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Abstract

In this paper, an Eco-Epidemiological model with different infectious diseases in prey
population and the optimal harvesting in predator population is proposed and studied. Linear type
used to describe the functional response. Sufficient and necessary conditions for existence each
equilibrium points of the system are established, the bounded and stability analysis of all possible
equilibrium points are studied. The effect of harvest on the stability of this system is investigated.
Finally, the dynamical behavior of system is discussed using Numerical simulation.
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Introduction

Diseases in a prey-predator system have
received significant interest in recent years. In
fact, any given environment may contain many
or hundreds of species. Since any species has
at least the potential to interact with any other
species in its environment, the possibility of
spread of the diseases in a community rapidly
becomes astronomical as the number of
infected species in the environment increases.
Therefore, it is more of biological significance
to study the effect of disease on the dynamical
behavior of interacting species. The first model
described a prey—predator model involving
disease in prey species formulated by
Anderson and May [1], Later on many
researchers, especially in the last two decades,
have proposed and studied different predator—
prey models in presence of disease in one of
the species see for example [2-11] and the
references there in. The effect of constant-rate
harvesting on the dynamics of predator-prey
systems has been investigated by many
authors, see, for example [12-16] and the
references there in. On the other hand, many
researchers proposed and study eco-epidemical
models containing two disease strains in the
same population. see for example [17,19] and
the references there in. On contrast to all the
above studies, in this paper a prey-predator
model involving, in additional to harvest in
predator species, two different SIS infectious
diseases in prey species is proposed and
analyzed. It is assumed that both the diseases
spread within prey population by contact,
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between susceptible individuals and infected
individuals. Furthermore, in this model, using
linear functional response and linear incidence
rate to describe spread both of diseases first
and second.

Mathematical Model

To describe the model for an Eco-
Epidemiological system, we consider the
following notation:
1.Let N(t) and p(t) be the population

densities of the prey species and predator
species at time t, respectively.

2. The prey grows logistically with intrinsic
growth rateh, >0and carrying capacity
h, >0.

3. There are two different SIS epidemic
diseases spread among the prey population
and it transmitted between the prey
individuals (but not the predator) by contact,
according to linear incidence rate with first
and second infection rate constantsh, >0
and h, >0, respectively. Therefore, the total
prey population is divided into three classes:
susceptible that is denoted by x(t), infected
by first disease that is denoted by y(t)
infected by second disease that is denoted
by z(t). Hence at any time ¢ the total prey
population is N(t)= x(t) + y(t)+z(t).

4. The predator preys upon prey according to
linear functional response with maximum
attack rates h;>0,hy,>0 and hy; >0,
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respectively. Furthermore it is assumed that
e >0 represent the conversion rate constant

5. Both of the infected prey can be recovered
and become susceptible again with
recovery rate constant h, >0 and h, >0,
respectively.

6. Furthermore it is assumed that there is
disease induced mortality rate represented
by hg >0 and hy, >0, respectively.

7. The predator grows logistically with
intrinsic growth rate h,, >0 and carrying

capacity hy;; >0.
8. Finally, g >0 is the catch ability co-efficient

of the predator, E>0 is the harvesting effort
and gEp is the catch-rate function based on

the CPUE (catch-per-unit-effort) hypothesis.

Consequently, the model with the above
assumptions can be written in the following
form:

dx xX+y+z

a:x{hlﬂ— hyz )—hgy—h4z—h5p}
+hyy+h,z

d

d_z:y(hﬂ_hé —hyg _h9P)

dz

E:Z(h4x—h7 —hyg _th)

dp:p hyp|1—-— P + ehsx + ehgy + ehyz —qE

................................. 1)

The system (1) has the following

domain

N ={(x,y,z,p), x20,y=0,z20 andeO}.
Moreover, the above four nonlinear differential
equations are continuously differentiable on
int.®* and hence they are Lipschizian on %*.
Thus, for each set of initial conditions, say
x(0)>0,y(0)>0,2z(0)>0 andp(0) >0, system (1)
has a unique solution. Therefore, the domain
®* is an invariant for the system (1). Further
in the following theorem the sufficient
condition for uniformly bounded of the
solution of the system (1) is established.

Theorem (1):
All the trajectories of system (1), which

initiate in |} are uniformly bounded.

163

Rasha Majeed Yaseen

Proof:
From the first equation of system (1) we in
the absence of diseases and predator obtain

that X <o 1- X
T n

From the four equation in the absence of prey
i <hpp| 1 -F

Clearly by solving the above differential
inequalities we get
lim sup x(t)<h, and lim sup p(t) < hy,

the

—x(t)+ y(t)+ =(t)+ L p(t) and then take its
e

of

we have

Define function

M(t)

time derivative the solution

system (1), gives
dM _
ar <hyx+ple) 1(h12

along

~qE)-¢y—¢z

<7 —¢M where ¢= min{h8 By }
and 7z = (b, + @), +hy3(e) " (11, —gE)+9)
Now, by using Gronwall lemma [20],
obtains that 0 < M(t) < M(0)e ™ + z(g) " (1-¢ )
which yields lim supM(t)< z(g)" that is
independent of the initial conditions.
For later purposes, it is necessary to have the

Jacobian of system(1) at hand, it is reported
below.

K gl gl pld

_( [k])_ Wl o Al
W=V= gl o gl gl
gl gl gl

Where: i=12,34;j=12,34;k=071,..9 and

k] _ (1—Ej—(h +h1J (h I J h
= y + Z — P,

11 1 h2 hz I’l 5

[k] _ h —h

—h—x h x+h6,,313 =7, —L —x—hyx+h;;

ﬂl[lf;] =—h5x;,8[k] _hsy'ﬂzkz :hai_hé —hg —hep;
Y =0, ) =~hoy; B =hyz; pl) =0
ﬂ[k] =ehyp; g;] =hyx—h; —hyg —hyp;

[k] 4 =—hnz; ﬁ41 =ehsp; ﬂ43 =ehyp;

2
ﬂ] = hu(l - h_pJ +ehsx + ehgy +ehyz —qE
13
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Equilibrium points
System (1) has the following equilibrium:
1. The wvanishing equilibrium

E, =(0,0,0,0) always exists.

The free diseases and predator and
diseases equilibrium point E, =(x,,0,0,0)
where x, =h,, E,always exists.
3. The free prey equilibrium
E, =(0,0,0,p,) Where:

py =hys(hy ) [y, —gE] exists if and only
if hy, >qE.
The first

point E; = (x;,y5,0,0) where: x, =

Yy = hyxs(hy —x5)
(ahs +11x5)
the interior of the first quadrant of
xy —plane under the following necessary
and sufficient condition x; <#h,.
5. The second disease equilibrium point
E, =(x,,0,25,0) where:

point

point

disease equilibrium
he +hg

3

and , exists uniquely in

_ hyxy (hy —x4)
(N +hlx4)
exists uniquely in the interior of the first
quadrant of xz —plane under the following
necessary and sufficient condition x, < h,

6. The susceptible prey-predator equilibrium

x, = (1, +hy Xy )" and z,

point Es =(x5,0,0,p5) where:

_hy [h5h13qE+h1hlz _h5h12h13] and
57 2
|_h1h12 +eh2h13(h5) J

Ps =M, exists uniquely in the

hyhs
interior of the first quadrant of xp —plane
if and only if x,<h, and

hshizqE+ hyhyy > hshyhys
7. The free first disease equilibrium point
E¢ =(x,,0,24,p5) Where

Pe = (h4x6 —h; —hyy )(hll)71
5 =6 [ (B, —x6)—Pyhsps |
° [hlxﬁ +hyhyxg _h2h7]
represents a positive root of the equation

Ax?+ A x+ A, =0 where:
Ay =ehyhshyhyy —hihyhy, —hyhy, (h4 )2
—ehyhyy (’711)2

and

while

Xg
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Ay =hihyhphys +hihz hyy + hyhyghy,
+hyhyhghyy +hyhyhyyhighys +2hyhyhyhy,
+ eyl (hy )? + ehyhishyghy s
—qEhhyyhys —qER Ry By hys

Az = qEhyhzhyihys = hohzhyghys = oy (7 )?
- h2h7hllh12hl3

Obviously, E, exists uniquely in the
interior of the first octant of xzp— space if and
only if the following conditions are hold.

Ap>0;5 A5 <O i (2.9)
or
A <05 A3 >0 i, (2.b)

With  h, +hyy <hyxe ; hyhspg +hyxg <hh, and
hoh, <hyxq+hyhyx,
8. The free second disease equilibrium point
E, =(x,,y,,0,p,) Where:
_ [thn —hyhyg +hypp, —eh5h13x7]
S =
ehohys
Mwhile x, represents a
9

positive  root of  the
B,x* +B,x+ B, =0 where:
By = ehyhshghyy —hihshyy —hyhyy (h3 )2
—ehyhy, (h9 )2
B, =ehyhyhy; (h9 )2 +ehyhshghghys
+ehyhshghohys + hyhshghy, —
ehyhshghohyy —qEhyhyhohy,
+hyhshohyyhys +hyhshghyy +
h2h3h8h12 _th1h9h13 + h1h9h12h13
+hyhghyy + hihghy,
B3 = th2h6h9h13 _h2h6h9h12h13
_h2h12 (hé )2 _h2h6h8h12
Obviously, E, exists uniquely in the
interior of the first octant of xyp— space if and

only if the one set of following conditions are
hold.

and

pz

equation

By >0; By <Ot (3.3)
or

Bi<0;B3>0 i (3.b)
with N5y, +ehsx, ) < gEhy + hyypy and

(h6 +h8)< hsyx;
9. The free predator equilibrium point
Eg =(xg,v5,25,0) Where

{hé +hg h, +h10}
Xg = ,

and
h3 h4




_ g [y — x5 |- hazs[lalng + ]
[hahg +hyxs |
exists uniquely in the interior of the first
octant of xyz— space under the following
necessary and sufficient conditions
Xg < hy
(s +115) _ (717 +h10)andz8 <
hy hy [hzhw + h1x8]
10. The  coexistence  equilibrium  point
Ey =(x9,Y9,29,p9) Where
hn(ha +h8)_h9(h7 +h10) )
(hShll _h4h9) '

by = {[h3x9 - }51:6 ehs)] [ - }(:17 iy )]}

8 ’ ES

hle[hZ _xs]

X9=

[h13 (qE— ehsxg —hyp — eh1129)+ h12P9]
ehghyy
ehghy3xg [hl (hz — X9 )_ h2h5P9]
+ [thm —ehshizxg —hyyhys + h12P9]
x [h2h6 - (hl +hyhy )x9]
hg (h1 + h2h4)
h hy(h hyy —hohg ) —
e 13%{ 2 (ghyy = h7hs) (—h11(h1+h2h3)
exists uniquely in the Int.®? under the
following necessary and sufficient condition
hyhg <hghyy , hg (h7 + h10)< hll(hé +hg ) ,
ehshyzxg + highys +ehyhizze < qEh; +hyppg
max{(h6 +h8) ) (h7 +h10)} <x
hy hy
%o <min{h2 ) hyhe },Pg < hl(hz —x9)
(hl + h2h3) hyhs

9

29—

Stability analysis of the system
At the equilibrium point E, the eigenvalues

are hlr'_(h6+h8)?_(h7+h10);(h1z_qE)
showing that it is an unstable saddle.

Theorem (2):

The equilibrium point E, is locally
asymptotically stable in %! if and only if

h, < min{(h6 + hg )(h3 )71 ; (h7 +hyy )(h4 )71 }} 2)
(h12+3h2h5)<CIE

Proof:
The Jacobian matrix of the system (1) at
E, is given by:
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Ay AL A Bl
0o B o
0 0 Al
0o 0o o g
ﬂl[%] =—hy, 1[9 = (he —hy —hyhy )/ ,31[};] =—hyhs,
ﬂl[}w,] = (h7 —hy =hyhy )rﬂ;] = (hzha —hg —hg ),

a%] = (h2h4 —hy; —hy )rﬂz;};] = (hlz +ehyhs - qE),
So, the characteristic equation of ], can be
written by
0:(_h1 _AQ]X(hz% —hy _hs)_/lg])

x ((h2h4 —h; —hy )_ 1[21] X(hlz +ehyhs — qE)— ﬂg])
from which, we obtain that:

A = hyhy —hg —hg, M =hyhy — 1y — 1y,

AV = —py and A = hy, +ehyhs —gE

Here A1, AN 21 and A1 denote to the
eigenvalues in the x-—direction, y—direction,
z—direction and p-direction, respectively.

So, it is easy to verify that, all the eigenvalues
have negative real parts if and only if the
condition (2) holds. Therefore, the equilibrium
point E, is locally asymptotically stable in%?.

Similarly, the equilibrium point E, is locally

Ji = where:

asymptotically stable if and only if p, >Z—1 .E,
5
is locally asymptotically stable if and only if

hy, +ehsx; +ehgy; < gEand
< (7 + o) E

xy <—~2—22 F, is locally asymptotically
4
stable if and only if
2x4 +z4 <hy;hy, +ehsx, +ehyzy <qE
Xy <M and <h2h—4‘z4.E5 is
hy (hz —-2x _24)

locally asymptotically stable if and only if
x5 < min{(hé +hg +h5P5) (h7 +hyg +h11P5)}_

7

h3 h4
Theorem (3):
If the following conditions hold
By < hg +hg +HgPg oveeneeeneninieienierenennnns (33)
hyyhys <min{h4h12 ; h5h12P6}
ehs hyzg
hhy <2hxg +(hyhy + 1) )zg + hohspg b, (3b)

hyhy < (h2h4+h1 )x6

then E, is a locally asymptotically stable.
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Proof:
The Jacobian matrix of the system (1) at
E¢ is given by:

1 1{21 5 Al

0 By 0 0 :
Ts =| .1 (2)2 0 gl where:

31 34

5o s Al

2 hy
1[?]:}11(1_59‘6] Ze(’h th hspe ;

hy h
1) = h - S ; B =, —[h—1+h4}ce ;
6l 2 lel ’
ﬁ{% =—hsx4 256 = h3x4 _h66_h8 —hepy ;
B I = =hyz4 ?ﬁ3[4 =—hyyz4 )ﬂil] = ehz;lps ;
ﬁzE = ehypy /:343 = ehyps ; [6] =7 12 Pe
13

So, the characteristic equation ofJ,can be
written by

19— A + £ (1Y + £, (97 =0

with
F =g+ ) ;
F, = B - BB - S B) - piEI AL
F;, = BB BE + BN B - B B AL

- pEA A

Here Al denote to the eigenvalues in the
y—direction. The Routh-Hurwitz conditions
requireF, >0; F; >0andA=F,F, -F, >0,

which follows from condition (3b) and in
addition the negativity of the other
eigenvalues, namely condition (3a). So,
according to Routh-Hurwitz criterion E, is

locally asymptotically stable.

Theorem (4):

If the following conditions hold

hyxy <y +Hyg +H01P7 e (4a)
hohys < min{h3h12 (Ehs )_1 ; hshyppy (h3z7 )_1 }
hihy <2hix; + (h2h3 +hy )y7 +hyhsp;
hyhg < (h2h3+h1 )x7
.............................. .(4b)

then E. is a locally asymptotically stable.

Proof:

Due to the form of eigenvalues of J,, the
proof is follows directly as that given in
theorem(3).

Vol.18 (1), March, 2015, pp.162-171

166

Science
Theorem (5):
The equilibrium point E; is locally

asymptotically stable in the subregion in ®? if
and only if:

X+y+z<h, ; p<hy;
(h6y +11;2) x}

X <min ,
{(hﬂs +h428) i

ehsxg +ehgyg +ehyzg + hyy [1 - hiJ <qE
13

..(5)

Proof:
The Jacobian matrix of the system (1) at
Eg is given by:

ﬂl[?] gy B B
- ﬂzl 0 0 B ere:

ﬂal o o pY

0o 0 g

44

2 h
1[§]: [1_ZXSJ ys(hst_] Zs(@ﬁ“ij;

h hy
{gl__[hix +h8]/ 13]: (szs*‘hwjf

1[2] =—hsxg ;ﬁﬁ =h3ys Pﬂzi =—hyys )/33%; =hyzg;
ﬁe[,i] = _hnzgf'ﬂﬁ] =hyy + e(h5x8 +hoys +hy1zg )_ qE
So, the characteristic equation of ], can be
written by
A - BTN - gl - (sl + ol ~0
Since A®1=0 that mean Egis non-hyperbolic
equilibrium point, then consider the function

yisl =(x—x8 — Xg lni]w{y—ys - Vs lnlJ
Xsg Ys

J{z—zg—zg]nzi}rg
8

Clearly, vFl:®* 5% and VEI(E;)=0 with
VBI(E)20 VE#E;,EcR}. Hence it is
positive definite function in ®%. Also, the

derivative of V¥ with respect to the time ¢ is
given as follows.

hl{l_x+y+zj+(h6y+h7z)

48l

it x (x—xg)

—hyys —hyzg

+
|

{eh‘gx8 +ehyyg +ehyyzg +hyy| 1- hﬂj - qE}
13

(3N



In addition condition(5) guarantee that
(8]

WV 0 on subregion of ®?, then VI is a

Lyapunov function on that subregion.

Therefore E; is a locally asymptotically stable
but not globally.

Theorem (6):

The coexistence equilibrium point E,
locally asymptotically stable in %% if and only

is

if
hg (Byhyg + hyxg) ﬂj
hyho B <ho < (hohs +1yxs) 3
pro-on h h
h3 P Ml | g ﬂ44
"By

h, <2h—hlx9 +y9[h3 +Z—1]+zg[h4 +Z—J+h5p9;
2 2 2

ehshy; <min %,M

11 hy
% <mm{h9hlzlﬂ9 ) h11h12P9}
hyhshyy ~ hyhshys
.............................. (6)
Proof:

The Jacobian matrix of the system (1) at
E, is given by:

p Al R AL

Jo = % 211 090 % Where:
1831 0 0 34
gt ope g B

2x h hq
ﬁ1[?]: {1—}1_29] y9{h3+iJ—Z9[h4+E] hspo;

h
1[3] = hg +hope +h—1x9j;ﬁ1[?1] =—hsxg ;
2

hq
,313 =—{ hyg +h11p9 +h—x9J [9]
,35] :h4z9'ﬂ34 =-hy1z9

ﬂ£§]=ehup9, o) = hlz
13

/'541 = €h5P9/’ﬁ4z =ehgpy;

So, the characteristic equation of ], can be
written by

[(/1[9])“ + 5 + B (A + B (47)+ F4J: 0

where:

Fl :_( [9] ) F ﬂlf]ﬂM - [g]ﬁ:ﬁ]
_,ng]ﬂe[.i] _1812]:842 - 12 ﬂzsl) _ﬂzi]ﬂu ;

h3y9/ﬁz4 =-hgyo;
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Fy = pR Y pE - ﬂélﬂ”]ﬂ [9]/3
+ﬂ4§]ﬂ33]ﬂ[9]+/3 [9] A[g] 5]
N +ﬁ9]ﬂ[9]ﬂ

Fo= R BN B - AL B ALY
+ ﬂlg]ﬂsﬁ]ﬁ[g]ﬁ[? 1[3]524

Hence, the Routh-Hurwitz conditions require
(F,F, — F;)F, —(F,*F, >0, which follows from
condition (6). So, according to Routh-Hurwitz
criterion E, is locally asymptotically stable.

Numerical Simulations

The system (1) is solved numerically for
different sets of parameters with different
initial conditions, and then the time series for
the trajectories of system (1) are drawn to
confirm our obtained analytical results. Note
that we will use the cont. line (—) forx, dash
line(- -) for y, dot line(::) for z and dash-dot
line(-.-) for p in the all of the following

figures. Now, for the following parameters:
h, =0.02,h, =0.4,h; =0.9,h, =0.9,h; =0.8
he =0.05,h, =0.05,g =0.01,hy =0.29,

hy, =0.01,h;, =0.31,hy, =0.03,h,, =0.6,
q=02,e=08,E=04

The time series of the trajectories of system (1)
are drown in Fig.(1).

(7

5' 1
™ opst |
3
4 N ) S
u] 05 1 1.5 2 25 3
Q‘ 0.1 T T T T T T T T T
&
<
E g . N A e ; :
a 05 1 1.5 2 25 3 3.5 4 15 5
Q‘U.EE T T T T T T T
&
Al
E L J N e T
a 05 1 1.5 2 25 3 35 4 4.5 =1
02 T T T T T T T
£
R N N —
a 0s 1 1.5 2 25 3 35 4 4.5 5

Time w1t

Fig.(1) The time series for the trajectories
of system(1) starting from different
initial points.

According to the above figure, system(1)

approaches asymptotically to the stable
coexistence equilibrium point
E, =(0.0712,0.0165,0.0051,0.0138) starting

from different initial points (0.5,0.5,0.5,0.5),
(0.75,0.75,0.75,0.75), (1,1,1,1).
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In order to investigate the effect of
infection rate, due to existence of first disease,
(i.e. parameter h;) on the dynamics of
system (1) in case of existence of E,, the
system is solved numerically for different
values of n; with h; =0.8, 0.91 while the rest

of parameters as given in Eq. (7) and then the
trajectories of system (1) are drown in the
Fig.(2.a)-(2.b).

(a)

0.4

Papulations
o
ra

04

Papulations

02 ri

15 2
Time

0 05 1
x 10

Fig.(2) Time series of trajectories for data
given in Eq.(7) with different values of
h; which shows that the trajectories

approaches asymptotically to the stable
point:(a) E.forh, =0.8 (b) E,forh, =0.91.

According to the above results, it is
observed that the trajectory of system (1)
approaches to stable point
E, =(0.0716,0,0.0195,0.0144) for h,; <0.88 as
shown in the typical Fig. (2.a), while
it is approaches to asymptotically stable
point  E, =(0.0712,00165,0.003,0.0138)  for
0.88<hzas shown in the typical Fig.(2.b).
Similar observations have been obtained for
increasing the recovery rate h, on the
dynamical behavior of system (1).
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Now the effect of infection rate, due to
existence of second disease, on the dynamical
behavior of the system (1) is studied
numerically for parameters values given in
Eq.(7) with h, =0.8,0.92 and the time series

are drawn in Fig.(3.a)-(3.b).

(a)

0.4

Papulutions
=
]

04

02

Papulations

Fig.(3) Time series of the trajectories for data
given in Eq.(7) with different values of &,
which shows that the trajectories approaches
asymptotically to the stable point: (a) E, for

h, =0.8 (b) E,for h, =0.92.

Clearly, from the above figures, it is
observed that decreasing the value of the
infection rate causes decreasing in z and then
the system (1) approaches to stable point
E, =(0.0711,0.0223,0,0.0137) in  xyp—plane
that is means disappearing of the second
disease. Similar observations have been
obtained for increasing the recovery rate h, on
the dynamical behavior of system (1).

Finally, we will investigate the effect of
varying harvest rategE, which is the catch

ability co-efficient of the predator, on the
dynamics of system (1). again the system(1)



solved numerically for the values gE while

the rest of parameters as given in Eq.(7) and
then the trajectories of system(1) are drawn in
the Figs.(4.a)-(4.c) for gE=0.03, 0.05, 0.1.

(a)

02—

GRT:]
[\

0BE

014} ‘1|

Eu.wzl \-1

%DJ[ 1.
Soos]
4

0.08 N

,

oo4} -

002 el
oL - - s
0o 085 1 15 2 25 3 A5 4 45 &

Time «10°
b)

04 ('.
]

i
I
i
i
i
Enz i
5 |
iy I
& X
|
|
\
I
\

b =
0o 05 1

04
|
i
I
|
i

¢
guzri
= '
=,
Sl
|
[ !
1
|I\
1'\
0

Time x10*

Fig.(4) Time series of the trajectories of
system(1) for data given in Eq.(7) with
different values of gE which shows that the
trajectories approaches asymptotically to the
stable point: (a) E,for ge=0.03 (b) E; for
gE=0.05(c) Eg for ge=0.1.
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Obviously, from the above figures, as
gE increases causes decreasing in the
values of p species while the value of
x,y,z Species are increasing and the
trajectory of system (1) approaches to the
equilibrium  point  E, =(0,0,0,0.08)  as
shown in Fig.(4.a). However the trajectory
of system (1) approaches asymptotically to
stable  point Es =(0.0264,00,0.031)  as
shown in Fig.(4.b), while it is approaches
to Eg =(0.0667,0051,0.03270) as shown in

Fig.(4.c).

Conclusions and Discussion

In this paper, an eco-epidemiological
model has been proposed and analysed. In
order to study the effect of two infection
diseases and harvesting on the dynamical
behavior of the prey-predator system, the
dynamical behavior of system (1) has been
investigated locally as well as globally. Now,
we shall discuss the effects of changing the
parameters on the dynamical behavior of
system (1) according to the numerical results:

1. For the effect of the varying values of #,,
keeping other parameters fixed as in Eq.(7),
when the infection rate by first disease in
the rang 0.1<h, <0.87 then the trajectories
of system (1) approaches to free first disease
equilibrium point E., and if infection rate
increasing h, >0.88that implies the first
disease appears and the trajectories of
system (1) approaches to coexistence
equilibrium pointsE,.similar effect have
been obtained for increasing the recovery
rateh, on the dynamical behavior of
system (1).

2. If the infection rate by second disease in
(0.1<h, <0.8) the value of z disappear and
then the system (1) approaches to stable
pointk,, forh, >0.8, the trajectory of
system (1) approaches to E,. Similar
observations have been obtained for
increasing the recovery rate h, on the
dynamical behavior of system (1).

3. For small value of harvest rate say
(0.01<gE<0.03) the trajectory of system
(1) approaches to E,. As the harvest rate
increases 0.05<gE<0.08 the trajectory of
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system (1) approaches to E,. While
for0.08<gE<0.1, the trajectory of system
(1) approaches to E,. Finally, for ge>0.1,
the predator evanescent.
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