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1. Introduction 
Mashhour, A. S. established the idea of preopen sets 

in topological spaces in 1982 [1]. Al-Ghour and 

Samarah in [2] defined coc-open set. We recall the 

definition of connected [3], compact (resp., compact 

mapping) [4] and coc-connected spaces [5]. we 

presented a new definition similar the definition of 

coc-connected using preopen sets which is called coc-

pre-connected space and we give several properties 

of this definition. In this research, we used Kc- 

space [6] in some theorems to obtain some 

important results. 

 

2. Preliminaries 

Definition 2.1, [1]. The set 𝐵 ⊆ N can be thought of 

as preopen set (resp, preclosed) if 𝐵  int(cl(𝐵)) 

(resp, cl(int(𝐵)) ⊆ 𝐵). 

Definition 2.2, [2]. When for every 𝑛 ∈  Ç, there 

exists an open set Un ⊆ N and a compact subset 𝐾𝑛 ∈
 C (N, τ)  where n ∈  Un\ 𝐾𝑛 ⊆ Ç, then a subset Ç of a 

space (N, 𝜏) is called a co-compact open set (notation: 

coc-open set). Coc-closed is the complement of a coc-

open subset of N.  

Definition 2.3, [6]. A space N can be considered KC-

space if all compact sets in it are closed. 

Definition 2.4. 

1. If every cover of a topological space N made up of 

preopen sets admits finite subcover, then this 

space can be defined as a strongly compact [7]. 

2. A subset S is deemed strongly compact with 

respect to N if each cover of the subset S 

consisting of preopen sets in space N admits a 

finite subcover [7]. 

 

Definition 2.5, [8].  A topological space N is said to 

be submaximal if and only if every dense subset of N 

is open. 

Corollary 2.1, [8]. Any finite intersection of sets that 

are preopen is preopen if (N, τ) is submaximal. 

Definition 2.6. In space N, a subset L is considered:   

1. α -open if 𝐿 ⊆ Int(Cl(Int(L))) [9]. 

2. semi-open if 𝐿 ⊆ Cl(Int(L)) [10]. 

 

Lemma 2.1, [11]. The result of the intersection 

between preopen set and α-open set is preopen set. 

Definition 2.7, [ 12]. The topological space (N, τ) is 

said to be preconnected iff N is not the union of two 

non-empty disjoint preopen sets, equivalently, if 

N = Ƥ 1 ∪  Ƥ 2, Ƥ 1 ∈  PO (N), Ƥ 2 ∈  PO (N), Ƥ 1 ≠  ∅, 

Ƥ 2  ≠  ∅ implies Ƥ 1 ∩  Ƥ 2 ≠  ∅. 
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Definition 2.8. It is argued that a function 𝑓: N M  
is:  

1. Continuous mapping [13], if  𝑓 −1(A) is an open 

set in N for every open set A in M. 

2. M-precontinuous [14], if each preopen subset of 

M has an inverse image that is a preopen subset 

in N, or, equivalently, if each preclosed subset of 

M has an inverse image that is preclosed subset 

in N.  

3. M-preopen (resp. M-preclosed) [14] If every 

preopen (resp. preclosed) subset of N has an 

image that is a preopen (resp. preclosed) subset 

in M. 

 

3. Coc-Preopen Set 

Definition 3.1. A is referred to as a cocompact 

preopen set (abbreviated coc-preopen set or c-po) in 

topological space N if, for each n ∈  A, there is a 

compact set 𝐾𝑛 and a preopen set 𝑈𝑛 such that n ∈
 𝑈𝑛 \ 𝐾𝑛    A.  

Remark 3.1. While the opposite is not usually true, 

any open set is a c-po. 

Examples 3.1.   

1. Let N = {1, 2, 3} and τ any topology. Obviously 

any subset is c-po. To clarify further, if we take 

the set {1 2}, then for every a ∈ {1 2}, there is a 

preopen set N and a compact set N\{a} such that 

a ∈ N\(N\{a}) ⊆ {1 2}.  
2. Let N = R and τ = I. Obviously any subset is c-po. 

To clarify further, if we take the set D, then for 

every a ∈ D, there is a preopen set R, and a 

compact set R\{a} such that a ∈ R\(R\{a}) ⊆ D. 

3. Let N = R and τ = co-finite topology. Obviously 

any subset is c-po and the example in paragraph 

(2) makes this clear. 

4. Let N= R and τ = τ𝑢 . Obvious R \ (0,1)  isn’t c-po 

because there is no preopen set A and compact 

set K such that a ∈ A\K ⊆ R \ (0,1) for all a ∈
R \ (0,1). Although each singleton belongs to 

(0,1), then R \ {singleton} is a c-po and this is 

evidence that the infinite intersection of all c-po 

does not give a c-po. 

 

Remark 3.2. Although the opposite is not usually 

true, every preopen set is a c-po. 

Example 3.2. If we say N = {ς, ρ, υ} with τ = {φ, N, 

{ς}, {ρ}, {ς, ρ}}. Obviously {υ} is c-po but not preopen, 

because the set N can be considered preopen set and 

N\{υ} is compact. 

Definition 3.2. If there is a c-po C in which n ∈ C ⊆
G exists, then n ∈ N is said to be a coc-pre-interior 

point to G.  

Definition 3.3. If for any c-po C containing n, C ∩
 (G \ {n})  ≠  Ø , then a point n ∈ N   is considered the 

coc-pre-limit point of G.   

Definition 3.4. If for any c-po C containing n, C ∩
 G  ≠  Ø , then a point n ∈ N   is considered the coc-

pre-adherent point of G.   

Theorem 3.1. Consider the submaximal space 

(N, τ) .  (N, τ𝑝𝑘) is then a topological space. 

Proof. 

1. As of right now, φ, N ∈ τpk.  

2. To demonstrate that ℋ ∩  𝒟 is a c-po for any ℋ, 𝒟 

belongs to  τpk. Assume that if n ∈ ℋ ∩  𝒟, then 

n ∈  ℋ and n ∈  𝒟. It is natural that there are 

two preopen sets Un,  Vn  N  and two compact 

subsets Kn , Ln where n ∈  Un \ Kn  ℋ, n ∈
 Vn\ Ln  𝒟. This implies that n ∈  Un ∩  (N\Kn) ∩
 Vn  ∩  (N\Ln )  ℋ ∩  𝒟, and so we obtain n ∈
 (Un ∩ Vn)  ∩  ( N\Kn ∩  N \ Ln )  ℋ ∩  𝒟, and so we 

obtain n ∈  (Un ∩ Vn) \ (Kn ∪  Ln  )  ℋ ∩  𝒟. Since 

Kn ∪ Ln is a compact set in N and Un ∩ Vn is 

preopen (Corollary (2.1)), ℋ ∩  𝒟 is c-po. 

3. To demonstrate that is ∪ ∈  B is c-po,  let 

B, ∈    be c-po. If n ∈ ∪ ∈  B , then n ∈  B   

for some  ∈ . Since B  is c-po, there exist a 

preopen set U  and a compact subset K  where 

n ∈  U   \ K   B for some  ∈ , since 

B  ∪ ∈   B  then ∪ ∈  B  is c-po. Obviously 

The intersection of any family of c-pcs is a c-pc. ■ 

 

Example 3.3. Suppose that N = {𝑛1, 𝑛2 , 𝑛3} with τ = 

{φ, N, {𝑛1}, {𝑛1, 𝑛2}}. As a result,  (N, τ𝑝𝑘) is  

topological space even though space (N, τ) not 

submaximal space. 

Definition 3.5. If a space N has a subset J, then: 

1.    coc − pre − int(J) = ∪ {Ç: Ç ⊆  J, Ç is a c − po}. 
2. coc − pre − cl(J)  = ∩  {F: J ⊆  F, F is a c − pc}.  

 

Remarks 3.3. If we say G, Q are two subsets of a 

space N and G ⊆ Q, then: 

1.  coc − pre − int(G)  G. 

2. coc − pre int(G) is c-po in N. 

3.  coc − pre − int(coc − pre − int(G)) =  coc − pre −
int(G).  

http://www.anjs.edu.iq/
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4. coc − pre − int(N)  =  N  and coc − pre − int(Ø)  =
 Ø.  

5. coc − pre − int(G)  ⊆  coc − pre − int(Q). 
6. G oƤ   ⊆  G0P−COC. 
 

Proof. 

1. By definition of coc-pre-int(G). 

2. Through the union of all c-po sets is a c-po set. 

3. Since coc-pre-int(G) is the largest c-po set 

contained in G and by (ii), then coc − pre −
int(coc − pre − int(G)) =  coc − pre − int(G).  

4. Since N and Ø are c-po sets, then by definition 

3.5, coc − pre − int(N) =∪{ Ç: Ç is a c-po, Ç  N}= N 

∪ all c-po sets = N. On the other hand, since Ø is 

the only c-po set contained in Ø, then, coc − pre −
int(Ø)  =  Ø.   

5. Let x  coc − pre − int(G), then there can be 

found c-po set Ç such that x  Ç  G. For the 

reason that G  Q, then x  Ç  Q. 

Consequently, x  coc − pre − int(Q). 

6. Let x  G oƤ  , then there can be found preopen 

set U such that x  U  G. For the reason that 

every preopen set is c-po  set, therefore x  

G0P−COC. 

 

Remarks 3.4. Assume that U and V are two subsets 

of a space N, then:  

1. U ⊆ coc − pre − cl(U).  
2. coc − pre − cl(U) is a c-pc.   

3. coc − pre − cl(coc − pre − cl(U)) =  coc − pre −

cl(U). 

4. coc − pre − cl(Ø)  =  Ø and coc − pre − cl(N)  =  N.  
5. If U  V, then coc − pre − cl(U)  coc − pre −

cl(V).    
6. U−P−COC U−Ƥ .  

 

Proof.  

1. By definition of coc − pre − cl(U). 
2. Since the union of all c-po sets is a c-po set, then 

the intersection of all c-pc sets is a c-pc set, and 

thus coc − pre − cl(U) is a c-pc.   

3. Thus from (ii) and definition of coc − pre − cl(U). 
4. By definition coc − pre − cl(U), then coc − pre −

cl(X) = ∩ {F: X⊆ F, F is c-pc }. But X is the only c-

pc comprising X. In this way coc − pre − cl(X)= X. 

Also by the definition of   coc − pre − cl(Ø), coc −
pre − cl(Ø) = ∩{F: Ø ⊆ F, F is a c-pc } = Ø ∩ any c-

pc sets comprising Ø = Ø. In this way coc − pre −
cl(Ø) =  Ø . 

5. Let x ∈  coc − pre − cl(U),then each c-po C 

comprise x intersect U, since U ⊆ V, then the set 

C intersect V. Consequently, x ∈  coc − pre −
cl(V). 

6. Let x ∉  U−Ƥ , then there can be found M as a 

preopen set, such that x ∈ M and M ∩ U ꞊ Ø. For 

the reason that every preopen set is a c-po, then 

x ∉ U−P−COC and consequently U−P−COC U−Ƥ . ■  

 

Proposition 3.1. In the event that Ç is a subset of 

space N, then:  

1.  A set Ç is considered c-po if and only if coc −
pre − int(Ç)  =  Ç.  

2. The set 𝓕 is considered c-pc iff coc − pre −
cl(ℱ )  =  ℱ .   

 

Proof. 

1.   As the union of each c-po is c-po, then coc −
pre − int(Ç) is the largest c-po contained in Ç. 

Since Ç is c-po, then coc − pre − int(Ç) =  Ç. 

Conversely, whenever coc − pre − int(Ç)  =  Ç, 

then Ç is c-po, since coc − pre − int(Ç) is a c-po.  

2.  As the intersection of each c-pc is c-pc, then 

coc − pre − cl(ℱ ) is the smallest c-pc comprises 

𝓕. Since 𝓕 is a c-pc, then coc − pre − cl(ℱ ) =  ℱ . 
Conversely, whenever coc − pre − cl(ℱ ) =  ℱ , 
then 𝓕 is a c-pc, (since coc − pre − cl(ℱ ) is a c-pc). 

■ 

 

Lemma 3.1. C-po is the crisscrossing of α-open set 

and a c-po. 

 

Proof. If we say n ∈ Q ∩ Ç where Q is an α-open and 

Ç a c-po, we obtain a preopen set  Ƥn ⊆  N  and 

compact subsets Kn such that n ∈ Ƥn\ Kn  Ç, and 

also by Lemma (2,1), Q ∩ Ƥn is preopen. There is now 

a preopen set Q ∩  Ƥn in which n ∈  (Q ∩ Ƥn)\ Kn  ⊆
 Q ∩ Ç. As a result, Q ∩  Ç  is c-po. ■ 

 

Proposition 3.2.  Let N be a Kc-space. Any nonempty 
c-po, contains a preopen set. 

Proof. If we say n ∈ Ç and Ç is a nonempty c-po, 

then Ƥ𝑛 is a preopen set and 𝐾𝑛 is a compact subset 

of N such that n ∈ Ƥ𝑛\ 𝐾𝑛  Ç. Since N is a Kc-space 

and by lemma (2,1), Ƥ𝑛 \ 𝐾𝑛 is preopen set. ■ 

The example below demonstrates that in the event 

that N is not a Kc-space, a nonempty c-po will exist, 

devoid of a nonempty preopen set. 

 

Example 3.4. Assume N = {r, f, g} and τ = {φ, N, {r}, 

{f}, {r, f}}. Hence, {g} is a c-po that is devoid of any 

nonempty preopen sets. 

http://www.anjs.edu.iq/
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Theorem 3.2. ℱ ⊆ N, with N being a space. Given 

some compact subset 𝐾𝑛 and a preclosed subset 𝒞, if 

ℱ is c-pc, then ℱ ⊆  𝒞 ∪  𝐾ȵ.   

Proof. A preopen set Ƥ ȵ and a compact set 𝐾ȵ exist 

for any ȵ ∈ N  \ ℱin which ȵ ∈  Ƥ ȵ\ 𝐾ȵ  ⊆  N \ ℱ. The 

result is that ℱ ⊆  N \ (Ƥ ȵ\ 𝐾ȵ)  =  N \ (Ƥ ȵ ∩

 (N \ 𝐾ȵ))  =  (N \ Ƥ ȵ)  ∪  𝐾ȵ. Let 𝒞 equal (N \ Ƥ ȵ). As 

a result,  ℱ ⊆  𝒞 ∪  𝐾ȵ)) . ■ 

 

Definition 3.6. An expression for a function 𝑓: N M  
is as follows:  

1. If 𝑓−1(Q)  is a c-po in N for any open set Q in M, 

then f is a coc-pre-continuous function.  

2. If 𝑓−1(Ç)  is an open set in N for any c-po Ç in M, 

then f is a coc-pre-* continuous. 

3. If  𝑓−1(Ç)  is a c-po in N for every c-po Ç in M, 

then f is a coc-pre-** continuous. 

4. If f(Ƥ) is c-po (resp., c-pc) in M for any preopen 

(resp., preclosed) subset Ƥ of N, then f is a coc-

preopen function (resp., coc-preclosed function).  

5. coc-preopen* function (resp., coc-preclosed* 

function) if f(Ç) is c-po (resp., c-pc) in M for any c-

po (resp., c-pc) subset Ç of N.  

 

Proposition 3.3. If 𝑓: N →  M has characteristics 

including continuous, M-preopen and      injective 

function, then the image of c-po of N will be c-po in 

M.    

 

Proof. Let 𝑓: N →  M be injective M-preopen and Ç a 

c-po of N. For any m ∈  f(Ç), there exists n ∈  Ç  in 

which f(n) =  m. Since Ç is c-po, there be found a 

preopen set Ƥ𝑛 and compact subset K𝑛 of N such that 

n ∈  Ƥ𝑛 \ K𝑛  ⊆  Ç. Since f is M-preopen, 𝑓(Ƥ𝑛)  is a 

preopen in M in which m =  𝑓(n)  ∈  𝑓(Ƥ𝑛\K𝑛)  ⊆
 f(Ç)  and so m =  𝑓(n) ∈  𝑓(Ƥ𝑛) \ 𝑓(K𝑛)  ⊆  𝑓(Ç).  As 

the continuous image of compact is compact, then 

𝑓(Ç)  is c-po in M. ■ 

 

Proposition 3.4.  If 𝑓: N →  M is an M-precontinuous 

bijective, compact mapping and Ç is c-po in M, then 

𝑓−1(Ç) is c-po in N.      

 

Proof.  Let n ∈  𝑓−1(Ç). Then f(n) ∈  Ç  and there be 

found a preopen set Ƥ𝑛 and compact subset Kn of M 

such that f(n) ∈  Ƥ𝑛\ Kn  ⊆  Ç. Then n ∈   𝑓−1(Ƥ𝑛) \
 𝑓−1(Kn)  ⊆  𝑓−1(Ç).  Since f is an M-

precontinuous, 𝑓−1(Ƥ𝑛)   is a preopen set and by 

compact mapping, 𝑓−1(Kn) is compact in N and 

so 𝑓−1(Ç)  is c-po in N. ■ 

 

Theorem 3.3. Let N be a Kc-space. The following 

statements are equivalent: 

1. N is S-C. 

2. any proper c-pc is S-C.  

 

Proof. (1). ⇒ (2) If we say F is a proper c-pc and 

{𝐹Ɛ: Ɛ ∈  ƴ } be a cover of F by preopen sets of N. Now 

for each n ∈ N  \ F, there is a preopen set 𝑝𝑛 and 

compact subset Kn of N in which n ∈  𝑝𝑛\ Kn  ⊆  N \
 F. Through the data of the theorem and by lemma 

(2,1), {𝐹Ɛ ∶  Ɛ ∈  ƴ} ∪ {𝑝𝑛 \ Kn ∶  n ∈ N  \ F }  is a 

preopen cover of N. If we say N is S-C, we get a 

finite subset ƴ 0 of ƴ and a finite subset G such that 

j ∈ G. So N = (∪ { 𝐹Ɛ ∶  Ɛ ∈  ƴ 0})  ∪ (∪ { 𝑝𝑛𝑗  \ Knj , j ∈

 G}),  hence F  (∪ { 𝐹Ɛ ∶  Ɛ ∈  ƴ 0 })  ∪ (∪ {(𝑝𝑛𝑗  \

 Knj), j ∈  G }).   Therefore, we obtain F  ∪ {𝐹Ɛ ∶  Ɛ ∈

 ƴ 0 }.  This shows that F is S-C.      

(2)⇒(1) If we say  {𝑊∝ ∶ ∝ ∈  ƴ } is a preopen cover of 

N. The fix point ∝ 0∈ ƴ is our choice. Then {𝑊∝ : ∝ ∈
 ƴ \ {∝ 0}}  is a preopen cover of a c-pc N \ 𝑊∝ 0. There 

be found a finite subset ƴ 0 of  ƴ \ {∝ 0}  in which 

N \ 𝑊α 0  ∪ {𝑊∝ : ∝∈ ƴ 0 }. Therefore, N = ∪ {𝑊∝ ∶ ∝ ∈

 ƴ 0 ∪  { ∝ 0}}.  As a result, N is S-C.  ■   

 

Theorem 3.4.  Let (N, τ) be a Kc-space, (N, τ𝑝𝑘 ) is 

compact iff (N, τ) is S-C.  

Proof. If we say {𝑊Ɛ: Ɛ ∈  ƴ} is a cover of N by c-po 

then all n ∈  N, we get that n ∈  𝑊Ɛ(𝑛), Ɛ(n)  ∈  ƴ and 

𝑊Ɛ(𝑛) is a c-po. So there exists a preopen set 𝑃Ɛ(𝑛) and 

a compact subset KƐ(n)  of N where n ∈  𝑃Ɛ(𝑛) \

  KƐ(n)  =  GƐn  ⊆  𝑊Ɛ(𝑛).  Since N is a Kc –space and 

by lemma (2,1) The family {GƐn} is a preopen cover of 

(N, τ). If we say (N, τ) is S-C, then we get ƴ 0 of ƴ 

such that  N = ∪ {𝐺Ɛ𝑛 Ɛ𝑛 ∈  ƴ 0}. Since for every  𝐺Ɛ𝑛 

⊆ 𝑊Ɛ𝑛, then N = ∪ {𝑊Ɛ , Ɛ ∈  ƴ0}. Hence (N, τ𝑝𝑘) is 

compact. On the other hand, let P be a preopen 

cover of (N, τ). As P ⊆ τ𝑝𝑘  and (N, τ𝑝𝑘)  is compact, a 

finite sub cover of P exists for N. As a result, (N, τ) is 

S-C.  ■  

 

Theorem 3.5. Let 𝑓: N →  M be a c-pco and surjective 

function. If N is Kc-space and S-C, then M is 

compact.                

 

Proof.  If we say {𝑊Ɛ: Ɛ ∈  ƴ} be a cover of M by open 

set, we get that {𝑓−1(𝑊Ɛ: ) ∶  Ɛ ∈  ƴ }  is a c-po cover 

of N. According to the data and Theorem (3.4), then 

we get a finite subset ƴ0 of ƴ in which N = ∪
{𝑓−1 (𝑊Ɛ: ) ∶  Ɛ ∈   ƴ0};  so M = ∪ {𝑊Ɛ : ∶  Ɛ ∈  ƴ0}.  As 

a result, M is compact. ■     
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Theorem 3.6. Let 𝑓: N →  M be a c-p**co and 

surjective function. If N is Kc-space and S-C, then M 

is S-C.                  

Proof. Let {PƐ ∶  Ɛ ∈  ƴ } be a cover of M by preopen 

set. Since every preopen set is a c-po, then {f −1(PƐ ) ∶
 Ɛ ∈  ƴ}  is a c-po cover of N. According to the data of 

the theorem and by theorem (3.4), there is a finite 

subset ƴ0 of ƴ in which N = ∪ {f −1 (PƐ  
) ∶  Ɛ ∈  ƴ0};  

so M = ∪ {PƐ : Ɛ ∈  ƴ0 }. As a result M is S-C. 

 

4. Coc-Pre-Connected Space 

 

Definition 4.1. In a space N, two subsets Ƥ1 and 

Ƥ2  are referred to as coc-pre-separated if  Ƥ1 
−P−COC ∩

 Ƥ2 = Ƥ2 
−P−COC ∩  Ƥ1 =  Ø. In the case of finite space, 

any two sets are coc-pre-separated 

Definition 4.2. If Ç is not the combine of any two 

nonempty coc-pre-separated sets, it is denoted as a 

coc-pre-connected set. Space (R,  τu ) is an example 

of this 

Definition 4.3. If a set is both c-pc and c-po, it is 

referred to as coc-pre-clopen. Any subset of any 

finite space is coc-pre-clopen.  

Proposition 4.1. Let N be a space. The following 

statements are equivalent: 

1. N is a C-pcon. 

2. The only sets that are coc-pre-clopen in space N 

are N and Ø. 

3. There are no two non-empty disjoint c-po sets 

that combine to form the space N. 

 

Proof. (1) ⇒ (2) Let Z is a coc-pre-clopen set such 

that Z ≠ Ø  and Z ≠ N  and let Z𝐶  =  W. 

Consequently, N =  Z ∪ W. As W is a c-pc, then 

W−P−COC =  W  and Z ∩   W−P−COC =  Z ∩ W =  Ø, and 

W ∩  Z−P−COC =  W ∩ Z =  Ø.  So, N is not a C-pcon 

spacewhich is contradictory. As a result, only c-po in 

the space N is N and Ø.  

(2)⇒(3) Let the only sets that are coc-pre-clopen in 

space N are N and Ø and let N =  Z ∪  W  where Z 

and W are non-empty disjoint c-po sets, then Z = 𝑊𝐶 

and in this way Z is a c-pc. This contradicts the 

truth of paragraph (ii). So the statement of (iii) is 

fulfilled.  

(3) ⇒ (1) Suppose that N is a coc-pre-disconnected 

space. Then there exists non-empty subset Z, W of N 

such that Z ∩  W−P−COC  =  Ø and W ∩  Z−P−COC =  Ø  
and Z ∪ W ꞊ N.  Since W   W−P−COC, then Z ∩ W =  Ø.  

Since W ∩ Z−P−COC =  Ø, then Z−P−COC 𝑊𝐶  = Z  and 

therefore Z−P−COC =  Z. So Z is a c-pc. As W = Z𝐶, 

then W is a c-po. Likewise, shown that Z is a c-po, 

which is contradictory. As a result, N is a C-pcon. ■ 

 

Remark 4.1 Every C-pcon space is a connected 

(resp., preconnected space) in that every open, 

respectively preopen set is a c-po. Likewise, the 

empty set can be considered a compact set. 

However, the result is not true for the opposite. 

Example 4.1. Assume that N = {z, x, c} and τ = {φ, N, 

{z}}. N is clearly connected (resp., preconnected 

space), but it is not C-pcon. 

Proposition 4.2. Consider the following:  Ƥ1 ,   Ƥ2 are 

coc-pre-separated sets, and Ç is a C-pcon set. Either 

 Ç ⊆ Ƥ1 or  Ç ⊆ Ƥ2  occurs if  Ç ⊆  Ƥ1 ∪  Ƥ2. 

Proof. Suppose Ç be a C-pcon set and  Ƥ1,  Ƥ2 are coc-

pre-separated sets and  Ç ⊆  Ƥ1 ∪  Ƥ2. Let  Ç ⊈  Ƥ1 

and  Ç ⊈  Ƥ2. Suppose, Ç1  Ƥ1 ∩  Ç     and 

  Ç2   Ƥ2 ∩  Ç   . Then Ç  Ç1 ∪  Ç2. Since  Ç1  Ƥ1, 

  Ç1
−P−COC  Ƥ1

−P−COC
. Since  Ƥ1

−P−COC  ∩ Ƥ2 =  Ø, 

then   Ç1
−P−COC ∩ Ç2 =  Ø. In the same way, 

when Ç2   Ƥ2, we get that   Ç2
−P−COC ∩ Ç1 =  Ø . 

Therefore, Ç is not C-pcon set which is 

contradictory. As a result, either  Ç Ƥ1 or  Ç Ƥ2. ■ 

 

Proposition 4.3. It can be shown that Q −P−COC is C-

pcon set  if Q is a C-pcon set. 

Proof. Let Q be a C-pcon set while Q −P−COC is not. 

Then, two nonempty coc-pre-separated sets, Ƥ1 and 

Ƥ2 , exist such that Q −P−COC =  Ƥ1 ∪  Ƥ2 . Since 

Q ⊆ Q −P−COC , then Q ⊆  Ƥ1 ∪  Ƥ2 , and since Q is a C-

pcon set, either Q ⊆  Ƥ1 or Q ⊆  Ƥ2 .  

1. If Q ⊆  Ƥ1 , then Q −P−COC ⊆ Ƥ1 
−P−COC   and so Ƥ1 ∪

 Ƥ2 ⊆ Ƥ1 
−P−COC . As a result, (Ƥ1  ∪ Ƥ2  ) ∩ Ƥ2 ⊆

Ƥ1 
−P−COC ∩ Ƥ2 . Hence Ƥ2 =∅, which is 

contradictory.  

2. In the same way as above, we prove the 

contradiction. As a result, Q−P−COC is a C-pcon 

set. ■ 

 

Proposition 4.4.  C-pcon space has a c-pco image 

that is connected. 

Proof. Let the data of this proposition be achieved 

from (N, τ n)  →  (M, τ m) . To demonstrate M is 

connected.  Assume M is disconnected space, then 

M =  Ƥ1 ∪ Ƥ2  where Ƥ1, Ƥ2 are non-empty disjoints 

open sets. So, N = 𝑓−1(M)  =  𝑓−1 (Ƥ1 ∪ Ƥ2 )  =
 𝑓−1 (Ƥ1)  ∪  𝑓−1 (Ƥ2). Because of the availability of 
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some facts, including f is c-pco , Ƥ1 ≠  ∅, Ƥ2 ≠ ∅ , f is 

onto and 𝑓−1(Ƥ1) ∩  𝑓−1 (Ƥ2) =  𝑓−1(Ƥ1 ∩ Ƥ2) =  ∅.  
This leads to the fact that space N is coc-pre-

disconnected, and this is a contradiction. ■ 

 

Proposition 4.5. C-pcon space has a c-p**co image 

that is C-pcon.  

Proof. It is clear and in the same context as the 

proposition (4.4), but by taking advantage of the 

definition of cp**co. ■ 

 

Open problem: It is possible to use coc-preopen in 

extremally disconnected Spaces, where the following 

research can be used [15].  

 

Table 1. List of Symbols 

Symbol Description 

R The set of real numbers 

(N, τ) topological space 

N\A  The complement to A 

 The family of all open 

sets 

I The indiscrete topology 
τu The usual topology on R 

Cl(L) The closure of L 

Int(L) The interior of L 

C (N, τ)   set of each compact 

subset of (N, τ). 

τƤ The family of all 

preopen sets 

τ𝑝𝑘 the family of all c-po set 

S-C strongly compact 

c-pc coc-preclosed set 

c-po cocompact preopen set 

coc − pre − int(A)  
or A0P−COC 

The set of all coc-pre-

interior points for A 

coc − pre − cl(A)  
or  A−P−COC 

The set of all coc-pre-

adherent points for A 

coc − pre − d(A) The set of all coc-pre-limit 

points of A 

c-pco coc-pre-continuous function 

c-p*co coc-pre-* continuous 

c-p**co coc-pre-** continuous 

c-pof coc-preopen function 

c-pcf coc-preclosed function 

c-po*f coc-preopen* function 

c-pc*f coc-preclosed* function 

C-pcon coc-pre-connected  
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