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Abstract

In this paper, we shall consider the approximation to the mean and variance of moments method
estimators due to gamma distribution by using Taylor series expansion approach. This approach
showed that the estimators are asymptotically unbiased with mean square error approach zero as the
sample size approach infinity. The theoretical approach assessed practically by using monte-carlo

simulation.
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1. Introduction

The gamma distribution arise as a model
from statistical studies of interval between
events occurring in time or space, specifically
when the interest in the waiting time from the
occurrence of one event until r further events
have occurred in a Poisson process with
constant rate A, [5]. This distribution
sometimes referred to as a special Erlangian
distribution after the Swedish scientist who
used the distribution in early studies of
queuing problem [1]. The gamma distribution
has an important applications in the study of
life time models, such as stops of a machine,
failure or breakdowns of an equipment (e.g.
electronic computer), air or road accidents [5],
[8], coal mining disasters, telephone calls,
daily rainfall [9], etc., are examples of such
events that occur in a real time and have
properties experted for gamma case [6]

2. Some fundamental concepts related to
Gamma distribution are given for
completeness: [3]

Definition: A random variable X is said to
have a gamma distribution with parameters o
and B, denoted by X~G(a,f), if X has
probability density function,

a-1o=x/B () < x <

=0  L,eW e,
Where 0>0, B>0 and I'(a)= [, t*~*e~tdt is
called a gamma function.

156

The following are some relations needed to

our latter discussion:

(i) The rt" moment of random variable
X~G(a,p) is:

w' = E(x) = 525

T —
F(a) ﬂ rr - 1r2131

(i) The coefficient of kurtosis of random
variable X~ G(a, B) is:

E[x-w* 5 _ . 1
o 3=6a

(iii) The r** moment of the sample mean
)?-G(na,%) is:
Gry _ F(na+r) E r _

EQXT) =g Q=123

(iv) If X;,X,,...,X, is a random sample of
sizea from exp (B), then the random
variable Y=Y, X;~G(a, B)

(v) The mean and variance of the sample
variance S2 are:

E(S2) =02 =@ oo, (6)
var(s?) = +{E (X - w* - = 0*|}
I i )

n(n-1)

3. Moments Method Estimation: [4]
It has been shown throughout the literature
that the moments method estimators of the

parameters o and B are:
nx?

@ = g (8)
~ —1)S2
b= (9)



4. Expecctation of Quotient Function of

Random Variables: [1]

In general, there is no simple exact
formulae for the mean and variance of the
quotient of two random variables in terms of
the moments of the two random variables;
however, there is an approximate formulae can
be considered. One way of finding the
approximate formula forE(i—() by considering
Taylor series expansion of the function

g(x,y) =§ expanded about the point
[E(X),E(Y)], where we drop all terms of

order higher than 2, and then take the
expectation of both sides. Furthermore the

. X. - ..
approximate formula for var(;) is similarly
obtained by expanding Taylor series and
retaining only the second-order terms, we note
that the function g(x,y) = i,y = 0 is analytic
at point (uy,pu,) and differentiable with
respect to x and with respect to y up n and m

times respectively.
The Taylor series expansion of the

function g(x,y) == about the point (uy, p1y)

is g(x y)"’g(:uxuuy)-l'(x_
d d
1w, g(xy)I x+(y y) g(xy)wx_l_
Hy
1 6 g(xy)
a%g(x,y)
y) gxy'x"‘(x—llx)()’—
62
Hy) g(”) i F  eoeeeeeeseeeeee e (10)
Hy

Where p, = E(X) # 0and u, = E(Y) # 0

dglx,y) 1 odglxy) 1
- - luy = —
d0x y ox w, Uy
9’g(xy) _ a%g(x, y)I _ 0
0x?2 0x?2 ﬁ;
ag(x'Y) _ —-X ag(x:)’) _ —HUx
- _2 = I.u'x - 2
dy y 0y  uy My
%2gCxy) _ 2x _ 9%g(xy) |, = 2
ayz  y3 ay? ﬁ§ Tyt
0%g(xy) _ 9*glxy) _ -1
P e BN P (11)
azg(xry) — __1
dyodx Z; Hy?
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Take the expectation of both sides of Eq.(10)
and according to the results of Eq.(11), thus
we have:

X E(X) E(X)
E (—) ar(Y)
Y/ E() {E(Y)}3
———cov(X,Y)
{E(Y)}2
_EX) [ 1 4 ¥ar®) _ EGV-EGEY)
T E(®Y) {E(Y)}2 E(X)E(Y)
_EX) var(y) _ E(XY)
=i 2+ o~ Teos (Y)] ................... (12)

Take the variance of both sides of Eq.(10) and
according to the results of Eq.(11), thus we
have:

{EX)*

{E (Y)}4
var(X)
{E(0}?

var(X)

var (%) ~wor TP oy
EX) _ [E(X)]

2c0v(X.Y) ooy = [
var(Y) _ 2cov(X,Y)
{EM}? EXEW)

IE(X)] Ivar(X) var(Y)

+

T EM)| [E@E T EMP
2{E(XY) — EQ)E(Y)}

B EX)E(Y)

var(Y) _ 2E(XY)

{EM}?  EME®)

var(X)
{E(X)}?

_[@2

e [2+

5.Approximation to the Mean and Variance
of Moments Method Estimators:

In this section, we shall consider the
approximation to the mean and variance of
moments method estimators by equations (12)
and (13).

(5.1) Approximation to the mean of @
Consider the expectation of @ given by Eq.(8)

|= el

Use of Eq.(12), with X = X2 and Y = S?, we
have:

E@) = E[15

(n—-1)s2

~ (1 O\ [E(X?) var(52
E(@) ~ (E) [E(SZ)] [ (E(s2))2
E(X2%s?)
E(X2)E(S?)
Consider
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(R252) = E[R2 5 (B X2 — nk?)] =
(n—1)E[X2 i=1Xi2_nX4]
- nz(n 1) [(Z Xi)z (Z?=1Xi2)] -
- 1)E(X4)
= A—-B
Where
= o —E[CL. ) (B, X)), and
B (n 1)E(X4)
Consider
A= ;E[{Z 1 X; +221<,zxx}l
n2(n—1) (Z
_ [(Z?le) +2(3%, X2)
nZ(n 1) (2i<j2Xin)

= o 1)5[2 X2 XX+
2% DX X + 2 icjan 2 X X2 X X |

= o [T E(GY) + 2D BE(XDER ) +

22i<jZE(Xi3) E(X;) +

2Zi<j<kzzE(XiZ)E(Xj)E(Xk)]

Use of Eq.(2) with r=1,2,3,4 , we have:

n2(n 5 [Z ala+ D(a+2)(a+
B+ 2T Xa’ (a+1)2p* +
2YiciYa(a+ D(a+2)B° ap +
22i<j<k22 ala +1) ,Bz(aﬁ)z]

n2(n 5 [na’(af + D(a+2)(a+3)p*+
n(n—Da?(a+ 1)?B* + 2n(n — Da?(a +
1)(a + 2)p* + 2O 43 (g + 1))

na(a+1)ﬁ'
= —nz(

[(na + 2)(na + 3)]

and

B = E(X%)

(n 1)
Use of Eq.(4), with r=4, we have:
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n
D na(na + 1)(na + 2)(na +

2(2)

4 5 (na + 1) (na + 2)(na + 3)

So
E(XZ %) = m(o((;l)ﬁ [(na + 2)(na + 3)] —
nz(n D (na+ 1) (na + 2)(na + 3)

i; (na + 2)(na + 3)

Now

BZ
E(X?) _ na(na+1)n—2 na+1
E(s2) — ap? ~ n

— 2
E(X?) E(5?) = na(na + 1) 5 ap?
a?(na+1)p*

n

2 af*(6en—6+2na)
var(S4) = BEET T
var(s?) _ én-6+2na _ 6 | 2
[E(52)]? ~ nn-Da  na n-1

2+ =+ = -

@ = (75) (%57)

%(na+2)(na+3)

a?(na+1) g%

o) o

By taking the limit as n — oo to both sides of
Eq.(14), we get

Ai_r)rgoE(&)—(a—w)(2+0+0—

(a+0)(a+0)) _
a(a+0) o

Therefore

a is asymptotically unbiased estimator for a.

Where the bias of @ is
b(@) =E@)—«a



(5.2) Approximation to the variance of &
Use of Eq.(13) withX = X2 and Y = S?,
we have :

@ = 2] = () v ()

~ () B [+ i e

{EGDY ~ {E(s2)}?
2E(X?%5?) ]

E(X2)E(S?)

-G B [

{E(X2)}?
var(s*)  2E(X*s?)
{E(s2)}? E(X?)E(S?)
_( n \2[E(x)) E(XY)  var(s?)
_(E) [E(SZ)] [1+{E()?2)}2 (B2

2E(X%s?) ]
E(X?)E(S?)

Where

[E()?Z)]Z _ [na(naﬂ)(ﬁ)zr _ (e’

E(52) af? n

_4 B\*

E(X ) _ na(na+1)(na+2)(na+3)(n)
722 2 -

{E(X2)} [na(na + 1)(5)2]

(na+2)(na+3) var(s?) _ én—6+2na 2E(X%5%)
na(na+1) {(E(S2)}2 na(n-1) E(X2)E(S?)
2“54 (na+2)(na+3)

2 B*
a (na+1)7

_ 2(na+2)(na+3)

- na(na+1)

Therefore

~\_ ([ n 2 ma+1\2 (na+2)(na+3)
var(a) - (E) ( n ) [1 + na(na+1)
6n—6+2na 2(na+2)(na+3)]
na(n-1) na(na+1)
_ 2n(na+1)(a+1)
e (16)

(5.3) Approximation to the mean of §
Consider the expectation of 3 given by Eq.(9)

(n- 1)52 _ (n-1 52
E(B)=E | =)
Use of Eq.(12), with X =S%?andY =X, we
have:

560) ~ () sl [+

Where

var(X) _
{E(X)}2

E(XS?) ]

E(X)E(S?)
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E(X) = aB,var(X) = &, £(5?) = ap?and

2 ap* (6n-6+2na)
var(S°) = D
Consider
v s 1 _
E(XS®) =E [XE{Z? 1X'2 - TlXZ }]
—E(X 3L, X%) - = E(X?)
= 5 E[CL X3{EL X)) - S5 E(R®)
Where
1
- n(n—l)E[ ?=1Xi3 + Zi<jZXi2Xj, and
— " pry3
B = n—1E(X )
Consider
= = [T E(6®) + Zigy TE(XE(X))]

Use of Eq (2), with r=2,3, we have:
n(n 5 [, ala+ D(a+2)p° +

2i<j Z a(a + 1B ap]

[na(a + 1)(a + 2)B® +

_ na(a+1)(na+2)B3
- n(n-1)

n(n 1)

nn—1Da?(a+ 1)p3]

and

B =-——E(X*)
Use of Eq.(4), with r=3, we have:

B=_—" na(na + 1) (na + 2)(E)3
T n-1 n

_ a(na+1)(na+2)p3
- nn-1)

Therefore

na(a + 1)(na + 2)B3

nn—1)
_ a(na + 1) (na + 2)p3

nn—1)

E(XS?) =

_ a(na+2)B3

n

So
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2 ap? a(na+2)p3
E(ﬁ)%("%)(%)[“( i

~ (aB)(aB?)
(%) 8[1

(ap)?

“ral= (=018

By taking the limit as n — oo to both sides of
Eq.(17), we have:

lim E(ﬁ)— lim (1——)(1—E)B=B

n—oo n—oo

Therefore

B is asymptotically unbiased estimator for p.
Where the bias of

Bisb(B) =E(B) - B

(5.4) Approximation to the variance of B
Use of EQ.(13) with X =S%?andY =X, we
have:

var(f) = var [

()

(n— 1)52 ]

~ (1 E(SZ) 2 var(sz) var(X)
aslist)
E(X)E(S2)

B* (6n—6+2na) p?
_ (n-1\? [ap?)? op epegnd bt
_( " ) (aﬁ) 2t e e
2a(na+2)p3 )
0 | _(n1\"(3 |, 2 \n2
(ap)@p?) | ~ ( n ) (na + - 1)[3 ....... (19)

6. Monte-Carlo Simulation:[2]

A large scale monte-carlo investigation is
considered by generating a random sample of
size n=5(1) 10(2) 20(5) 30 by utilizing the
relation given by Eq.(5) and run size 500 is
used, and the initial values of a« =3 and

B=1
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Table (1)
Show the values of the simulated biases
of &, B as given by equations (8), (9) together
with the values of the approximation given by
equations (15), (18).

b(a b(B
Simulation Appr_ox Simulation Appr_ox
imation imation
5 4.09254 3.5 -0.22205 -0.253
6 247371 2.72 -0.81094 -0.213
7 1.29739 2.222 -0.12144 -0.184
8 1.58142 1.878 -0.11824 -0.161
9 1.50682 1.625 -0.14461 -0.144
10 1.1535 1.432 -0.08094 -0.13
12 1.11699 1.157 -0.12609 -0.109
14 0.86187 0.97 -0.09131 -0.094
16 0.63403 0.836 -0.05489 -0.082
18 0.66235 0.734 -0.05964 -0.073
20 0.53683 0.654 -0.04449 -0.066
25 0.53612 0.514 -0.06614 -0.053
30 0.34809 0.423 -0.0032 -0.044
Table (2)

Show the values of the simulated variances of

@, B together with the values of the
approximated variances.

Var(a@) Var(B)
Approxi Approxi
mation mation
10 0.448
7.296 0.39352
5.7037 0.34985
4.66472 0.31445
3.9375 0.28532
3.40192 0.261
2.66867 0.2228
2.19208 0.19424
1.85837 0.17212
1.61205 0.15449
1.42295 0.14012
1.09954 0.11366
0.89549 0.09559

Simulation Simulation

33.9146
19.84355
11.71693

6.95881

6.34074

4.90011

4.17264

2.99714

2.12534

2.02785

1.66254

1.30061

0.96436

0.50406
0.27187
0.30003
0.26405
0.21868
0.26033
0.1629
0.1556
0.15705
0.13634
0.13213
0.10039
0.08979




Table (3)
Show the values of the simulated MSE of

@, B together with values of the approximated

MSE.
MSE(&) MSE(B)

. . Approx . . Approxi
Simulation irﬁgtion Simulation n?a%ion

5 46.67385 22.25 0.55337 0.51218
6 25.96278 14.694 0.30762 0.43887
7 15.43175 10.642 0.31478 0.38359
8 9.45969 8.19 0.27803 0.34052
9 8.61123 6.578 0.23959 0.30607
10 6.23068 5.453 0.26688 0.2779
12 5.42031 4,007 0.17879 0.23464
14 3.73996 3.134 0.16393 0.20299
16 2.52734 2.557 0.16006 0.17885
18 2.46657 2.15 0.1399 0.15983
20 1.95073 1.85 0.13411 0.14446
25 1.58804 1.364 0.10476 0.11645
30 1.08553 1.075 0.09082 0.09754

Conclusions

1. Table (1) show that the biases of &, as
obtained by simulation are very close to
biases values of the approximation and for
large samples size both biases approach zero.

2. The approximated values of the biases and
variances become more accurate if we
consider the approximation to the
expectation and variance up to third order
derivation of Taylor series expansion.

3. Table (2) and (3) show that there a
considerable  difference  between  the
simulated and approximated variances and
mean square error of @ for small sample
sizes but it becomes adequate for large
sample size, while the simulated and
approximated variances and mean square

error of § are excellent for all sample size.
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