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Abstract 

In this paper, our aim is to study the numerical solution of initial value problems (IVPs) for 

ODE´s is one of the fundamental problems in scientific computation.  

There are many well-established algorithms for approximate solution of IVPs. However, 

traditional integration methods usually provide only approximate values for the solution. Precise 

error bounds are rarely available the error estimates, which are sometimes delivered, are not 

guaranteed to be accurate and are sometimes unreliable. The main goal of the paper is to present all 

the existent approaches together emphasizing that since, all researches face the same problem but in 

different contexts, they are finding the same kinds of problems in spite of there different for mails 

m5 and methodologies.  
 

Keywords: IVPs for ODE´s, Taylor model methods, error bounds for taylor,s series, approximation 

function by Taylor polynomials. 

 

1-Introduction  

Berz and his co-workers [1] have developed 

Taylor model methods, which combine 

interval arithmetic with symbolic computation 

[2, 5, 25, 27, 28]. In Taylor model methods the 

basic data type is not a single interval, but a 

Taylor model.  
 

U: 𝑃𝑛 (𝑥) +  і 
 

consisting of multivariate polynomial 𝑃𝑛(𝑥) 

of order n in m variables, and a remainder 

interval i. In computations that involve U, the 

polynomial part is propagated by symbolic 

calculations wherever possible, and thus not 

significantly affected by the dependency 

problem of the wrapping effect, only the 

interval remainder term and Polynomial terms 

of order higher than n, which are usually 

small, are bounded using interval arithmetic.  

In contrast reliable integration computes 

guaranteed bounds for the flow of an ODEs, 

including all discretization and roundoff errors 

on the computation originated by Moore in the 

1960s [33], interval computations are a 

particularly useful tool for this purpose. There 

is a vast literature on interval methods for 

verified integration [2,5,25,27,28,33, 42], But 

there are still many open questions. 

Taylor model arithmetic is an extension of 

interval arithmetic with a comprehensive 

variety of applicable enclosure sets. 

Nevertheless, there has been same debate 

about the usefulness and the limitations of 

Taylor model methods [42]. To sometimes 

cursory description of technical details of 

Taylor model arithmetic, which may be 

obvious to the experts of Taylor models, but 

which are less trivial to others. 

The motivation of this paper is to analyze 

Taylor model methods for the verified 

integration of ODEs and to compare these 

methods. Taylor models are better suited for 

integrating ODEs than interval methods 

whenever richness in available enclosure sets 

and reduction of the dependency problem is an 

advantage. Thus is usually the case for IVPs 

for nonlinear ODEs. Especially In combination 

with large initial sets or with large integration 

domains, although parameter intervals or 

initial sets can be handled by subdivision, this 

approach is only practical in low dimensions. 

We use a simple nonlinear model problem 

to illustrate these advantages. The paper is 

structured as, follows. In the next section, 

basic concepts of interval arithmetic and 

Taylor model methods are reviewed interval 

methods for ODEs are represented. A 

nonlinear model problem is used to explain 

preconditioned Taylor model methods for 

ODEs in section 3. In the last section, 

numerical examples for linear ODEs are given. 
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2-Dependency problem and wrapping 

Effect  

Interval methods are sometimes affected by 

overestimation, whence the computed error 

bounds may be overly pessimistic. 

Overestimation is often caused by the 

dependency problem, that is the failure of 

interval arithmetic to identify different 

occurrence of the same variable. For example 

the range of f(x):=x/(1+x) in (2,1) is [1/2, 2/3], 

but interval – arithmetic evaluation yields  

 
X

1+X
=  [

1,2

2,3
] = [

1

3
, 1]  ............................ (2,1) 

 

In general, the dependency problem is not 

easily removed. To diminish overestimation, 

alternative evaluation schemes, such as 

centered forms [33], have been development. 

A discussion of computer methods for the 

range of functions is given in [43].  

A second source of overestimation is the 

wrapping effect, which appears when 

intermediate results of a computation are 

enclosed by intervals. The wrapping effect was 

first observed by Moore in 1965 [32]; a recent 

analysis has been given by Lohner [23]. 

 

3- Taylor Model Arithmetic 

To reducing both the dependency problem 

and the wrapping effect, interval arithmetic has 

been extended with symbolic computations. 
Symbolic – numeric computations have been 

proposed under various names since the 1980s 

[11,16,23]. Early implementations in software 

were also given [11,15], but to the authors 

knowledge, these packages have not been 

widely distributed and are not available today. 

Starting in the 1990s, Berz and his group 

developed a rigorous multivariate taylor 

arithmetic [2,25,28]. In these references, a 

taylor model is defined in the following way. 

Let f: DC 𝑅𝑚 → 𝑅 be a function that is 

(n+1) times continuously differentiable in an 

open set containing the box X. Let 𝑋𝑜 be a 

point in X. Let 𝑃𝑛 denote the nth order Taylor 

polynomial of around 𝑋𝑜, and let i be an 

interval such that 

 

 (𝑥) ∈ 𝑃𝑛 (𝑥 − 𝑥𝑜) +  і for all 𝑥 ∈ 𝑥 

 .............................................................. (3.1) 

 

Then the pair (Pn, і) is called an nth  

order Taylor model of around Xo on X. This 

original definition of a Taylor model is useful 

for computations in exact arithmetic but it 

must be extended for floating point 

computations. For example, there is no  

Taylor model of eX = 1 + x + (1/2) X2 +
 (1/6) X3 + ⋯ of order n ≥ 3 in IEEE 754 

floating point arithmetic, since the coefficient 

of X3 is not exactly representable as a floating 

point number. In [29], Instead of the Taylor 

polynomial of f, an arbitrary polynomial Pn 

with floating point coefficients is used in (3.1), 

but the definition of Taylor model in [29] 

assume that the width of і is of order O 

(||w(x)||n). In this paper, such an assumption 

on the width of і is not required. 

We use calligraphy letters for denoting 

Taylor models: 

 

U: Pn(x) +  і, X ∈ X   

 

Where x ∈  𝐼𝑅𝑚, 𝐼 ∈ 𝐼𝑅 are intervals and 𝑃𝑛 

is an m- variate polynomial of order n. x is 

called the domain interval of U, and і is its 

remainder interval. A Taylor model is the set 

of all m- variate continous functions f such 

that f(x) ∈ 𝑃𝑛(𝑥) +  і 
Holds for all X ∈ X. Evaluating U for all 

X ∈ X, we obtain the range of U:  

 

R2(U): = {Ƶ = P(X) + і\ X ∈ X, і ∈ і}  
 

Example (3.1):  

Taylor models of eX and Cosx. Let  x =

[−
1

2
 ,

1

2
] and Xo = 0. Then Taylor׳s theorem 

is a natural starting point for constructing 

Taylor models, we have 
 

ex = 1 + x +
1

2
x2 +

1

6
x3 + ⋯ +

1

n!
xn, … , |x|

≤ 1, cosx

= 1 −
1

2
X2

+
1

24
X4, … , (x =

5π

180
). 

 

From which we derive Taylor models for 

𝑓1(𝑥) : =  𝑒𝑋 and 𝑓2(𝑥): = 𝑐𝑜𝑠𝑥  

U1(X): = 1 + x +
1

2
 x2 + [−0.035, 0.035], 

U2(X): = 1 −
1

2
 x2 + [−0.010, 0.010], x ∈ x  
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Respectively 
Taylor model arithmetic has been defines in 

[2,25,28]. We use the same arithmetic rules, 

even though our Taylor models differ slightly 

from the taylor models defined in these 

references. The difference only affects the 

function set that is defined by a Taylor model.  

In computation that involve a Taylor model 

U, the polynomial part is propagated by 

simplic calculations wherever possible. In 

floating point computations, the round off 

errors of the symbolic operations are 

rigorously estimated and the estimate is added 

to the remainder interval of the final result. 

This part of computation is hardly affected by 

the dependency problem or the wrapping 

effect. Only the interval remainder term and 

polynomial terms of order higher than n 

(which in applications are usually small) are 

processed according to the rules of interval 

arithmetic. 

 

Example (3.2):  
Composition of two univariate Taylor 

models of order 2. Let X = [−
1

2
,

1

2
] and  

U1(x) = 1 + x +
1

2
 x2 +

[−0.035, 0.035], 𝑈2(𝑥) = 1 −
1

2
 𝑥2 +

[−0.010, 0.010] 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑥.  
 

It is tempting to compute the 

composition U1o U2 in the following manner 

 

U1(x)o U2(x)  1 + [1 −
1

2
 X2 +

[−0.010,0.010]] + 
1

2
[1 −

1

2
X2 +

[−0.010, 0.010]]+ [−0.035,0.035]   

[2 −
1

2
X2 + [−0.045, 0.045]] +

1

2
 [1 − X2 +

1

4
X2 + [0.020,0.020] − X2] + 

1

2
[−0.010,0.010] + [−0.001,0.001] 

5

2
− X2

+
1

8
X4 

−X2[−0.005,0.005] + [−0.0.056,0.056] 
5

2
− X2 + [0,0.008] 

−[−0.002, 0.002] + [−0.056,0.056]

=
5

2
− X2 + [−0.058,0.066] 

Hence, we may define 

𝑈1(𝑥)𝑜𝑈2(𝑥) =  
5

2
− 𝑋2 + [−0.058,0.066]  

 .............................................................. (3.2) 

However, the above computation does not 

yield a taylor model for 𝑒𝐶𝑂𝑆𝑥 for all 𝑥 ∈ 𝑥. 

Evaluating (3.2) at X=0, we obtain 

 

U1(o)o U2(o) = [2.442, 2.566] e = eCOSx 

 

The reason for this failure lies in the range 

of U2, which is not contained in x, 

composition of Taylor models are indeed 

computed above, but it is required that the 

domain of U1 contains the range of U2. 

In our example, it suffices to compute the 

remainder term for the exponential function on 

the interval [-1,1]. Using Lagrange׳s 

representation of the remainder term, we have 
e

3!
X2 ∈ [−

e

6
,

e

6
] [−0.45,0.454] for all 

ƹ ∈ [−1,1] and all X ∈ [−1,1]. 
 

Using [−0.454,0.454] instead of 
[−0.035, 0.035] in the derivation of (3.2) 

yields 

U1(x)o U2(x): =  
5

2
− X2 + [−0.477,0.485] 

 

Which is a verified enclosure of 

𝑈1(𝑥)𝑜 𝑈2(𝑥) for all x ∈ x. Note that it is still 

not a verified enclosure for all x∈ [−1,1]. The 

latter requires that the interval term of 𝑈2 is 

also computed for is x[−1,1]. 
A Taylor model vector is a vector with 

Taylor model components. When no 

ambiguity arises we call a Taylor model vector 

simply a Taylor model. Arithmetic operations 

for Taylor model vectors are defined 

computation wise. 

 

4- Taylor Series in Several Variable 

For example, for a function that depends on 

two variables, x and y the taylor series to 

second order about the point (a,b) is  
 

f(a,b)=(x-a)fx(𝑎, 𝑏) + (𝑦 − 𝑏)fy(𝑎, 𝑏) +
1

2!
 

[(𝑥 − 𝑎)2f𝑥𝑥(𝑎, 𝑏) + 2(𝑥 − 𝑎)(𝑦 −
𝑏)f𝑥𝑦(𝑎, 𝑏) + (𝑦 − 𝑏)2f𝑦𝑦(𝑎, 𝑏)] 
 

Where the subscripts denote the respective 

partial derivatives. 
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Example (4.1): 

Compute a second-order Taylor series 

expansion around  

point (a,b)=(0,0) of a function  

f(x,y)=𝑒𝑥 𝑙𝑜𝑔(1 + 𝑦). 
Firstly, we compute all partial derivatives 

we need  

fx(a,b)= 𝑒𝑥 𝑙𝑜𝑔(1 + 𝑦)|(x,y)=(0,0) =0, 

fy(a,b)= 
𝑒𝑥

(1+𝑦)
|(x,y)=(0,0) =1, 

fxx(a,b)= 𝑒𝑥 𝑙𝑜𝑔(1 + 𝑦)|(x,y)=(0,0) =0, 

fyy(a,b)=− 
𝑒𝑥

(1+𝑦)2
|(x,y)=(0,0) =-1, 

fxy(a,b)=fyx(a,b)= 
𝑒𝑥

(1+𝑦)
|(x,y)=(0,0) =1. 

The Taylor series is  

T(x,y)=f(a,b)+(x-a)fx(a,b)+(y-b) 

fy(a,b)+1\2![(x-a)2fxx(a,b)+2(x-a)(y-b) fxy(a,b)+ 

  (y-b)2 fyy(a,b)]+…, 

T(x,y)=0+0(x-0)+1(y-0)+1\2[(x-0)2+2(x-

0)(y-0) +(-1)(y-0)2]+… 

   = y+xy-y2\2+… . 

 

Which in this case becomes 

Since 𝑙𝑜𝑔(1 + 𝑦)= y+xy-y2\2+… .  for |y|<1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Second –order Taylor approximation (in 

orange) of a function f(x,y)=e x 𝒍𝒐𝒈(𝟏 + 𝒚) 

Around origin 
 

5- Function approximation 

Suppose that we want to know the value of 

a function such as ex. We can approximate the 

function ex (which we can only evaluate on a 

calculator) and replace it by a polynomial 

which we can evaluate using pencil and paper 

Before going on, we introduce one new 

term. The Taylor polynomial at a of degree n 

for a function f is the terms in the Taylor series 

up to degree n, thus this polynomial, 𝑝𝑛(𝑥) is 

defined by 

 𝑃𝑛(𝑋) =  ∑
𝑓𝑘(𝑎)

𝑘!

𝑛
𝑛=0 (𝑥 − 𝑎)𝑘 

Suppose we want to approximate 𝑒𝑥, or say 

e. We know from the previous section that 𝑒𝑥 

is given by the Taylor, 𝑒𝑥 = ∑ 𝑥𝑛

𝑛!
∞
𝑛=0  . So that  

 

 𝑒 =  ∑
1

𝑛!
∞
𝑛=0  

 

This series converges very rapidly and we 

shall see that we only need a few terms to find 

e to several decimal places of accuracy. 

 

Example (5.1):  

Compute e to within an error of at most  

10-3. 

Solution. According to Taylor,s theorem with 

remainder, there is a number c between 0 and 

1 so that 

 

 𝑒 =  ∑
1

𝑛!
∞
𝑛=0 ≤

𝑒𝑐

(𝑁+1)!
 

 

Take the largest and smallest values for 𝑒𝑐 

implies  

 
1

(𝑁+1)!
𝑒 − ∑

1

𝑛!
𝑁
𝑛=0 ≤

𝑒

(𝑁+1)!
  .................. (5.1) 

 

Thus we need to find N so that e/ (N+1)! ≤ 

10-3. We apparently have a problem. In order 

find N and compute e, we need to know the 

value of e. There are several ways out this 

circle. (1) Cheat-use the value of e from your 

calculator. This will be acceptable on sets. (2) 

Recall that when we defined e, we showed that 

e ≤ 4. (3) In the example below, we will show 

how to use Taylor,s theorem to find some 

Information about the size of e. We 

temporarily use (2) and thus the error is at 

most 4/ (N+1)! Consider the table below: 
 

n 4/(N+1)! ∑ 𝟏

𝒏!

𝑵

𝟎
 

4 4/120 = 0.0333  

5 4/720 = 5.5. 10-3  

6 4/5040 = 7.9. 10-4 2.71805… 

 

We see from this table that N = 6 is the 

smallest value that will give allow us to 

approximate e with an error of at most 10-3. 

And if I entered the numbers correctly in my 

calculator the approximate value is 2.71805. 

Example (5.2):  
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Use Taylor,s theorem to get a rough bound 

on e. 

Solution. We used the displayed equation (1) 

from the previous example with N= 2 and that  

𝑒𝑐 ≤ 𝑒 to obtain 

 
1

6
≤ 𝑒 −

5

2
≤ 𝑒/6. 

 

The left inequality gives 
8

3
≤ 𝑒. 

 

While the right-hand one gives 

 
5

6
≤ 𝑒

5

2
 

 

Which implies 𝑒 ≤ 3. Thus we conclude 
8

3
≤ 𝑒 ≤ 3 

 

We consider an example for the cosine 

function. 

 

Example (5.3): 

Use Taylor,s theorem to find an interval 

where 

 

| 𝑐𝑜𝑠(𝑥) − (1 −
𝑥2

2
)| ≤ 10−4. 

 

Solution. We recognize that 1 − 𝑥2/2 is the 

Taylor polynomial of degree 2 for cosine at 0, 

or the McLaurin polynomial for cos. 

From Taylor,s theorem, we have that  

 

| 𝑐𝑜𝑠(𝑥) − (1 −
𝑥2

2
)| = | 𝑠𝑖𝑛(𝑐)

𝑥3

3!
| 

 

Since we know that | 𝑠𝑖𝑛(𝑐) | is at most 1, 

the error will be at most 10-4 if we have that 

 

 |
𝑥3

3!
| ≤ 10−4 

 

Solving this inequality gives |𝑥| < 0.084 …  

We can praph 𝑐𝑜𝑠(𝑥) − 1 + 𝑥2/2 and see 

if we have done a good job. 

 

 

 

 
 

Examining this graph shows that we have 

not done a good job. The error does not 

become larger than 10-4 until 𝑥 is about 0.2. 

A moment,s reflection will explain why we 

did not get the best possible answer. The 

second and third Taylor polynomials are equal 

because the terms of odd powers are 0. Thus, 

applying Taylor,s theorem to estimate the 

difference between 𝑐𝑜𝑠(𝑥) and its Taylor 

polynomial of degree three gives us 

 

| 𝑐𝑜𝑠(𝑥) − (1 −
𝑥2

2
)| ≤

𝑥4

4!
. 

 

Solving this inequality gives us 

 

|𝑥| ≤ 0.22. 
 

This agrees with the graph. 
 

6- Taylor sequential applications 

Taylor series for several benefits the most 

important because it allows the expression of 

any mathematical function through many 

border so we can find approximate solutions to 

the question s of whether the exact solution 

elusive. It also of great importance sequential 

Taylor in mathematics digital where many a 

algorithms to solve equations approved there 

on a sequential Taylor. It should be noted all 

the practical applications for the ending 

sequence which make it imperative that we 

take into account the precision which we want 

to get to in our solution to the equation. While 

the automatic Landing system bears a mistake 

between a meter or two meters at the landing 

site, the position of the head, which Likra data 

from the cylinder only accepts fault with a 

fraction of a millionth of a meter some familiar 

useful Taylor functions (series). 
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𝑒𝑥, 𝑙𝑜𝑔(1 − 𝑥) , 𝑙𝑜𝑔(1

+ 𝑥) ,
1 − 𝑥𝑚+1

1 − 𝑥
,

1

1 − 𝑥
,

𝑥𝑚

1 − 𝑥
, 𝑒𝑡𝑐. 

𝑒𝑥𝑐𝑜𝑠𝑥, 𝑒𝑥𝑠𝑖𝑛𝑥, 𝑒𝑡𝑎𝑛𝑥, 𝑒−𝑥2
   

 

7- Accuracy of Taylor series 

So how many terms should we use in 

getting a certain pre-determined accuracy in a 

Taylor series. One way is to use the formula 

for the taylor theorem with remainder and its 

bounds to calculate the number of terms. This 

is shown in the example below. 

 

Example (7.1):  

So how many terms should we used in 

getting a certain pre- determined accuracy in a 

Taylor series one way is to use the formula for 

the taylor,s theorem remainder and its bounds 

to calculate the number of terms. 

The Taylor series for 𝑒𝑥 at point x=o is 

given by 

 

𝑒𝑥 = 1 + 𝑥 +
1

2!
𝑥2 +

1

4!
𝑥3 + ⋯ +

1

𝑛!
𝑥𝑛

+ 𝑅𝑛(𝑥) 
 

How many term it would require to get an 

approximation of 𝑒1 within magnitude of true 

errors of less than 10−6? Using (n+1) terms of 

Taylor series given errors bounds of 

 

𝑅𝑛(𝑥) =
(𝑥−ℎ)𝑛+1

(𝑛+1)!
𝑓(𝑐)

(𝑛+1)
  

 

For our example  

X=o, h=1, f(x) =𝑒𝑥 

Hence 𝑅𝑛(𝑜) =
(𝑜−1)𝑛+1

(𝑛+1)!
 𝑓(𝑐)

(𝑛+1)
=

(−1)𝑛+1

(𝑛+1)!
𝑒𝑐 

 

Since    
𝑥 < 𝑐 <  𝑥 +  ℎ

𝑜 < 𝑐 < 𝑜 + 1
𝑜 < 𝑐 < 1

 

 
1

(𝑛+1)!
< |𝑅𝑛(𝑜)| <

𝑒

(𝑛+1)!
, so if we want to 

find out how many terms it would require to 

get an approximation of 𝑒1 withn a magnitude 

of true error of less than 10−6  

 

𝑒

(𝑛 + 1)!
< 10−6 ⇒ (𝑛 + 1)! > 106𝑒

⇒ (𝑛 + 1)! > 106𝑥3 
 

as we do not know the value of e but it is 

less than 3. 

So 𝑛 ≥ 9 are needed to get 𝑒1 within an 

error of 10−6 in value. 

 

Conclusion 

We have compared traditional enclosure 

methods with Taylor model based integration. 

For the verified solution of initial value 

problems for ODEs, we have shown how 

Taylor model methods benefit from symbolic 

computations. Increased flexibility in 

admissible boundary curves of enclosures is an 

intrinsic advantage over traditional interval 

methods, not only for the solution of ODEs. In 

future research, we hope to contribute to the 

further development and increased use of 

Taylor model methods. 
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 الخلاصة
في هذا البحث هدفنا هو دراسة الحلول العددية لمسائل 

إي من المعادلات التفاضلية الاعتيادية  (IVPs)القيم الأولية 
(ODEs واحدة من المسائل الأساسية في الحسابات )

 العلمية.
هناك عدد من الخوارزميات الرصينة للحلول التقريبية 

, على هذا النحو طرق (IVPs)لمسائل القيم الأولية 
التكملات التقليدية عادة توفر قيم تقريبية للحلول. حدود 
الأخطاء الدقيقة نادرا ما توفر تخمين للخطأ , الذي أحيانا لا 

 ليه.يسلم مضمونا ليكو دقيقا وفي أحيان أخرى لا يعول ع
الشئ الرئيسي للبحث الذي يحضر جميع القريبات 
الموجودة مع التأكيد بأنه بسبب جميع البحوث تواجه نفس 
المشكلة ولكن بسياقات مختلفة. وهي تواجه نفس لنوع من 

 المسائل بالرغم من اختلاف شكلياتها و منهجياتها.
( للمعادلات التفاضلية IVPS) كلمات مفتاحيه: القيم الأولية

(, طرق نماذج تيلر, حدود الأخطاء ODEsالاعتيادية )
 .لمتسلسلات تيلر, تقريب الدوال مع متعددة تيلر

 

 


