
 
 
 
 
  

. 

By solving the above linear system of 

equations, one can get the values of  
 

   
N

i
C

D u (a)
a

i 0






.  

 

These values are substituted into equation 

(1.6) to get the approximated solution of the 

non-local initial value problem given by 

equations (1.4)-(1.5). 

To illustrate this method, consider the 

following example: 

 

Example: 

Consider the nonlocal initial value problem 

that consists of the fractional linear Fredholm-

Volterraintegro-differential equation of order 
1

2
: 
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5
3 25 16 23C 1/2 2 52D u(x) x x x

0 2 4 4

1 x2
(x y)u(y)dy (3x 2y)u(y)dy

0 0

     


   
 

  ............................ (1.14) 

 

together with the nonlocal linear initial 

condition: 

1 7
u(0) 2 u(y)dy

0 2
    ............................ (1.15) 

We use the generalized Taylor expansion 

method to solve this fractional linear nonlocal 

initial value problem. To do this, let N =1, 

then equation (1.6) takes the form: 

1
2 (0)

0

( ) ( ) (0) ,  
1 3

2

0 x 1

C
D u

u x u x u x



  



 

  
    
  

 
 
 

 

  ........................... (1.16)  

Then the system given by equation (1.13) 

takes the form:  

8 (0)1
13
2 (0)1 5 4

2 5

7

2

3

2

u

C
D u

o










 








  
                   

 
 
 
 
 

 

 

which has the solution: 
 

3(35 12)
(0) 3.21087

2(15 8)
u






 


 

and 

1
1 2

2
(0) 0.192174.

4 15 8

C
D u

o


  


  
  
  

 

By substituting these values into equation 

(1.16) one can have: 

u(x) u (x)=3.21087+0.216846 ,  
1

  0 x 1

x

 

 

By substituting this approximated solution 

into equation (1.14) one can have: 

 

5
3 25 16 23C 1/2 2 52D u (x) x x x

10 2 4 4

1 x2
(x y)u (y)dy (3x 2y)u (y)dy

1 1
0 0

5
2 525.52233 5.625x 92.625x 5.75x

   


    

   

 

 

Since the right hand side of the above 

equation does not equal zero, so we must 

increase the value of N. Therefore, let N=2, 

then equation (4.6) takes the form: 
 

 

1
2 (0)

0 1
2u(x) u (x)=u(0)+2 3

2

2
1
2 (0)

0

,    0 x 1
2

C
D u

x

C
D u

x









  


  
    
  

 
 
 

  
    
  

 

  ............................ (1.17) 
 

Thus the system given by equation (1.13) 

takes the form:  

8
1 1

(0)
3

1
1 5 4 1 2 (0)

2 35

0 0 1 2
1
2 (0)

7

2

3

2

0

u

C
D u

o

C
D u

o








 

  






 

 
 

  
  
    
            

    
          

 
 
 
 
 
 
 
 

 

 

which has the solution: 

3(35 12)
(0) 3.21087

2(15 8)
u
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1
1 2

2
(0) 0.192174

4 15 8

2
1
2 and (0) 0.

C
D u

o

C
D u

o


  





  
  
  

  
    
  

 

By substituting these values into equation 

(1.17) one can have: 
 

u(x) u (x)=3.21087+0.216846 ,  
2

  0 x 1.

x

 

 

 

Since 2 1u (x)=u (x) , so we must increase 

the value of N. By continuing in this manner 

one can get for N=6, equation (1.6) takes the 

form: 

 

 

 

 

 

 

 

 

 

 

 

u(x) u (x)6

2
11
22 (0)(0) 00 1

2
 =u(0)+

3 2

2

3 4
1 1

2 2
(0) (0)

0 03
22

5 3

2

5 6
1 1

2 2
(0)

0 05

2

7

2

CC D uD u

x x

C C
D u D u

x x

C C
D u D

x










 

 




 

 



                

 
 
 

      
               

 
 
 

    
         

 
 
 

 

(0)

3
,

4

   0 x 1

u

x



 

 
 
 
 

 

  ............................ (1.18) 
 

Then the system given by equation (1.13) 

takes the form:  

8 16 1 32 1
1 1

3 123 15 105

1 4 1 8 1 16 1
1

2 3 8 305 21 135

0 0 1 0 0 0 0
.

0 0 0 1 0 0 0

0 0 0 0 1 0 0

8 16 1 32 1
10 1 1

3 123 15 105

0 0 0 0 0 0 1

(0)

1

2
(0)

21

2
(0)

1

2

u

C
D u

o

C
D u

o

C
D

o

  

  

  

    
 

     


   
  







 
 
 
 
 
 
 
 
 
 
 
 

  
  
  

  
  
   





7

2
3 3

(0) 2

0

4 01

02
(0)

25

5 21
302

(0)

61

2
(0)

u

C
D u

o

C
D u

o

C
D u

o















 
 
 
 
 
   
   
                 
     
     
      
               
   
   
       

 

which has the solution: 

 

(0) 1u ,  

1
2 (0) 0,  i=1,2,3,4,5

i

C
D u

o


  
    
     

and 

 

6
1
2 (0) 30.

C
D u

o


  
    
  

 

By substituting these values into equation 

(1.18) one can have: 
3

u(x) u (x)=1+5 ,    0 x 16 x    

By substituting this approximated solution 

into equations (1.9)-(1.11) one can get: 
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5
3 25 16 23C 1/2 2 52D u (x) x x x

60 2 4 4

1 x2
(x y)u (y)dy (3x 2y)u (y)dy 0

6 6
0 0

   


     
 

 

and 
1 7

u (0) 2 u (y)dy .
6 6

0 2
   

Therefore 6u  is the exact solution of the 

linear nonlocal prolom given by equations 

(1.14)-(1.15). 

 

Conclusions 

From this work, one can concluded that the 

following apects: 

(1) The existence and the uniqueness of the 

solution for the non-linear non-local initial 

value problem is a generalization of the 

existence and the uniqueness of the 

solution for the linear local initial value 

problem. 

(2) The generalized Taylor expansion method 

like the classical Taylor expansion method 

gave more accurate results as N increases. 
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 ةالخلاص
 الهدف من هذا البحث هو لأثبات وجود ووحدانية الحل

 .الكسورية ةبعض الانواع من المسائل اللامحلي
هذه الانواع هي مسائل القيم الابتدائية اللامحلية 

فولتيرا التكاملية  -الكسورية التي تتضمن معادلات فريدهولم
التفاضلية الكسورية اللاخطية مع الشروط الابتدائية اللامحلية 

 .لاخطيةال
وكذلك تم تقديم طريقة توسيع معمم تيلر لحل مسائل 

-القيمة الابتدائية اللامحلية التي تتضمن معادلة فريدهولم
فولتيرا التكاملية التفاضلية الكسورية الخطية مع الشرط 

 .مع بعض الامثلة التوضيحية ,الابتدائي اللامحلي


