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Abstract 

The properties of nuclear state density which increases with increasing excitation energy are 

very important in many nuclear reactions. Previously, several theoretical calculations were 

performed and added to correct the state density equation. In this work, various corrections, i.e.  

the pairing effect, Pauli exclusion principle, parity, spin distribution, the finite depth and the  

bound state effect were added to enhance the state density results using the energy-dependent 

single-particle level densities (non-ESM) in 114Sn and 116Sn nuclei. The results of this work were 

compared to the available experimental (OSLO technique), and theoretical (E&B and HF-BCS) 

results. The calculations were performed for energies up to 80 MeV and show a reasonable match 

with experimental and theoretical results at low energies. At high energies the deformation effect 

affects the results and leads to mismatch between the results of this work and other results. The 

inclusion of the spin distribution function in case of  𝑗 =
1

2   
, gives results far from the experimental 

data and previous theoretical results, which shows the importance of the introduction of a new 

formula that deals with a non-ESM system. 
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Introduction 

The exciton model [1] of nuclear reactions 

states that, when a particle incident on a target 

nucleus creates complex states of excited 

particles and holes in a compound system 

(projectile+target). The nuclear excited levels 

display a discrete spectrum for low excitation 

energies. When the excitation energy 

increases, the spacing of these levels reduces, 

and above 1 or 2 MeV, depending upon the 

mass of the nucleus, the level spacing became 

so weak, that it is experimentally impossible to 

distinguish all of them. Therefore, the 

description of these levels is replaced by state 

density. One of the most known models that 

evaluate the state density is the Fermi Gas 

Model (FGM). Using the FGM, Griffin [1] 

proposed the exciton model. This model 

describes the system as a number of excitons 

(the exciton refers to a particle-hole pair 

created, where a particle is excited to a higher-

energy level leaving a hole) composed of p 

particles and h holes so that the exciton 

number is given by 𝑛 = 𝑝 + ℎ. This may be 

denoted in two equivalent forms:  

𝑛0 → 𝑛0 + 2 → 𝑛0 + 4 → 𝑛0 + 6 ….   , 
𝑝0 , ℎ0 → (𝑝0 + 1 , ℎ0 + 1) → (𝑝0 +

2 , ℎ0 + 2) → (𝑝0 + 3 , ℎ0 + 3) … ..  

Each stage has one more particle-hole pair 

(or two more excitons) than the preceding 

stage. In this case, all particles and holes 

degrees of freedom were grouped together as 

excitons, and treated as undistinguishable from 

one another, so it is a one-dimensional 

problem (one-component system). When 

proton and neutron are distinguished from one 

another, each class of the states in above is 

divided into  ℎ = 𝑝 − 𝐴𝑎 subclasses, and now 

it is a two-dimensional problem (two- 

component system). The excited states in the 

compound nuclei described by the state 

density 𝜔(𝑝, ℎ, 𝐸), which defined as the 

number of states per unit energy, as a function 

of the numbers of particles and holes and 

excitation energy 𝐸, the models that used to 

describe the level spacing are the ESM (Equi 

spacing model) and the non-ESM. In the ESM 

model the single-particle  level density, 𝑔, is 

constant and does not depend on the excitation 

energy of particles and holes, it gives a 

constant value for all values of excitation 

energies, and it just changed according to the 

mass number of the nuclei. By introducing the 

non-ESM model, 𝑔 is no longer constant, and 

becomes energy dependent. In this work the 

non-ESM model is used to describe the state 



Rasha S. Ahmed 

84 

density levels. The state density is very 

important because it provides a useful 

description of the compound nucleus, and also 

it gives a basic description for the pre-

equilibrium emission [2]. Several corrections 

have been added to the state density equation 

to get a good agreement between theoretical 

calculations and experimental data. Next, the 

importance of these corrections is explained 

briefly. 
 

Theory 

Pauli principle requires that no two 

excitons of the same type are allowed to be in 

the same state, which implies that they cannot 

have the same energy [3].  The two component 

state density equation corrected by the 

inclusion of Pauli Exclusion Principle [3] is 

given by [4]. 

 

𝜔2(𝑛, 𝐸) =

𝑔𝜋
𝑝𝜋+ℎ𝜋𝑔𝜈

𝑝𝜈+ℎ𝜈(𝐸−𝐴𝑝𝜋,ℎ𝜋,𝑝𝜈,ℎ𝜈)
𝑛−1

𝑝𝜋!ℎ𝜋!𝑝𝜈!ℎ𝜈!(𝑛−1)!
 Θ(𝐸 −

𝛼𝑝𝜋,ℎ𝜋,𝑝𝜈,ℎ𝜈
)  .......................................... (1) 

 

where, 𝜔2 refers to the two component 

state density model, and Θ is the step function 

which equals one for positive arguments and 

equals zero for negative ones. 

Pauli effect correction has the form [4], 
 

𝐴𝑝𝜋,ℎ𝜋,𝑝𝜈,ℎ𝜈
=

1

4
[

𝑝𝜋(𝑝𝜋+1)+ℎ𝜋(ℎ𝜋−1)

𝑔𝜋
+

𝑝𝜈(𝑝𝜈+1)+ℎ𝜈(ℎ𝜈−1)

𝑔𝜈
] −

1

2
(

ℎ𝜋

𝑔𝜋
+

ℎ𝜈

𝑔𝜈
)  ............. (2) 

with 
 

𝛼𝑝𝜋,ℎ𝜋,𝑝𝜈,ℎ𝜈
=

𝑝𝜋(𝑝𝜋+1)+ℎ𝜋(ℎ𝜋−1)

2𝑔𝜋
+

𝑝𝜈(𝑝𝜈+1)+ℎ𝜈(ℎ𝜈−1)

2𝑔𝜈
  ...................................... (3) 

 

𝑔 = 3𝐴/2𝐹  is the single particle level 

density [4]. 𝐹 is Fermi energy,𝑝, ℎ refers to the 

number of particles and holes respectively. 𝜋 

refers to proton and 𝜈 refers to neutron. 𝐴 is 

the nuclear mass number.  

𝐴 is the mass number, 𝑝 and ℎ are the 

number of particles and holes respectively. 

 𝜋  and  𝜈 refer to a proton and neutron 

respectively. 

𝑔𝜋 = 𝑍/13  and  𝑔𝜈 = 𝑁/13 where 𝑍 and 

𝑁 are the protons and neutrons number [5].  

The bound state and finite depth 

corrections [6] are important corrections that 

correct the state density equation. These 

corrections imply that the single particle 

excitation should not exceed the nucleon 

binding energy B and the single hole 

excitation energy should not exceed the Fermi 

energy 𝐹. The state density formula corrected 

by Pauli, bound state and finite depth 

corrections can be written as [6,7]: 
 

𝜔2(𝑝𝜋, ℎ𝜋, , 𝑝𝜈 , ℎ𝜈 , 𝐸) =
𝑔𝜋

𝑛𝜋𝑔𝜈
𝑛𝜈

𝑝𝜋!ℎ𝜋!𝑝𝜈!ℎ𝜈!(𝑛−1)!
∑ ∑ ∑ ∑ℎ𝜈

𝑗𝜈=0
ℎ𝜋
𝑗𝜋=0

𝑝𝜈
𝑖𝜈=0

𝑝𝜋
𝑖𝜋=0   

(−1)𝑖𝜋+𝑖𝜈+𝑗𝜋+𝑗𝜈 × 𝐶𝑝𝜋

𝑖𝜋 𝐶𝑝𝜈

𝑖𝜈 𝐶ℎ𝜋

𝑗𝜋𝐶ℎ𝜈

𝑗𝜈   

(𝐸 − 𝐴𝑝𝜋ℎ𝜋𝑝𝜈ℎ𝜈
− 𝑖𝜋𝐵𝜋 − 𝑖𝜈𝐵𝜈 − 𝑗𝜋𝐹𝜋 −

𝑗𝜈𝐹𝜈)
𝑛−1

× Θ(𝐸 − 𝛼𝑝𝜋𝑝𝜈ℎ𝜋ℎ𝜈
− 𝑖𝜋𝐵𝜋 − 𝑖𝜈𝐵𝜈 −

𝑗𝜋𝐹𝜋 − 𝑗𝜈𝐹𝜈)  ............................................... (4) 
 

𝐹 is Fermi energy and assumed to be 38 

MeV, 𝐵 is the binding energy, and in all 

calculations was taken to be 10 MeV. 

The nucleons have to couple by pairs 

inside the nucleus. Before exciting the 

nucleons, pairs have to be broken which 

requires an additional energy. The state 

density of even-even nuclei is lower than that 

for odd-even nuclei which in turn is lower than 

the state density of an odd-odd nucleus. 

Adding the pairing correction, the state density 

equation becomes [8, 9],  
 

𝜔2(𝑝𝜋, ℎ𝜋, 𝑝𝜈 , ℎ𝜈 , 𝐸, 𝐴𝑘) =  

(
𝑔

2
)

𝑛 (𝐸−𝐴𝑘)𝑛−1

𝑝𝜋!ℎ𝜋!𝑝𝜈!ℎ𝜈!(𝑛−1)!
  ............................... (5) 

 

where  𝐴𝑘 has the form [9], 
 

𝐴𝑘(𝑝𝜋, ℎ𝜋, 𝑝𝜈 , ℎ𝜈) = 𝐴𝑘(𝑝𝜋, ℎ𝜋) + 𝐴𝑘(𝑝𝜈 , ℎ𝜈)  
 ................................. (6) 

 

The function 𝐹(𝑝, ℎ) in case of two 

component system is given by [9], 
 

𝐹(𝑝𝑖, ℎ𝑖) = 12𝑛𝑖/𝑛   ................................... (7) 
 

where 𝑖 can be either 𝜋 or 𝜈 and 𝐸𝑖 can be 

evaluated using [10] 
 

𝐸𝜋 =
𝐸𝑛𝜋

𝑛
,    𝐸𝜈 =

𝐸𝑛𝜈

𝑛
   ............................. (8) 

 

𝑛 is the total exciton number [5] 

𝑛 = 𝑛𝜋 + 𝑛𝜈    .............................................. (9) 

𝑛𝜋 = 𝑝𝜋 + ℎ𝜋   ........................................... (10) 

𝑛𝜈 = 𝑝𝜈 + ℎ𝜈  ............................................ (11) 
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In the excited nucleus, the single particle 

state density should increase with increasing 

energy, so Kalbach [11] included the energy 

dependent single particle state density to the 

state density equation. The state density 

formula including the energy dependent single 

particle state density is given by [4], 
 

𝜔2(𝑝𝜋, ℎ𝜋, 𝑝𝜈 , ℎ𝜈 , 𝐸) =
[𝑔𝜋(𝑝)]𝑝𝜋[𝑔𝜋(ℎ)]ℎ𝜋[𝑔𝜈(𝑝)]𝑝𝜈[𝑔𝜈(ℎ)]ℎ𝜈

𝑝𝜋!ℎ𝜋!
×

[𝐸−𝐴(𝑝𝜋,ℎ𝜋,𝑝𝜈,ℎ𝜈)]𝑛−1

𝑝𝜈!ℎ𝜈!(𝑛−1)!
×

∑ (−1)𝑖 (
ℎ
𝑖

) (
𝐸−𝑖𝑉

𝐸
)

𝑛−1

Θ(𝐸 − 𝑖𝑉)ℎ
𝑖=0    ...... (12) 

 

where 𝑔𝑝(𝑝, ℎ) and 𝑔ℎ(𝑝, ℎ) are the Energy 

Dependent Single Particle and hole Level 

Density (EDSPLD) respectively, where 

𝑔𝑝(𝑝, ℎ) and  𝑔ℎ(𝑝, ℎ) can be written as [10], 
 

𝑔𝑝(𝑝, ℎ) = 𝑔(𝐹 + 𝑢𝑝̅̅ ̅)   ............................. (13) 

𝑔ℎ(𝑝, ℎ) = 𝑔(𝐹 − 𝑢ℎ̅̅ ̅)   ............................. (14) 
 

𝑢𝑝 ̅̅ ̅̅  and  𝑢ℎ̅̅ ̅̅  are the single particle and hole 

energies respectively where [10], 
 

𝑢𝑝̅̅ ̅ =
𝐸

𝑛

𝑓𝑘
+(𝑝,ℎ,𝐸,𝐹)

𝑓𝑘(𝑝,ℎ,𝐸,𝐹)
   .................................. (15) 

𝑢ℎ̅̅ ̅ =
𝐸−𝑝𝑢𝑝̅̅ ̅̅

ℎ
    .......................................... (16) 

 

The spin distribution correction RJ [12] 

was added to the state density equation to 

include the dependence of the nuclear state 

density on the angular momentum J [13]. The 

particle-hole state density including all the 

above corrections is given by, 
 

𝜔2(𝑝𝜋, ℎ𝜋, , 𝑝𝜈 , ℎ𝜈 , 𝐸) =
1

2
 ×

[𝑔𝜋(𝑝)]𝑝𝜋[𝑔𝜋(ℎ)]ℎ𝜋[𝑔𝜈(𝑝)]𝑝𝜈[𝑔𝜈(ℎ)]ℎ𝜈

𝑝𝜋!ℎ𝜋!𝑝𝜈!ℎ𝜈!(𝑛−1)!
×

 ∑ ∑ ∑ ∑ (−1)𝑖𝜋+𝑖𝜈+𝑗𝜋+𝑗𝜈
ℎ𝜈
𝑗𝜈=0

ℎ𝜋
𝑗𝜋=0

𝑝𝜈
𝑖𝜈=0

𝑝𝜋
𝑖𝜋=0 ×

𝐶𝑝𝜋

𝑖𝜋 𝐶𝑝𝜈

𝑖𝜈 𝐶ℎ𝜋

𝑗𝜋𝐶ℎ𝜈

𝑗𝜈(𝐸 − 𝐴𝑘(𝑝𝜋, ℎ𝜋, 𝑝𝜈 , ℎ𝜈) −

𝑖𝜋𝐵𝜋 − 𝑖𝜈𝐵𝜈 − 𝑗𝜋𝐹𝜋 − 𝑗𝜈𝐹𝜈)𝑛−1   ×
Θ(𝐸 − 𝐸𝑡ℎ𝑟𝑒𝑠ℎ − 𝑖𝜋𝐵𝜋 − 𝑖𝜈𝐵𝜈 − 𝑗𝜋𝐹𝜋 −

𝑗𝜈𝐹𝜈)
2𝐽+1

2√2𝜋𝜎3  𝑒𝑥𝑝 (−
(𝐽+1

2⁄ )2

2𝜎2 )  ................... (17) 

 

where [13], 
 

RJ =
2𝐽+1

2√2𝜋𝜎3  𝑒𝑥𝑝 (−
(𝐽+1

2⁄ )2

2𝜎2 )  ................... (18) 
 

J was assumed to be ½ and the spin cutoff 

parameter σ can be written as, 

 𝜎2 = 𝑐𝑛𝑛 𝐴
2

3⁄  .......................................... (19) 
 

Where, 
 

𝑐𝑛 = 0.24 + 3.8 × 10−3𝐸   ........................ (20) 
 

The state density in equation (17) was 

multiplied by ½ [14, 15] under the assumption 

that the number of states with positive parities 

is identical to that with negative ones.  

All the corrections that are described above 

are collected together to get the composite 

formula which includes all the recommended 

corrections that should be added to the state 

density equation. 

 

Results and Discussion 
To improve the state density equation, 

several corrections were collected together and 

added to it, i.e. pairing effect, Pauli exclusion 

principle, parity, spin distribution, the shell 

and bound state effect using the non ESM 

exciton model. Figs. (1, 2, 3), show the state 

density for two component systems (1, 1, 1, 1) 

in 𝑆𝑛116  and 𝑆𝑛114  adding several corrections, 

and compared with the theoretical (HF-BCS 

[14] and EB [16, 17] and OSLO experimental 

data [18, 19, 20] respectively. In these figures, 

the step function neglects the negative 

arguments. Because of this, curves start from 2 

MeV excitation energy. 

The composite formula of the state density 

which includes the pairing effect, Pauli 

exclusion principle, parity, the shell and bound 

state effect with EDSPLD, gives results close 

to the experimental and other theoretical 

results at energies lower than 7 MeV. The 

inclusion of the spin distribution function 

gives results far from other results. This 

function previously performed to correct the 

state densities using Equal-Spacing Model 

(ESM). That model suggested that the spacing 

between energy states is constant and 

independent on the excitation energy. In fact, 

the level spacing changed according to 

excitation energy, as the excitation energy 

increases the level spacing decrease. At high 

excitation energies the energy levels overlap 

and become as a single level. The spin 

distribution function did not deal with a  

non-ESM system, and for this the state density 
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is corrected with the spin distribution function 

gives unreasonable results, since this work has 

been done using a non ESM system. 

At energies higher than 7 MeV, there is no 

correspondence between our results and other 

theoretical and experimental data. This 

inaccuracy is due to the deformation in heavy 

nuclei. In 56Fe the deformation effect is much 

less than that in 𝑆𝑛116  and 𝑆𝑛114 as seen in 

Fig.(4) [21]. In this figure a good agreement 

between the theoretical results for 56Fe and 

experimental data (OSLO and evaporation 

technique) up to 10 MeV, and also a good 

match with other theoretical results (HF-BCS 

and E&B) up to 14 MeV is observed. For this 

reason the effect of deformation in 𝑆𝑛116  and 

𝑆𝑛114  is clearly evident at excitation energies 

less than56Fe and, hence, the deformation 

effect correction need to be considered in the 

state density equation when dealing with 

heavy nuclei to get good results and match 

with other theoretical and experimental data. 

Conclusions 

A modified formula (composite formula), 

for the state density has been developed in the 

present work, using the non-ESM exciton 

model including pairing effect, Pauli exclusion 

principle, parity, spin distribution, the finite 

depth and bound state effect. These corrections 

acted largely on the state density behavior, and 

they will reduce the state density value. A 

good match between the results obtained in 

this work, and the empirical and previous 

theoretical data is seen at energies lower than 

5MeV, when including pairing effect, Pauli’s 

exclusion principle, parity, the finite depth and 

bound state effect. The inclusion of the spin 

distribution function gives results far from the 

experimental and previous theoretical data; 

this is due to the inclusion of the non-ESM 

effects in the state density calculations. 

 

 
 

 
 

 

Fig. (1) The state density in 116Sn as a function of excitation energy. 
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Fig. (2) The state density in 114Sn as a function of excitation energy. 
 

 
 

Fig.(3) The state density in 116Sn as a function of excitation energy. 
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Fig. (4) The state density in 56Fe as a function of excitation energy [21]. 
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 الخلاصة
ان خواص كثافة المستويات النووية والتي تزداد مع ازدياد 
طاقة التهيج، مهمة جدا في الكثير من التفاعلات النووية. 
سابقا تم اجراء العديد من الحسابات النظرية واضيفت 
لتصحيح معادلة كثافة المستويات. في هذا العمل تم اضافة 

مبدأ الاستبعاد  العديد من التصحيات مثل تصحيح الازدواج،
لباولي، التناظر، توزيع البرم، القشرة و تأثير حالة الارتباط، 
لتحسين نتائج كثافة المستويات باستخدام كثافة المستويات 

و  Sn114للجسيمة المفردة المعتمدة على الطاقة في نواتي 
Sn116 تم مقارنة نتائج هذا العمل مع الحسابات العملية .

. HF-BCS)و (E&Bتائج النظرية والن (OSLO)المتوفرة 
مليون فولط وحصلنا  80اجريت الحسابات لطاقات تصل الى 

على تطابق معقول عند الطاقات القليلة مقارنة مع الحسابات 
النظرية والعملية الاخرى. في الطاقات العالية فان تأثير 
التشوه يؤثر على النتائج ويؤدي الى عدم تظابق بين 

في هذا العمل والحسابات الاخرى. ان الحسابات التي اجريت 
𝑗تضمين دالة توزيع البرم عندما  =

1

2
تعطي نتائج بعيدة عن  

الحسابات العملية والنظرية وهذا يبين اهمية تقديم معادلة 
 جديدة تتعامل مع النظام الغير متساوي المسافات.
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