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Abstract 
In this paper; we introduce the concepts of dependent element and free action associated to a 

biadditive mapping. We shall investigate some properties of dependent element of various mapping 

related to Bicentralizer on a semiprimerings. Also we identify various situations where these maps 

are free action. 
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1- Introduction 
The concepts of dependent element and free 

action are intimately connected. The notion of 

dependent element originated from generalized 

the results concerning free action mapping 

(defined on abelian von Neumann), that 

introduced by Murray and von Neumann [9] 

and von Neumann [11]. 

The first using of dependent element was 

implicitly by Kallman [5], when he 

generalized the notion of free action of 

automorphisms of von Neumann algebra, not 

necessarily abelian. In order to generalized  

the concept freely acting automorphisms to  

C*-algebras, Choda, Kashahara and Nakamoto 

in [3] introduced the notion of dependent 

element associated to Automorphisms. 

The fact that C*-algebras and von Neumann 

algebras are Semiprime rings, and that a von 

Neumann algebra is prime if and only if its 

center consists of scalar multiples of identity, 

was the main reason that motivated several 

authors to extend the notion of dependent 

element of mapping and free action on  

C*-algebras and von Neumann algebras, and to 

study these notions in the context of 

semiprime and prime rings. The initial results 

on this subject obtained in 1998 by Laradji and 

Thaheem [7], a number of results which are 

state in [3] have been generalized to 

semiprime rings. In the recent years, an 

important studies have been made by Vukman 

and Kosi- UIbI [12], Vokman [14], and A. 

Muhammad and S. Muhammad[10], which are 

concerning the dependent elements of various 

mapping related to Automorphisms, 

derivations, (𝛼,𝛽)-derivations, and generalized 

derivations of semiprime rings. 

Throughout, unless otherwise mentioned, R 

represents an associative ring with center 

Z(R)and extended centroid C.A ring R is  

n-torsion free, where n is an integer, in the 

case nx=0, x ∈R implies x=0. In the sequel we 

shall usually write [x, y] for the commutator  

xy-yx. We shall make extensive use of the 

commutator identities [xz, y] = x[z, y] + [x, 

y]z,and[x, yz] = y[x, z] + [x, y]z. Recall that a 

ring R is prime in case aRb = (0) implies that 

either a=0 or b=0,equivalently, if the product 

of any two nonzero ideals of R is nonzero. A 

ring Ris said to besemiprime if a Ra=(0) 

implies a=0, Equivalently, if R has no nonzero 

nilpotent ideals. So it is easy to see that in 

semiprime rings, there are no nonzero 

nilpotent Dependent elements. 

An additive mapping d: R ⟶ R is called a 

derivation if d(xy)= d(x) y+x d(y) holds for all 

x,y ∈R. A biadditive mapping D:R×R⟶R is 

called a Biderivation if it is a derivation in 

each argument: that is for every x ∈R the maps 

y ⟶G(x, y) and y ⟶G(y, x) are derivations on 

R. 

A mapping B: R×R⟶ R is called 

Symmetric if B(x, y) = B(y, x), for all pairs 

x,y ∈R. A biadditive mapping T: R ⟶R is 

called a left (right)Bicentralizer if T(xz, y)= 

T(x, y)z and T(x, yz)=T(x, y)z (T(xz, y)= xT(z, 

y) and T(x, yz)=yT(x, z)),holds for all x,y,z ∈R. 

On the other hand, T is called Bicentralizer in 

case T is both left and right Bicentralizer. An 

ideal I of a ring R is said to be essential if it 

has nonzero intersection with any nonzero 

ideal of R. It should be recalled that the right 

annihilator r(I) of I in R is a totality of all x ∈R 

such that Ix=0. Accordingly, the left 

annihilator ℓ(I) is a set of all x ∈R such that 
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xI=0. The intersection ann(I) = r(I)∩ ℓ(I) is 

called an annihilator of I in R(see[6]). 
 

In this paper  
We introduce the concept of the dependent 

elements and free action associated to 

biadditive mapping defined on R. 
 

Definition (1.1): 

Let R be a ring. An element a∈Ris called 

dependent element of a biadditivemapping F: 

R×R⟶R if F(x, y)a = ayx holds for all x,y ∈R. 

The collection of all dependent elements of F 

denotes by 𝒟(F). 
 

Definition (1.2): 

Let R be a ring. A mapping F: R×R⟶R is 

called a free action in case zero is the only 

dependent element. 
 

2. Preliminary results: 
We begin with the following known results 

which will be used extensively to prove our 

main results. 
 

Lemma (2.1):[2]  

Let R be a 2-torsion free semiprime ring 

and let a,b ∈R. If for all x∈R, the relation 

axb+bxa=0 hold, then axb=bxa=0isfulfilled 

for all x ∈R. 
 

Lemma (2.2):[13] 

Let R be a prime ring with extended 

centroid C, and let a,b ∈R besuch that 

axb=bxa holds for all x ∈R . If a≠0, then there 

exist 𝜆 ∈ C such that b= 𝜆a. 
 

Lemma (2.3):[6] 

Let I be an ideal of a semiprime ring R. 

Then ann(I) = r(I)=ℓ(I). 
 

Lemma (2.4):[6]  

Let I be an ideal of asemiprime ring R. then 

I ⊕ann(I) is an essential ideal of R. 
 

Lemma (2.5): [8] 

Let R be a simeprime ring, I an ideal of R, 

then I is a simeprime subring of R and  

Z(I)⊆ Z(R). 
 

Lemma (2.6):[1] 

If R is a semiprime ring and I is an ideal of 

R, then I ∩ 𝑟(𝐼)=0. 
 

Lemma 2.7:[4] 

Let R be a simeprime ring, and a ∈R 

satisfies a[a, x] =0, for all x ∈R, then a ∈Z(R). 

We need to introduce the following Lemma. 
 

Lemma (2.8): 
Let R be a ring with identity. Then a 

symmetric biadditivemapping F:R×R⟶R is a 

symmetric left (right) Bicentralizer if and only 

if F is of the form F(x, y) = ayx(F(x, y)= xya) 

for some fixed elementa ∈R. 
 

Proof:  

Suppose Fis a Symmetric left Bicentralizer: 

F(xz, y)= F(x, y) z= F(1.x, y)= F(1, y) xz. 

          =F(1.y, 1) xz = ayxz , where a stands for  

F(1, 1) 
 

Hence F(xz, y) = ayxz for all x,y,z ∈R. 

Taking z =1 leads to: 
 

F(x, y) =ayx , for all x,y ∈R. 
 

Conversely, suppose F(x, y) = ayx for all 

x,y ∈R then 
 

F(xz, y)= ayxz= (ayx)z = F(x, y) z 
 

Hence F is a Symmetric left Bicentralizer. 

In similar arguments, we can prove thatF is a 

Symmetric right Bicentralizer if and only 

ifF(x, y)=xya. ∎ 
 

Now, we introduce the following definition 

which will be use in some main results. 
 

Definition (2.9): 
Let Ube a subring of R, and let S,T: 

U×U⟶R, be a symmetric biadditive 

mappings, then the pair (T, S) is called double 

Bicentralizer of U if Tis a left Bicetralizer and 

S is a right Bicentralizer, as well as they satisfy 

a balanced condition zT(x, y) = S(y, z)x, for all 

x,y,z ∈U. 
 

Example (2.10): 
Let Z be the ring of integers, and R=M2(Z) 

be the set of all matrices of order 2, then R is a 

commutative ring with respect to the usual 

operation of addition and matrix 

multiplication, also let: 
 

U={(
𝑎 𝑎
𝑎 𝑎

) , 𝑎 ∈ 𝑍 }. 
 

Let S, T: U×U⟶R be two bidditive mappings 

defined by: 

T((
𝑎 𝑎
𝑎 𝑎

) , (
𝑏 𝑏
𝑏 𝑏

)) = (
0 0

𝑎𝑏 𝑎𝑏
) 

S((
𝑎 𝑎
𝑎 𝑎

) , (
𝑏 𝑏
𝑏 𝑏

)) = (
0 𝑎𝑏
0 𝑎𝑏

) 
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Then (T, S) is double Bicentralizer of U. ∎ 
 

Finally, we see it's suitable to introduce the 

following Lemma.  
 

Lemma (2.11):  
Let R be a semiprime ring. Then every 

double Bicentralizer(T, S) induced a 

Symmetric Biderivation D defined by  

D(x, y)= T(x, y)- S(x, y). 

Proof: We have 
 

D(x, y)= T(x, y)- S(x, y), for all x,y∈R. 
 

Putting xz instead of x in the above relation, 

we get: 
 

D(xz, y)= T(x, y)z-xS(z, y) 

              = (T(x, y)- S(x, y))z+ x(T(y, z)- S(z, y))   

             = D(x, y)z +xD(z, y), for all x,y,z∈R. 
 

3. Main Results: 

Theorem (3.1): 

Let R be a simeprime ring and T: R×R⟶R 

be a left Bicentralizer, a ∈R. Then a ∈ 𝒟(T) if 

and only if a ∈Z(R) and T(a, y)=ay holds for 

all y ∈R. 
 

Proof:  

Let a ∈ 𝒟(T), then 

T(x, y)a = ayx, for all x, y ∈R.  ..................... (1) 

We consider 

T(xa2𝜔, y)= T(x, y) a2𝜔= ayxa𝜔 = T(xa𝜔, y)a 

= T(x, y)a𝜔a 
 

Therefore  

T(x, y)a [a, 𝜔]=0, for all x, y,𝜔 ∈R.  ............ (2) 
 

According to (1), the above relation becomes: 

ayx [a, 𝜔]=0, for all x, y, 𝜔 ∈R.  .................. (3) 
 

Replacing x by a and y by [a, 𝜔] y, we get: 
 

a[a, 𝜔] y a[a, 𝜔]=0, for all y, 𝜔 ∈R. 
 

Using the semiprimeness of R leads to: 
 

a[a, 𝜔]=0,for all 𝜔 ∈R. 
 

Consequently by Lemma (2.7), we conclude 

that a ∈Z(R). So T(a𝜔, y)=T(𝜔a, y) , for all y, 

𝜔 ∈R. That is 
 

T(a, y) 𝜔 = T(𝜔, y) a=ay𝜔. 

Whence (T(a, y) – ay)𝜔 =0, for all y, 𝜔 ∈R, 

then using semiprimeness of R, we get:  
 

T(a, y) = ay, for all y ∈R. 
 

Conversely, suppose thata ∈Z(R) and  

T(a, y)=ay holds for all y ∈R, then: 
 

T(xa, y)= T(ax, y) , for all x, y ∈R. 

T(x, y) a= T(a, y) x = ayx, for all x, y∈R. 
 

Hence a ∈ 𝒟(T).∎ 
 

Corollary (3.2): 
If R is a simeprime ring with Z(R)= {0}, 

then the left BicentralizerT: R×R⟶Ris free 

action. 
 

Theorem (3.3): 
Let R be a simeprime ring, and S: 

R×R⟶Rbe a right Bicentralizer, a ∈ 𝒟(S), 

then a ∈Z(R). 
 

Proof:  

Since a ∈ 𝒟(S), then we have: 

S(x, y)a = ayx, for all x, y∈R.(1) 

Replacing x by xzin (1), we get: 
 

xS(z, y)a = ayxz, for all x, y∈R. 

According to (1), the above relation reduces 

to: 

xayz = ayxz, for all x, y∈R. 

That is 

[x, ay] z=0, for all x, y∈R. 
 

Using the identity [x, yz] = [x, y]z + y[x, z], we 

obtain: 

[x, a]y + a[x, y]=0, for all x, y∈R. 
 

Setting x=a in the above relation implies that: 

a[a, y]=0, for all y∈R. 
 

Using Lemma (2.7), we get the assertion of the 

Theorem. ∎ 
 

Theorem (3.4): 

Let R be a prime ring and T: R×R⟶R be a 

Symmetric left Bicentralizersuch that  

T(x, y)≠yx, then T is a free action. 
 

Proof:  

Let a ∈ 𝒟(T), then a ∈ 𝑍(R) by Theorem 

(3.1). So we have: 
 

T(x, y)a = ayx = yxa , for all x, y∈R. 

That is  

(T(x, y)-yx )a=0 , for all x, y∈R. 
 

Right multiplication of the above relation by 𝜔 

gives: 
 

(T(x, y)-yx)𝜔 a=0 , for all x, y∈R. 
 

Since T(x, y)≠yx, and R is prime ring, we get 

a=0. So T is free action.∎ 
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Theorem (3.5): 

Let R be a semiprime ring and T: R×R⟶R 

be a left Bicentralizer, then 𝒟(T) is a 

semiprime subring of 𝑍(R). 

Proof: Let a,b ∈ 𝒟(T), then by Theorem (3.1) 

we have a,b∈ 𝑍(R), T(a, y) = ay and T(b, y) = 

by, for all y ∈R. 

Consequently, a-b ∈ 𝑍(R), ab ∈ 𝑍(R). 

Also 

T(a-b, y) =T(a, y) - T(b, y) =ay – by = (a-b)y 

   T(ab, y) =T(a, y)b= ayb=aby 

Again, by Theorem (3.1) we have a-b ∈ 𝒟(T) 

and ab ∈ 𝒟(T). 

Hence 𝒟(T) is a subring of 𝑍(R).∎ 
 

Corollary (3.6): 
Let R be a semiprime ring, and 

T:R×R⟶Rbe a Bicentralizer, then 𝒟(T) is an 

ideal of R. 
 

Proof:  

Since 𝒟(T) is a semiprime subring of 𝑍(R), 

we have only to show thatar ∈ 𝒟(T), for all  

a ∈ 𝒟(T) and r ∈R. 

T(x, y)ar =ayxr = yxar =yx T(a, r)= T(yxa, 

r)= T(yx, r)a=aryx 

Whence ar ∈ 𝒟(T).∎ 
 

Theorem (3.7): 

Let R be a semiprime ring and T:R×R⟶R 

be a Bicentralizer. Then there exist an ideals U 

and V of R such that: 

(1)  U⊕V is an essential ideal of R with  

U∩ 𝑉= {0}. 

(2) T(V, V)⊂ V. 

(3) T is free action on V. 
 

Proof:  

By Corollary (3.6), we have 𝒟(T) is an 

ideal of R. 

Let U= 𝒟(T) and V=ann(U), then V is an ideal 

of R and U∩ 𝑉= {0}by Lemma (2.6), also we 

have U⊕V is an essential ideal of R by 

Lemma (2.4). 
 

Now, let x,y ∈ V =ann(U), then xa = ax =0 and 

ay = ya=0, for all a ∈U, moreover T(x, y)a = 

ayx =0, hence T(V, V)⊂ V. 

Finally, by Lemma (2.5) we have V is a 

semiprime subring of R, and Z(V)⊆ Z(R). 

Now, let c ∈V be a dependent element of the 

restriction of T on V, then by Theorem (3.1) 

we have c ∈Z(V)⊆ Z(R). Moreover  

T(c, u)=cu, for all u ∈ U. 

Replacing u by ruin the above relation, we get: 

(T(c, r)-cr )u=0, for all r ∈ R and u ∈ U. 

The semiprimeness of U leads to T(c, r) =cr, 

for all r ∈ R, hence c ∈ 𝒟(T)=U. 

Since U∩ 𝑉= {0}, we have c=0. Hence T is 

free action.∎ 
 

Theorem (3.8): 
Let T be a right Bicentralizer of a 

semiprime ring R, then 𝜑: R×R⟶Rdefined by 

𝜑(x, y) = [T(x, y), x], for all x,y ∈R is free 

action. 
 

Proof:  

Let a ∈ 𝒟(𝜑), then 𝜑(x, y)a =ayx, for all 

x,y ∈R, that is: 
 

[T(x, y), x]a=ayx , for all x,y∈R.  .................. (1) 
 

The linearization of (1) with respect to x gives: 

[T(x, y), 𝜔]a + [T(𝜔, y), x]a = 0, for all 

x,y,𝜔 ∈R.  ..................................................... (2) 
 

Putting a𝜔 for 𝜔 in (2), we get: 

a[T(x, y), 𝜔]a + [T(x, y),a]𝜔a + a[T(𝜔, y), x]a 

+ [a ,x]T(𝜔, y)a =0, for all x,y,𝜔 ∈R. 

In view of (2), the above relation reduces to: 

[T(x, y),a]𝜔a + [a ,x]T(𝜔, y)a =0, for all 

x,y,𝜔 ∈R.  ..................................................... (3) 
 

Setting x=ain (3), we get: 

[T(a, y),a]𝜔a =0, for all y,𝜔 ∈R.  ................. (4) 
 

Replacing 𝜔 by 𝜔T(a, y) in (4) leads to: 

[T(a, y),a]𝜔T(a, y)a =0, for all y,𝜔 ∈R.  ...... (5) 
 

Also, right multiplication of (4) by T(a, y) 

gives: 

[T(a, y),a] 𝜔a T(a, y) =0, for all y,𝜔 ∈R.  .... (6) 
 

Subtracting (6) from (5), we arrive at:  

[T(a, y),a] 𝜔[T(a, y),a]=0, for all y,𝜔 ∈R. 

Using the semiprimeness of R, we have: 

[T(a, y),a]=0, for all y ∈R. ............................ (7) 
 

Right multiplication of (7) by a gives: 

[T(a, y),a]a=0, for all y ∈R. 

In view of (1), the above relation can be 

reduces to: 

a y a = 0, for all y ∈R. 

The semiprimeness of R leads to a=0, hence𝜑 

is free action.∎ 
 

Theorem (3.9): 
Let R be a 2-torsion free semiprime ring 

and D: R×R⟶R be a Biderivation, then the 

mapping 𝜑: R×R⟶R defined by 𝜑(x, y) = 

[D(x, y), x], for all x,y ∈R is free action. 
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Proof:  

Let a ∈ 𝒟(𝜑), then 𝜑(x, y)a =ayx , for all 

x,y ∈R, that is: 

[D(x, y), x]a=ayx , for all x,y ∈R.  ................ (1) 
 

Linearization of (1) with respect to x, we get: 

[D(x, y), 𝜔]a + [D(𝜔, y), x]a = 0, for all 

x,y,𝜔 ∈R.  ..................................................... (2) 
 

Putting 𝜔ainstead of 𝜔 in (2), and using (2), 

we obtain: 

𝜔[D(x, y),a]a +D(𝜔, y)[a ,x]a +[𝜔, x]D(a, y)a 

+ 𝜔 [D(a, y),x]a=0, for all x,y,𝜔 ∈R. 

Setting x=a in the above relation leads to: 

2𝜔[D(a, y),a]a + [𝜔, a]D(a, y)a =0, for all 

y,𝜔 ∈R. 

That is 

𝜔[D(a, y),a]a + [𝜔D(a, y),a]a =0, for all 

y,𝜔 ∈R.  ........................................................ (3) 
 

Substituting a for 𝜔 in (3), then using the fact 

that R isa 2-torsion free ring, we arrive at: 

a [D(a, y),a]a =0, for all y ∈R. ..................... (4)  
 

In view of (1), the above relation reduces to: 

a2y a = 0, for all y ∈R. ................................. (5) 

Right multiplication of (5) by a, since R is a 

semiprime ringwe get first that a2=0, and 

consequently a=0. Hence φ is free action. ∎ 
 

Corollary (3.10): 
Let R be a semiprime ring, and(T, S) be a 

double Bicentralizer. Then the mapping φ: 

R×R⟶R defined by φ (x, y) = [T(x, y)-S(x, y), 

x], for all x,y ∈R is a free action. 
 

Proof:  

Using Lemma (2.11) and Theorem (3.9), 

we get the assertion of the corollary. 
 

Theorem (3.11): 
Let R be a semiprime ring, and (T, S)  

is double Bicentralizer of R. In this case  

𝐷(T) = 𝐷 (S). 
 

Proof:  

For any x,y,z ∈R, we have: 

zT(x, y) = S(y, z)x  ........................................ (1) 
 

Let a ∈ 𝐷(T), then by Theorem (3.1) we have 

a ∈ Z(R) and 

T(x, y)a =ayx, for all x,y∈R.  ........................ (2) 
 

Now, right multiplication of (1) by a leads to: 

zT(x, y)a = S(y, z)xa, for all x,y,z∈R.  .......... (3) 
 

According to (2), and since a ∈ Z(R), the 

above relation reduces to: 

zayx = S(y, z)ax, for all x,y,z ∈R. 

That is  

(S(y, z)a – azy)x =0 , for all x,y,z ∈R. 

The semiprimeness of R leads to: 

S(y, z)a = azy, for all y,z ∈R.  

Hencea ∈ 𝐷(S). It follows that 𝐷(T)⊆ 𝐷(S). 

Conversely, let a ∈ 𝐷(T), thena ∈ Z(R) by 

Theorem (3.1). Also 

S(y, z)xa = S(y, z)ax =azyx, for all x,y,z ∈R.  ..  

 ..................................... (4) 
 

In view of (4) and the fact that a ∈ Z(R), the 

relation (3) reduces to: 
 

zT(x, y)a = zayx, for all x,y,z ∈R. 
 

Therefore  
 

z (T(x, y)a – ayx)=0, for all x,y,z ∈R. 

Thesemiprimeness of R leads to T(x, y)a =ayx, 

for all x,y ∈R, that isa ∈ 𝐷(T). 

Hence 𝐷(S)⊆ 𝐷(T). ∎ 
 

Theorem (3.12): 
Let (T, S) be a double Bicentralizer of a 

semiprime ring R. Then the mapping φ: 

R×R⟶R defined by φ(x, y) = T(x, y)x + S(x, 

y)x, for all x,y ∈R is free action. 
 

Proof:  

Let a ∈ 𝐷(𝜑), then we have: 

𝜑(x, y) =ayx, for all x,y ∈R. 

That is 

(T(x, y)x+S(x, y)x)a= ayx, for all x,y ∈R.  .... (1) 
 

By hypotheses  

zT(x, y)=S(y, z)x, for all x,y,z ∈R.  ................ (2) 
 

As special case of (2) when z = x, we have:  

xT(x, y)=S(x, y)x, for all x,y ∈R.  .................. (3) 
 

Now, according to (3), the relation (1) 

becomes: 

(T(x, y)x+xT(x, y))a= ayx, for all x,y ∈R.  .... (4) 
 

Linearization of (4) with respect to x leads to: 

(T(x, y)𝜔 + 𝜔T(x, y)+T(𝜔, y)x+xT(𝜔, y))a= 0, 

for all x,y, 𝜔 ∈R.  .......................................... (5) 

Settingx=𝜔=a, the above relation reduces to: 
 

2(T(a, y)a +aT(a, y))a= 0, for all x,y, 𝜔 ∈R. 
 

According to (4), the above relation reduces 

to:  

2a y a = 0, all y ∈R.  ..................................... (6) 
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The substitution xa for 𝜔 in (5) gives:  

(T(x, y)xa +xaT(x, y)+ T(x, y)ax+xT(x, y)a)a = 

0, for all x,y, 𝜔 ∈R.  
 

Consequently  

(T(x, y)x+ xT(x, y))a2 + T(x, y)axa + 

 xaT(x, y)a=0, for all x,y ∈R. 

According to (4) and (6), the above relation 

reduces to: 

ayxa - T(x,y) axa + xaT(x, y)a=0, for all 

x,y ∈R.  ......................................................... (7) 
 

Setting x =ain (7), we obtain: 

aya2 - T(a, y)a3 +a2T(a, y)a=0, for all y ∈R.  

 ................................ (8) 
 

On the other hand, the substitution a forx in (4) 

leads to: 

T(a, y)a2 +aT(a, y)a =aya, for all y ∈R.  ...... (9) 
 

Right multiplication of (9) by a, we get: 

T(a, y)a3 +aT(a, y)a2 =aya2, for all y ∈R.  .. (10) 
 

According to (10) the relation (8) reduces to: 

aT(a, y)a2+ a2T(a, y)a=0, for all y ∈R.  ..... (11) 
 

Combining the relations (9) and (11), we 

arrive at: 

a2y a = 0, all y∈R.  ..................................... (12) 
 

Again, multiplying (12) from the right by a, 

then using the semiprimeness of R we arrive at 

a2= 0, thus a = 0, that is 𝜑 is free action. ∎ 
 

Theorem (3.13): 
Let R be a 2-torsion free prime ring with 

identity and S, T:R×R⟶R is a symmetric left 

and right Bicentralizer respectively. Suppose 

c ∈R is adependent element of the mapping 

𝜑: R×R⟶R defined by 𝜑(x, y)=bS(x, y)+ 

T(x, y)b, for all x,y ∈R and b ∈R be a fixed 

element. In this casec2∈ Z(R). 
 

Proof:  

According to Lemma (2.8), there exist a 

fixed element a ∈Rsuch thatT(x, y)= ayx, 

andS(x, y)=xyafor all x,y ∈R. 

We shall assume that a≠0 and b≠0, then we 

have: 

(bS(x, y)+ T(x, y)b)c = cyx, for all x,y ∈R. 
 

That is 

(bxya +ayxb)c = cyx , for all x,y ∈R.  .......... (1) 
 

Putting x𝜔 for x in (1), we get: 

bx𝜔yac +ayx𝜔bc = cyx𝜔, for all x,y,𝜔 ∈ R.  

 ........................... (2) 

Right multiplication of (1) by𝜔 gives: 

bxyac𝜔 +ayxbc𝜔 = cyx𝜔, for all x,y,𝜔 ∈ R.  

 ........................... (3) 
 

Subtracting (3) from (2), we obtain: 
 

bx[𝜔,yac]+ayx[𝜔,bc]= 0, for all x,y,𝜔 ∈ R. 

 ........................... (4) 
 

Now, setting y=1, then the relations (1) and (4) 

becomes: 

bxac +axbc = cx , for all x,𝜔 ∈ R.  .............. (5) 
 

bx[𝜔,ac] + ax [𝜔,bc]= 0, for all x,𝜔 ∈ R.  .. (6) 
 

Replacing x by cx in (6), we obtain: 

bcx [𝜔,ac] + acx [𝜔,bc]= 0, for all x,𝜔 ∈ R.  

 ........................... (7) 
 

Left multiplication of (7) by 𝜔 gives: 

𝜔bcx [𝜔,ac]+𝜔acx [𝜔,bc]= 0, for all x,𝜔 ∈ R.  

 ........................... (8) 
 

Putting 𝜔x instead of x in (7), we get: 

bc𝜔x [𝜔,ac]+ac𝜔x [𝜔,bc]= 0, for all x,𝜔 ∈ R.  

 ........................... (9) 
 

Subtracting (9) from (8), we arrive at: 

[𝜔,bc] x [𝜔,ac]+[ac,𝜔] x [𝜔,bc]= 0, for all x, 

𝜔 ∈ R. 

Using Lemma (2.1), we get: 

[𝜔, ac] x [𝜔, bc]= 0, for all x,𝜔 ∈ R. 

Suppose that [𝜔,bc]≠0. This implies that 

[𝜔,ac] =0, for all 𝜔 ∈ R, that is ac ∈ Z(R).  
 

Therefore the relation (6) reduces to: 

ax[𝜔, bc]= 0, for all x,𝜔 ∈ R. 
 

Since a≠0, then [𝜔,bc]= 0, for all 𝜔 ∈ R, this 

means that bc ∈ Z(R). 
 

Now, we have both ac and bcare elements in 

Z(R), then setting x=c in (5), we obtain: 

2 (ac) (bc) = c2, for all x, 𝜔 ∈ R, hence c2∈
 Z(R).∎ 

 

Corollary (3.14): 
Let R be a 2-torsion free prime ring with an 

identity element and let a,b ∈R be a fixed 

elements. Suppose c∈R is a dependent element 

of the mapping 𝜑: R×R⟶R defined by φ(x, y) 

= bxya + ayxb, for all x,y ∈R. In this case the 

following statement holds. 
 

(1)  ac∈ Z(R) and bc∈ Z(R). 

(2)  (ba +ab)c = c. 

(3)  c2∈ Z(R). 
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Proof:  

According to Theorem (3.13), it follows 

that ac and bcare elements in Z(R). Also, for a 

dependent element c ∈R, we get c2 ∈ Z(R). So 

we have only to show that (ba +ab)c = c.  

Now, from relation (5) of Theorem (3.13) we 

have: 

(bxa +axb)c = cx , for all x,y ∈R. 

Setting x= c in the above relation we get the 

second statement of this corollary.∎ 
 

Theorem (3.15): 
Let R be a prime ring with an identity 

element and extended centroid C. Let S, 

T:R×R⟶R is a symmetric left and right 

Bicentralizer respectively, and b ∈R be a fixed 

element. Then the mapping 𝜑: R×R⟶R 

defined by 𝜑(x, y) = T(x, y)b - bS(x, y), for all 

x,y∈R is a free action.  
 

Proof:  

Again using Lemma (2.8), for a fixed element 

a ∈ R we have T(x, y)=ayx and  

S(x, y)=xya, for all x,y ∈R. Let c ∈ D(𝜑), then 

we have: 
 

(T(x, y)b - bS(x, y))c=cyx,for all x,y ∈R.  
 

That is 
 

(ayxb - bxya)c=cyx, for all x,y𝑣 ∈ R.  .......... (1) 
 

We shall assume that a≠0 and b≠0, 

moreover we shall assume that a and b are C-

independent, otherwise 𝜑(x, x)=0, for all x ∈R. 

Replacing x by x𝜔  in (1), we have: 
 

(ayx𝜔b - bx𝜔ya)c=cyx𝜔,for allx,y, 𝜔 ∈ R.  

 ............................. (2) 
 

Right multiplication of (1) by 𝜔 gives:  

(ayxb - bxya)c𝜔=cyx𝜔,for allx,y, 𝜔, ∈ R.  

 ............................. (3) 
 

Subtracting (3) from (2), we arrive at: 

ayx[𝜔,bc] – bx[𝜔,yac] =0, for allx,y, 𝜔 ∈ R. 

 ............................. (4) 
 

Now, Choosingy the identity element, we can 

rewrite the relations (1) and (4) as: 

(axb - bxa)c=cx,for allx,y ∈R.  ..................... (5) 
 

ax[𝜔,bc] – bx[𝜔,ac] =0, for all x , 𝜔 ∈ R. 

 ............................. (6) 
 

acx[𝜔,bc] – bcx [𝜔,ac] =0, for all x,𝜔 ∈ R. 

 ............................. (7) 

Left multiplication of (7) by 𝜔 gives: 

𝜔acx [𝜔, bc] – 𝜔bcx [𝜔, ac] =0, for all 

x,𝜔 ∈ R. .......................................................  (8) 
 

Also, putting 𝜔x instead of x in (7) leads to: 

ac𝜔x [𝜔, bc] – bc𝜔x [𝜔, ac] =0, for all  

x,𝜔 ∈ R. ........................................................ (9) 
 

Subtracting (9) from (8), we obtain: 

[𝜔, ac] x [𝜔, bc] – [𝜔, bc] x [𝜔, ac] =0, x, 𝜔 ∈
  R.  ............................................................. (10) 
 

Suppose that ac∉Z(R). In this case there exist 

𝜔 ∈R such that [𝜔, ac]≠0. It follows from 

relation (10) and Lemma (2.2) that there exist 

𝜆 𝜔 ∈ C such that: 

[𝜔, bc]= 𝜆 𝜔 [𝜔, ac]  .................................. (11) 
 

According to (11), the relation (6) reduces to: 

(a 𝜆 𝜔- b)x [𝜔, ac] =0, for all x , 𝜔, ∈R.  

............................ (12) 
 

Since [𝜔, ac]≠0, it follows from (9) that  

b=a 𝜆 𝜔, contrary to the assumption that a and 

b are C-independent. Therefore we have 

proved that ac ∈Z(R). Due to this fact, the 

relation (5) reduces to: 
 

a x [𝜔, bc] =0, for all x, 𝜔 ∈R. 
 

Hence it follows (recall that a≠0) that [𝜔, bc] 

= 0, for all 𝜔 ∈ R and consequently bc ∈ Z(R). 

Since both ac and bcare elements in Z(R), one 

can rewrite the relation (1) as: 
 

axbc–acbx=cx, for all x,y ∈R. 
 

Setting x=c in the above relation, we obtain  

c2 =0, it follows c=0. ∎ 
 

Theorem (3.16): 
Let R beaprime ring with an identity 

element and extended centroid C.Let T: 

R×R⟶Rbe a symmetric left Bicentralizer. 

Suppose that c ∈R is dependent element of  

𝜑: R×R⟶R defined by 𝜑(x, y) = T(x, y)b for 

all x,y ∈R. In this case c=𝜆a, where 0 ≠ a,b be 

fixed elements and for some 𝜆 ∈ C. 

Proof: Let c ∈ 𝒟(φ), then we have:  
 

φ(x, y)c =cyx, for all x,y ∈R. 
 

By Lemma (2.8) we have T(x, y)=ayx , for all 

x,y ∈R and a fixed element a ∈R. So the above 

relation becomes: 
 

ayxbc =cyx, for all x,y ∈R. ............................ (1) 
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Putting xz instead of x in (1), we get: 
 

ayxzbc =cyxz, for all x,y,z ∈R. 
 

According to (1), we obtain ayxzbc =ayxbcz, 

that is 

a y x[z, bc] =0,for all x,y,z ∈R. 
 

Since R is prime ring and a≠0, we obtain: 
 

x[z, bc] =0,for all x,z ∈R. 
 

Consequently, [z, bc] =0, for all z ∈R, hence 

bc ∈ Z(R), this makes it possible to rewrite 

relation (1) in the form: 
 

Abcyx=cyx ,for all x,y,z ∈R. 

That is  

(abc – c) y x=0 ,for all x,y ∈R. 
 

Using the primeness of R, we get: 
 

abc = c .  ...................................................... (2) 
 

Again, since bc ∈ Z(R), the relation (1) can be 

given as: 
 

aybcx =cyx, for all x,y ∈R. ............................ (3) 
 

Since R is a prime ring, the relation (3) reduces 

to: 
 

aybc = cy, for all y ∈R.  ................................ (4) 
 

Replacing y by ya in (4), we arrive because of 

(2) at: 

ayc= cya, for all y ∈R. 
 

Whence c= 𝜆aby Lemma (2.2).∎ 
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 الخلاصة

البحث مفهوم العناصر المعتمدة للدوال قدمنا في هذا 
ثنائية الخطية ومفهوم الدوال ثنائية الخطية ذات التأثير الحر، 
واخترنا دوال ثنائية التمركز المعرفة على الحلقات شبه الأولية 

كنوع من هذه الدوال لتطبيق هذه  والدوال المتضمنة لها
بيان المفاهيم ودراسة الصفات الخاصة لعناصرها المعتمدة و 

 الشروط التي تكون تحتها هذه الدوال حرة التأثير.

 

 

 

 

 

 

 

 

 

 


