
Journal of Al-Nahrain University                   Vol.19 (1), March, 2016, pp.156-167                                           Science 

156 

On the Dynamical Behaviors of a Cholera Model with Holling Type II 

Functional Response 
 

Ahmed A. Muhseen* and Xueyong Zhou** 
*Ministry of Education, Rusafa, 1, Baghdad-Iraq. 

**College of Mathematics and Information Science, Xinyang Normal University,  

Xinyang 464000, Henan, P.R. China. 

E-mail: aamuhseen@gmail.com. 

E-mail: xueyongzhou@126.com. 

 

Abstract 

In this paper a mathematical model that describes the flow of Cholera disease in a population is 

proposed and studied. It is assumed that the disease divided the population into five classes: 

susceptible individuals (S), asymptomatic infectious individuals )( AI , symptomatic infectious 

individuals ),( SI  removal individuals (R) and cholera population (B). The existence, uniqueness and 

boundedness of the solution of the model are discussed. The local and global stability of the model 

is studied. Finally the global dynamics of the proposed model is studied numerically.  
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1. Introduction 

Cholera is an acute intestinal infectious 

disease caused by bacterium Vibrio Cholera. 

Recent Cholera outbreaks in Haiti (2010-

2011), Nigeria (2010), Kenya (2010), Vietnam 

(2009), Zimbabwe (2008-2009), and Iraq 

(2007), etc. The container is leading to a large 

number of infections and receiving worldwide 

attention. Then, despite of many clinical and 

theoretical studies [1-8] and tremendous 

administrative efforts and interventions, 

Cholera remains a significant threat to public 

health in developing countries.  

In the year 2006 alone, about 240,000 

Cholera cases were officially notified to the 

World Health Organization (WHO). A deep 

understanding of the disease dynamic would 

provide important guidelines to the effective 

prevention and control strategies [9, 10]. 

Mathematical modeling, simulation and 

analysis offer a promising way to look into the 

natural of Cholera dynamics, and many efforts 

have been devoted to this topic. 

Below, we briefly review some 

representative mathematical models proposed 

by various authors. For example, Capasso and 

Paveri-Fontana [11], introduced a simple 

deterministic model in 1979 to study a Cholera 

epidemic in the Mediterranean. In 2001, 

Codeco [12], extended the model of Capasso 

and Paveri-Fontana. He added an equation for 

the dynamics of the susceptible population. In 

[13], Pascual et al. 

Generalized Codeco model by including a 

fourth equation for the volume of water in 

which the formative live following Codeco 

[12]. In 2009, Richard I. Joh et al. considered 

the dynamic of infectious disease for which 

the primary mode of transmission is indirect 

and mediated by contact with a contaminated 

reservoir [14]. In [15], Rachal L. Miller et al. 

formulated a mathematical model to  

include essential components such as a 

hyperinfectious, a short-lived bacterial state, a 

separate class for mild human infections, and 

waning disease immunity. In this paper we 

proposed and studied a mathematical model of 

Cholera disease, in which it is assumed that 

the disease transmitted by contact by Holling 

Type II functional response. The local as well 

as global stability analysis of this model is 

investigated. 
 

2. Mathematical Model 

Let )(),(),( tItItS BA  and )(tR  be the 

number of the susceptible individuals, 

asymptomatic infectious individuals, 

symptomatic infectious individuals and 

removal individuals from infected classes at 

time t respectively. Let )(tB  be the cholera 

population at time t with grows logistically. 

The state equations, which cover this model, 

can be written as follows: 
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Note that all the parameters of system (1) 

are assumed to be positive constants and can 

describe as following:   birth rate in 

susceptible class, assumed that the disease 

transmitted from class S to classes AI  and SI  

by contact according to Holling types II 

interaction between S class and B class with 

infection rate constant 1  with fraction   

such that )10(   , d is the natural death 

rate in each class while the ,  are the 

disease related death from SI  and B  

respectively. SA  ,  represents the recovery 

rate constant. r and 2K  are respectively, the 

intrinsic growth rate and carrying capacity of 

cholera population, finally, 1  and 2  are the 

new infected members arriving into the 

cholera population in unit time from AI  and 

SI classes. Therefore, at any point of time t the 

total number of population becomes 
 

)()()()()( tBtRtItItSN SA  .  
 

Obviously, due to the biological meaning of 

the variables )(),(),(),( tRtItItS SA  and )(tB , 

system (1) has the domain 

 ,0,0,,,,,( 55   ASA ISBRIIS   
 

0,0,0  BRIS , which is positive 

invariant for system (1). Clearly, the 

interaction functions on the right hand side of 

system (1) are continuously differentiable. In 

fact they are Liptschizan function on 
5
 . 

Therefore the solution of system (1) exists and 

unique. Further, all solutions are uniformly 

bounded as shown in the following theorem: 

 

 

Theorem (1): 

All the solutions of system (1), which are 

initiate in
5
 if exists, are uniformly bounded. 

 

Proof:  

Let  )(),(),(),(),( tBtRtItItS SA  be any 

solution of system (1) with non-negative initial 

condition  )0(),0(),0(),0(),0( BRIIS SA , since

)()()()()()( tBtRtItItStN SA  , then: 
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where  )(),(),(,.min 21 rdddm    

 mNN  
 

Now, by using Gronwall lemma [16], it 

obtains that: 

   tt eNetN 



   )0(1)(   

Therefore, 



)(tN , as t , hence all the 

solutions of system (1) that initiate in 
5
  are 

confined in the region: 
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Which is complete the proof.                        ■ 
 

3. The Basic Reproduction Number 

For all infectious disease, the basic 

reproduction number, sometimes called basic 

reproductive ratio, is one of the most useful 

threshold parameters that characterizes 

mathematical problems concerning infectious 

disease. This metric is useful because it helps 

us to determine whether an infectious disease 

will spread through a population, we will 

calculate the basic reproduction number. 

It easy to see that this system always has a 

disease free equilibrium point (the absence of 

infection, that is, 0 BII SA ), 

)0,0,0,( 00 SE  , where 
d

S


0 . Let  
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1FV  is the next-generation matrix for model 

(3). It then follows that the spectral radius of 

matrix 1FV is 
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According to theorem 2 in [17], the basic 

reproduction number of model (3) is: 







































dddK

r

SA

21

1
3

1 )1(
   ........... (2) 

 

4. Existence of Equilibrium Points of  

System (1) 

In this section, we shall discuss the 

existence of all possible equilibrium points of 

system (1). Now since recovery class R is 

related with infected classes AI  and SI  only, 

hence knowing the values of  AI  and SI  leads 

directly to determine the value of R from 

solving the fifth equation in system (1). In fact, 

if the SAiIi ,,0  , then R approaches to 

zero asymptotically. However, if cA II   and 

kS II   where cI  and kI are positive constant, 

then R approaches to: 
 

d

II
R kScA  
   ........................................ (3) 

Consequently, system (1) can be written as 

below and then equation (3) can be used to 

give the value of R. 
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Now, system (4) has at most two biologically 

feasible points, namely ),,,( iSiAiii BIISE  , 

1,0i . The existence conditions for each of 

these equilibrium points are discussed in 

following:  

1) If 0,0  SA II , 0B  and 1 , then 

system (4) has an equilibrium point called 

disease free equilibrium point and denoted 

by )0,0,0,( 00 SE   where: 

d
S


0   ........................................................ (5) 

2) If 0,0  SA II , 0B , and 1 , then 

system (4) has an equilibrium point called 

endemic equilibrium point and denoted by 
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),,,( 11111 BIISE SA  where 111 ,, SA IIS  and 

1B  represent the positive solution of 

following set of equations: 
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Obviously, from 1st, 2nd and 3rd equations of 

(6) we get: 
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Where )( 1111 BKdBG    

Substituting 1AI  and 1SI in the 4th equation of 

(6) we get: 
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Clearly, equation (7d) by Descartes rule [18] 

has a unique positive root given by 1B  and 

then the equilibrium point )( 1E  exists 

uniquely in Int. 
4
  if and only if the 04   

(positive) then we have the following three 

Cases:  
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5. Local Stability Analysis of System (4) 

In this section, the local stability analysis of 

the each equilibrium points 1,0, iEi  of 

system (4) studied as shown in the following 

theorems. 
 

Theorem (2): 

The asymptomatic and symptomatic 

infectious free equilibrium point 

)0,0,0,( 00 SE   of System (4) is locally 

asymptotically stable when 1  and then 

the following conditions are satisfied, but 0E  

unstable when :1  
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Proof:  

The Jacobian matrix of system (4) at )( 0E  

that denoted by )( 0EJ  and can be written: 
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Now, according to Gershgorin theorem [19] if 

the following condition hold: 
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),,,( 11111 BIISE SA  written by: 

441 ][)(  ijzEJ , where: 












 d

BK

B
z

11

11
11


; 

2
11

111
14

)( BK

SK
z





; 

11

11
21

BK

B
z





; )(22 dz A    

2
11

111
24

)( BK

SK
z





; 

11

11
31

)1(

BK

B
z







; 

)(33   dz S ; 
2

11

111
34

)(

)1(

BK

SK
z







 

142 z ; 243 z ; 







 

2

1
44

2

K

rB
rz  and 

zero otherwise. 

It is easy to verify that the linearization system 

of system (4) can be written as: 
 

XEJXN  )( 1
   

 

Here, T
SA BIISN ),,,(  and 

TxxxxX ),,,( 4321 , where:  

11 SSx  ; 12 AA IIx  ; 13 SS IIx  ; 

 14 BBx  .  
 

Now, consider the following positive definite 

function: 
 

2222

2
4

2
3

2
2

2
1 xxxx

V    

 

It is clearly that RRV 
4: and a continuously 

differentiable function so that 

0),,,( 1111 BIISV SA  and 0),,,( BIISV SA  

otherwise. So by differentiating V with respect 

to time t, gives: 
 

44332211 XxXxXxXxV    
 

Substituting the values of 321 ,, XXX  and 4X

in the above equation, and after doing some 

algebraic manipulation; we get that: 
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Now it is easy to verify that the above set of 

conditions (10a)-(10e) guarantees the 

quadratic terms given below: 
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xdxd
BK

B

xdxd
BK

B

xr
K

rB
xd

BK

B
V

S

A

S

A









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So, V  is a negative definite, and hence V  is a 

Lyapunov function. Thus, )( 1E is a local 

asymptotically stable and the proof is 

complete. 
 

6. Global Stability Analysis of System (4) 

In this section, the global stability analysis 

of the all equilibrium points 1,0, iEi  of 

system (4) studied as shown in the following 

theorems.  
 

Theorem (4):  
Assume that, the disease free equilibrium 

point 0E  of System (4) is locally 

asymptotically stable. Then the basin of 

attraction of  0E , say 4
0)(  REQ , it is 

globally asymptotically stable if satisfy the 

following condition: 
 

   SAd 21 ,.max   ............... (11a) 

BK

SBBKr

K

rBK








1

11

2

2 )(
  .................. (11b) 

 

Proof: Consider the following positive definite 

function: 

BII
S

S
SSSV SA 










0
001 ln  

 

Clearly, RRV 
4

1 :  is a continuously 

differentiable function such that 

,0)0,0,0,( 01 SV  and 

).0,0,0,().,,(,0),,,( 01 SBIISBIISV SASA 

Further we have: 
 

BIIS
S

SS
V SA

 






 
 0

1  

 

By simplifying this equation we get: 
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
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IdId
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B
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S

d
V

SSAA








 

Obviously, 01 V , for every initial points and 

then 1V  is a Lyapunov function provided that 

conditions (11a)-(11b) hold. Thus 0E  is 

globally asymptotically stable in the interior of 

),( 0EQ  which means that )( 0EQ  is the basin 

of attraction and that complete the proof.       ■ 
 

Theorem (5):  

Let the endemic equilibrium point 1E  of 

System (4) is locally asymptotically stable. 

Then it is globally asymptotically stable 

provided that: 

212 )( KBBrrK    ............................. (12a) 
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Where: 

)( 1111 BKdBG    

21 )()( KrBBrG    

))(( 1111111 BKBKSKG    

))(()1( 1112111 BKBKSKG    
 

 

Proof: 

Consider the following positive definite 

function: 
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Clearly, RRV 
4

2 :  is a continuously 

differentiable function such that 

0),,,( 11112 BIISV SA  and

),,,(),,,(,0),,,( 11112 BIISBIISBIISV SASASA 

Further, we have: 
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By simplifying this equation we get: 
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Therefore, according to the conditions (12a)-

(12f) we obtain that: 
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Clearly, 02 V , and then 2V  is a Lyapunov 

function provided that the given 

conditions(12a)-(12f) hold. Therefore,  1E  is 

globally asymptotically stable. 
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7. Numerical Simulation of System (1) 

In this section, system (1) is solved 

numerically for different sets of hypothesis 

data and different sets of initial conditions, and 

then the time series for the trajectories of 

system (1) are confirm our obtained analytical 

results. By using (0.5, 0.7, 0.3, 0.6, 0.9) and 

(50, 40, 25, 30, 0.1) as initial points and the 

numerical simulations are carried out in the 

following cases: 
 

Case I: 

For the disease free equilibrium point 0E , 

we choose the following data: 

10;1.0;4.0;3.0

;001.0;1.0;01.0;

1.0;4.0;0;3.0;

5.0;0000001.0;50

21

2

11

















Kr

d

K

SA
  ....... (13) 

 

Therefore, the disease free equilibrium point 

0E  of system (1) is globally asymptotically 

stable and is identically to (167, 0, 0, 0, 0) for 

any time. See Fig.(1). 
 

Case II:  

For the endemic equilibrium point 1E , we 

choose the following data: 

1128831.15

;8;4;7

;50;6;01.0;

001.0;2.0;1.0;1.0;

5.0;01.0;50

21

2

11


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
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
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

Kr

d

K
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  .... (14) 

 

Therefore, the endemic equilibrium point 1E  

of system (1) is globally asymptotically stable 

and is identically to (255, 148, 36, 297, 23) for 

any time. See Fig.(2). 
 

Case III: 

We fixed all parameters in equation (14) 

but we change infection rate value 

5.0,2.0,1.0,05.0,01.01   respectively, we get 

the trajectories of system (1) still approaches 

to endemic equilibrium point but the number 

of asymptomatic infectious individuals 

decrease while the number of the symptomatic 

infectious and cholera population increases. 

See Fig.(3a-3c). 
 

Case IV: 

We choose fraction rate 1,8.0,5.0,2.0,0  

respectively, keeping other parameters fixed as 

given in equation (14), we get the trajectories 

of system (1) still approaches to endemic 

equilibrium point but the number of 

symptomatic infectious individuals decrease 

while the number of the asymptomatic 

infectious and cholera population increases. 

See Fig.(4a-4c). 
 

Case V: 

Now we choose intrinsic growth rate 

40,15,6,1r  respectively, keeping other 

parameters fixed as given in equation (14), we 

get the trajectories of system (1) still 

approaches to endemic equilibrium point but 

the number of asymptomatic infectious 

individuals and the number of the symptomatic 

infectious are smoothly decreases while the 

cholera population is decreases too. See 

Fig.(5a-5c), and we get inverse above results 

from increases of carrying capacity rate ).( 2K  
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Fig.(1): Time series of the trajectories of 
system (1) from different initial points for 

data given in Eq. (13) which show that 0E  is 

globally asymptotically stable. (a) For S , 

(b) For AI , (c) For SI , (d) For R , (e) For B . 

 

 

 

 

 
Fig.(2): Time series of the trajectories of 
system (1) from different initial points for 

data given in Eq. (14) which show that 1E  is 
globally asymptotically stable. (a) For S , 

(b) For AI , (c) For SI , (d) For R , (e) For B . 
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Fig.(3): Time series of the trajectories of system (1). (a) For AI , (b) For SI , (c) For B . 

  

 
Fig.(4): Time series of the trajectories of system (1). (a) For AI , (b) For SI , (c) For B . 
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Fig. (5): Time series of the trajectories of system (1). (a) For AI , (b) For SI , (c) For B . 

7. Conclusion and Discussion 

In this paper, we proposed and analyzed an 

epidemiological model that described the 

dynamical behavior of an epidemic model, 

where the infectious disease transmitted 

directly from contact between them by Holling 

type II. The model included five non-linear 

autonomous differential equations that 

describe the dynamics of five different 

populations, namely susceptible individuals 

),(S  asymptomatic infectious individuals )( AI , 

symptomatic infectious individuals )( SI , 

removal individuals from infected classes )(R  

and B is cholera population. The boundedness 

of system (1) has been discussed. The 

conditions for existence, stability for each 

equilibrium points are obtained. Further, it is 

observed that the disease free equilibrium 

point  0E  exists when 0 BII SA  and it 

locally stable if the conditions (9a-9b) are 

hold, and then it is globally stable if and only 

if the conditions (11a-11b) are hold. The 

endemic equilibrium point  1E  exists if 

04   and one of three conditions is hold (7a 

or 7b or 7c) and locally stable if the conditions 

(10a-10f) are hold more than it is globally 

stable if and only if the conditions (12a-12f) 

hold. Finally, to understand the effect of 

varying each parameter on the global system 

(1) and confirm our above analytical results, 

system (1) has been solved numerically for 

different sets of initial points and different sets 

of parameters given by equation (14), and the 

following observations are made: 
 

1) System (1) do not has periodic dynamic, 

instead it they approach either to the all 

equilibrium point. 

2) As the incidence rate of disease (contact 

incidence rate  1 ) increase, the asymptotic 

behavior of systems (1) approaching to 

endemic equilibrium point. In fact are  1  

increase it is observed that the number of 

 AI  decrease and the number of 

 BandIS  increase. 

3) As the fraction rate  10    increase, 

the asymptotic behavior of systems (1) 

approaching to endemic equilibrium point. 

In fact as    increase it is observed that 

the number of  SI  decrease and the 

number of  BandI A  increase. 

4) As the intrinsic growth rate or carrying 

capacity of cholera population rate, are 

increases  2, Kr  respectively the 
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asymptotic behavior of systems (1) 

approaching to endemic equilibrium point 

with increase it is observed that the 

numbers of  BII SA ,,  are increase.  

5) As the recovery rate  SA or   increases, 

then increase it is observed that the 

numbers of  BII SA ,,  are decrease. 
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 الخلاصة

في هذا البحث تم عرض ودراسة نموذج رياضي يصف 
انتشار مرض الكوليرا في المجتمع السكاني, افترضنا ان 
المرض يقسم المجتمع السكاني الى خمسة اقسام هي افراد 
معرضين للاصابة وافراد مصابين بالمرض اصابة غير خطره 
وافراد مصابين بالمرض اصابة خطره وافراد معافين من 

مرض والقسم الاخير الافراد الحاملين لفيروس مرض ال
وحدانية وقيود الحل للنموذج  تمت مناقشة وجود والكوليرا. 

المقترح. قمنا بدراسة السلوك المحلي والشامل له. واخيرا من 
اجل تأكيد نتائجنا وتحديد تأثير معلمات النموذج الوبائي 

 اة عددية له.المقترح على السلوك الديناميكي له اجرينا محاك

 


