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Abstract 

In this paper, an Eco-Epidemiological model with different infectious diseases in prey 

population and the optimal harvesting in predator population is proposed and studied. Linear type 

used to describe the functional response. Sufficient and necessary conditions for existence each 

equilibrium points of the system are established, the bounded and stability analysis of all possible 

equilibrium points are studied. The effect of harvest on the stability of this system is investigated. 

Finally, the dynamical behavior of system is discussed using Numerical simulation. 
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Introduction 

Diseases in a prey-predator system have 

received significant interest in recent years. In 

fact, any given environment may contain many 

or hundreds of species. Since any species has 

at least the potential to interact with any other 

species in its environment, the possibility of 

spread of the diseases in a community rapidly 

becomes astronomical as the number of 

infected species in the environment increases. 

Therefore, it is more of biological significance 

to study the effect of disease on the dynamical 

behavior of interacting species. The first model  

described a prey–predator model involving 

disease in prey species formulated by 

Anderson and May [1], Later on many 

researchers, especially in the last two decades, 

have proposed and studied different predator–

prey models in presence of disease in one of 

the species see for example [2-11] and the 

references there in. The effect of constant-rate 

harvesting on the dynamics of predator-prey 

systems has been investigated by many 

authors, see, for example [12-16] and the 

references there in. On the other hand, many 

researchers proposed and study eco-epidemical 

models containing two disease strains in the 

same population. see for example [17,19] and 

the references there in. On contrast to all the 

above studies, in this paper a prey-predator 

model involving, in additional to harvest in 

predator species, two different SIS infectious 

diseases in prey species is proposed and 

analyzed. It is assumed that both the diseases 

spread within prey population by contact, 

between susceptible individuals and infected 

individuals. Furthermore, in this model, using 

linear functional response and linear incidence 

rate to describe spread both of diseases first 

and second.  
 

Mathematical Model 

To describe the model for an Eco-

Epidemiological system, we consider the 

following notation:  

1. Let    tptN and  be the population 

densities of the prey species and predator 

species at time t , respectively. 

2. The prey grows logistically with intrinsic 

growth rate 01 h and carrying capacity 

02 h . 

3. There are two different SIS epidemic 

diseases spread among the prey population 

and it transmitted between the prey 

individuals (but not the predator) by contact, 

according to linear incidence rate with first 

and second infection rate constants 03 h  

and 04 h , respectively. Therefore, the total 

prey population is divided into three classes: 

susceptible that is denoted by  tx , infected 

by first disease that is denoted by  ty  

infected by second disease that is denoted 

by  tz . Hence at any time t  the total prey 

population is      tztytxtN  )( . 

4. The predator preys upon prey according to 

linear functional response with maximum 

attack rates ,05 h 09 h  and 011 h , 
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respectively. Furthermore it is assumed that 

0e  represent the conversion rate constant 

5. Both of the infected prey can be recovered 

and become susceptible again with  

recovery rate constant 06 h  and 07 h , 

respectively. 

6. Furthermore it is assumed that there is 

disease induced mortality rate represented 

by 08 h  and 010 h , respectively. 

7. The predator grows logistically with 

intrinsic growth rate 012 h  and carrying 

capacity 013 h . 

8. Finally, 0q  is the catch ability co-efficient 

of the predator, 0E  is the harvesting effort 

and qEp  is the catch-rate function based on 

the CPUE (catch-per-unit-effort) hypothesis. 

 

Consequently, the model with the above 

assumptions can be written in the following 

form: 
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The system (1) has the following 

domain

  00,0,0,,,,4  pandzyxpzyx . 

Moreover, the above four nonlinear differential 

equations are continuously differentiable on 

int. 4
  and hence they are Lipschizian on 4

 . 

Thus, for each set of initial conditions, say 

      00,00,00  zyx  and   00 p , system (1) 

has a unique solution. Therefore, the domain 
4
  is an invariant for the system (1). Further 

in the following theorem the sufficient 

condition for uniformly bounded of the 

solution of the system (1) is established. 

 

Theorem (1): 
All the trajectories of system (1), which 

initiate in 4
  are uniformly bounded. 

 

Proof:  
From the first equation of system (1) we in 

the absence of diseases and predator obtain 

that 




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dt
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From the four equation in the absence of prey 

we have 


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Clearly by solving the above differential 

inequalities we get  
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t
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Define the function 

         tp
e

tztytxt
1

  and then take its 

time derivative along the solution of  

system (1), gives 

   

 108

12
1

1

,minwhere hh

zyqEhepxh
td

d




 




 

and          qEhehhh 12
1

1321  

Now, by using Gronwall lemma [20], it 

obtains that        tt eet     100 1  

which yields     1suplim 


 t

t
 that is 

independent of the initial conditions. 

For later purposes, it is necessary to have the 

Jacobian of system(1) at hand, it is reported 

below. 
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Equilibrium points 

System (1) has the following equilibrium: 

1. The vanishing equilibrium point 

 0,0,0,00 E  always exists. 

2. The free diseases and predator and 

diseases equilibrium point  0,0,0,11 xE   

where 21 hx  , 1E always exists. 

3. The free prey equilibrium point 

 22 ,0,0,0 pE  where:

   qEhhhp  
12

1
12132  exists if and only 

if qEh 12 . 

4. The first disease equilibrium 

point  0,0,, 333 yxE   where:
3

86
3

h

hh
x


  

and  
 

 3182

3231
3

xhhh

xhxh
y




 , exists uniquely in 

the interior of the first quadrant of 

xy plane under the following necessary 

and sufficient condition 23 hx  . 

5. The second disease equilibrium point 

 0,,0, 344 zxE  where: 

   1
41074

 hhhx  and 
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4
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
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exists uniquely in the interior of the first 

quadrant of xz plane under the following 
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6. The susceptible prey-predator equilibrium 

point  555 ,0,0, pxE   where: 
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Obviously, 6E  exists uniquely in the 

interior of the first octant of xzp  space if and 

only if the following conditions are hold. 

0;0 31  AA  .......................................... (2.a) 

or 

0;0 31  AA  .......................................... (2.b) 

with 216165264107 ; hhxhphhxhhh   and 

6426172 xhhxhhh   

8. The free second disease equilibrium point 

 7777 ,0,, pyxE  where: 
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Obviously, 7E  exists uniquely in the 

interior of the first octant of xyp  space if and 

only if the one set of following conditions are 

hold. 

0;0 31  BB  ........................................... (3.a) 

or 

0;0 31  BB  ............................................ (3.b) 

with   71213751213 phqEhxehhh   and 
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Stability analysis of the system 

     At the equilibrium point 0E  the eigenvalues 

are      qEhhhhhh  12107861 ;;;  

showing that it is an unstable saddle. 
 

Theorem (2): 

The equilibrium point 1E  is locally 

asymptotically stable in 4
  if and only if 
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Proof: 

The Jacobian matrix of the system (1) at 

1E  is given by: 
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So, the characteristic equation of 1J  can be 

written by  
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p  denote to the 

eigenvalues in the x direction, y direction, 

z direction and p direction, respectively. 

So, it is easy to verify that, all the eigenvalues 

have negative real parts if and only if the 

condition (2) holds. Therefore, the equilibrium 

point 1E  is locally asymptotically stable in 4
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Theorem (3): 

If the following conditions hold 
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 ....... (3b) 

then 6E  is a locally asymptotically stable. 
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Proof: 
The Jacobian matrix of the system (1) at 

6E  is given by: 
       
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So, the characteristic equation of 6J can be 

written by 
               03

6
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1

366
22

6  FFFy   
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Here  6
y  denote to the eigenvalues in the 

y direction. The Routh-Hurwitz conditions 

require ;01 F 03 F and 0321  FFF , 

which follows from condition (3b) and in 

addition the negativity of the other 

eigenvalues, namely condition (3a). So, 

according to Routh-Hurwitz criterion 6E  is 

locally asymptotically stable. 
 

Theorem (4): 

If the following conditions hold 

71110774 phhhxh   ................................ (4a) 
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 .............................. .(4b) 
 

then 7E  is a locally asymptotically stable. 
 

Proof:  

Due to the form of eigenvalues of 7J , the 

proof is follows directly as that given in 

theorem(3). 

 

 

Theorem (5):  

The equilibrium point 8E  is locally 

asymptotically stable in the subregion in 4
  if 

and only if: 
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 ... (5) 

 

Proof:  

The Jacobian matrix of the system (1) at 

8E  is given by: 
       
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  





















8
44

8
34

8
31

8
24

8
21

8
14

8
13

8
12

8
11

8

000

00

00









J   where: 
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So, the characteristic equation of 8J  can be 

written by  
                        08
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Since   08   that mean 8E is non-hyperbolic 
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Clearly,   
48 :V  and    08

8 EV  with 

  4
8

]8[ ,0  EEEEV . Hence it is 

positive definite function in 4
 . Also, the 

derivative of ]8[V  with respect to the time t  is 

given as follows. 
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In addition condition(5) guarantee that 

0
]8[


dt

dV
 on subregion of 4

 , then ]8[V  is a 

Lyapunov function on that subregion. 

Therefore 8E  is a locally asymptotically stable 

but not globally.  
 

Theorem (6): 

The coexistence equilibrium point 9E  is 

locally asymptotically stable in 4
  if and only 

if 
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Proof:  
The Jacobian matrix of the system (1) at 

9E  is given by: 
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So, the characteristic equation of 9J  can be 

written by 
             04
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Hence, the Routh-Hurwitz conditions require 

0;0;0;0 321431  FFFFFF and 

    04
2

13321  FFFFFF , which follows from 

condition (6). So, according to Routh-Hurwitz 

criterion 9E  is locally asymptotically stable. 
 

Numerical Simulations 

The system (1) is solved numerically for 

different sets of parameters with different 

initial conditions, and then the time series for 

the trajectories of system (1) are drawn to 

confirm our obtained analytical results. Note 

that we will use the cont. line (ــــ) for x , dash 

line(- -) for y , dot line(::) for z  and dash-dot 

line(-.-) for p  in the all of the following 

figures. Now, for the following parameters: 
 

4.0,8.0,2.0

,6.0,03.0,31.0,01.0

,29.0,01.0,05.0,05.0

,8.0,9.0,9.0,4.0,02.0

13121110

9876

54321


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
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Eeq

hhhh

hhhh

hhhhh

…(7) 

 

The time series of the trajectories of system (1) 

are drown in Fig.(1). 
 

 
Fig.(1) The time series for the trajectories  

of system(1) starting from different  

initial points. 
 

According to the above figure, system(1) 

approaches asymptotically to the stable 

coexistence equilibrium point 

 0.0138  ,0.0051  ,0.0165  ,0.07129 E  starting 

from different initial points (0.5,0.5,0.5,0.5), 

(0.75,0.75,0.75,0.75), (1,1,1,1). 
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In order to investigate the effect of 

infection rate, due to existence of first disease, 

(i.e. parameter 3h ) on the dynamics of  

system (1) in case of existence of 9E , the 

system is solved numerically for different 

values of 3h  with 91.0,8.03 h  while the rest 

of parameters as given in Eq. (7) and then the 

trajectories of system (1) are drown in the 

Fig.(2.a)-(2.b). 
 

 

   
Fig.(2) Time series of trajectories for data 

given in Eq.(7) with different values of 

3h which shows that the trajectories 

approaches asymptotically to the stable 

point:(a) 6E for 8.03 h (b) 9E for 91.03 h . 

 

According to the above results, it is 

observed that the trajectory of system (1) 

approaches to stable point 

0.0144) 0,0.0195, (0.0716,6 E  for 88.03 h  as 

shown in the typical Fig. (2.a), while  

it is approaches to asymptotically stable  

point 1,0.0138)0165,0.005(0.0712,0.9 E  for 

388.0 h as shown in the typical Fig.(2.b). 

Similar observations have been obtained for 

increasing the recovery rate 6h  on the 

dynamical behavior of system (1). 

Now the effect of infection rate, due to 

existence of second disease, on the dynamical 

behavior of the system (1) is studied 

numerically for parameters values given in 

Eq.(7) with 92.0,8.04 h  and the time series 

are drawn in Fig.(3.a)-(3.b). 

 

 

 
 

Fig.(3) Time series of the trajectories for data 

given in Eq.(7) with different values of 4h  

which shows that the trajectories approaches 
asymptotically to the stable point: (a) 7E for 

8.04 h  (b) 9E for 92.04 h . 
 

Clearly, from the above figures, it is 

observed that decreasing the value of the 

infection rate causes decreasing in z  and then 

the system (1) approaches to stable point 

0.0137) 0, 0.0223, (0.0711,7 E  in xyp plane 

that is means disappearing of the second 

disease. Similar observations have been 

obtained for increasing the recovery rate 7h  on 

the dynamical behavior of system (1). 

Finally, we will investigate the effect of 

varying harvest rate qE , which is the catch 

ability co-efficient of the predator, on the 

dynamics of system (1). again the system(1) 
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solved numerically for the values  qE  while 

the rest of parameters as given in Eq.(7) and 

then the trajectories of system(1) are drawn in 

the Figs.(4.a)-(4.c) for 1.0,05.0,03.0qE . 

 

 

 

 
Fig.(4) Time series of the trajectories of 

system(1) for data given in Eq.(7) with 

different values of qE  which shows that the 

trajectories approaches asymptotically to the 

stable point: (a) 2E for 03.0qE  (b) 5E  for 

05.0qE (c) 8E  for 1.0qE . 

Obviously, from the above figures, as  

qE  increases causes decreasing in the  

values of p  species while the value of  

zyx ,,  species are increasing and the  

trajectory of system (1) approaches to the 

equilibrium point 08)(0,0,0,0.02 E  as  

shown in Fig.(4.a). However the trajectory  

of system (1) approaches asymptotically to 

stable point 0,0.031)(0.0264,0,5 E  as  

shown in Fig.(4.b), while it is approaches  

to ,0)051,0.0327(0.0667,0.8 E  as shown in 

Fig.(4.c).  

 

Conclusions and Discussion 

In this paper, an eco-epidemiological 

model has been proposed and analysed. In 

order to study the effect of two infection 

diseases and harvesting on the dynamical 

behavior of the prey-predator system, the 

dynamical behavior of system (1) has been 

investigated locally as well as globally. Now, 

we shall discuss the effects of changing the 

parameters on the dynamical behavior of 

system (1) according to the numerical results: 
 

1. For the effect of the varying values of 3h , 

keeping other parameters fixed as in Eq.(7), 

when the infection rate by first disease in 

the rang 87.01.0 3  h  then the trajectories 

of system (1) approaches to free first disease 

equilibrium point 6E , and if infection rate  

increasing 88.03 h that implies the first 

disease appears and the trajectories of 

system (1) approaches to coexistence 

equilibrium points 9E .similar effect have 

been obtained for increasing the recovery 

rate 6h  on the dynamical behavior of  

system (1). 

2. If the infection rate by second disease in 

( 8.01.0 4  h ) the value of z  disappear and 

then the system (1) approaches to stable 

point 7E , for 8.04 h , the trajectory of 

system (1) approaches to 9E . Similar 

observations have been obtained for 

increasing the recovery rate 7h  on the 

dynamical behavior of system (1). 

3. For small value of harvest rate say 

( 03.001.0  qE ) the trajectory of system 

(1) approaches to 2E . As the harvest rate 

increases 08.005.0  qE  the trajectory of 
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system (1) approaches to 5E . While 

for 1.008.0  qE , the trajectory of system 

(1) approaches to 9E . Finally, for 1.0qE , 

the predator evanescent. 
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 .الافتراضية

 

 الخلاصة

مع  وبائي-بيئينموذج  نا، اقترحنا ودرسالبحث افي هذ
حصاد أمثل و فريسة ال مجتمعمختلفة في  أمراض معدية وجود
لوصف استجابة صيغة خطية  أستخدمناالمفترس.  مجتمعفي 

ط انق وجود كلضمن ت التيكافية الشروط ، أيجاد الوظيفي
، قمنا بدراسة تحليل الاستقرارية نظامال هذا في الممكنة التوازن

تأثير الحصاد على  منالتحقق  لجميع نقاط التوازن الممكنة،
 النظام، السلوك الديناميكي لهذا هذا النظام. أخيرا   ريةاستقرا

 .تمت مناقشته بأستخدام المحاكاة العددية

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


