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Abstract

In this paper a mathematical model that describes the flow of Cholera disease in a population is
proposed and studied. It is assumed that the disease divided the population into five classes:
susceptible individuals (S), asymptomatic infectious individuals(l,), symptomatic infectious
individuals (I5), removal individuals (R) and cholera population (B). The existence, uniqueness and

boundedness of the solution of the model are discussed. The local and global stability of the model
is studied. Finally the global dynamics of the proposed model is studied numerically.
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1. Introduction

Cholera is an acute intestinal infectious
disease caused by bacterium Vibrio Cholera.
Recent Cholera outbreaks in Haiti (2010-
2011), Nigeria (2010), Kenya (2010), Vietnam
(2009), Zimbabwe (2008-2009), and Iraq
(2007), etc. The container is leading to a large
number of infections and receiving worldwide
attention. Then, despite of many clinical and
theoretical studies [1-8] and tremendous
administrative  efforts and interventions,
Cholera remains a significant threat to public
health in developing countries.

In the year 2006 alone, about 240,000
Cholera cases were officially notified to the
World Health Organization (WHO). A deep
understanding of the disease dynamic would
provide important guidelines to the effective
prevention and control strategies [9, 10].
Mathematical modeling, simulation and
analysis offer a promising way to look into the
natural of Cholera dynamics, and many efforts
have been devoted to this topic.

Below, we briefly review some
representative mathematical models proposed
by various authors. For example, Capasso and
Paveri-Fontana [11], introduced a simple
deterministic model in 1979 to study a Cholera
epidemic in the Mediterranean. In 2001,
Codeco [12], extended the model of Capasso
and Paveri-Fontana. He added an equation for
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the dynamics of the susceptible population. In
[13], Pascual et al.

Generalized Codeco model by including a
fourth equation for the volume of water in
which the formative live following Codeco
[12]. In 2009, Richard 1. Joh et al. considered
the dynamic of infectious disease for which
the primary mode of transmission is indirect
and mediated by contact with a contaminated
reservoir [14]. In [15], Rachal L. Miller et al.
formulated a mathematical model to
include essential components such as a
hyperinfectious, a short-lived bacterial state, a
separate class for mild human infections, and
waning disease immunity. In this paper we
proposed and studied a mathematical model of
Cholera disease, in which it is assumed that
the disease transmitted by contact by Holling
Type Il functional response. The local as well
as global stability analysis of this model is
investigated.

2. Mathematical Model

Let S(t),15(t), Ig(t) and R(t) be the
number of the susceptible individuals,
asymptomatic infectious individuals,
symptomatic  infectious individuals and

removal individuals from infected classes at
time t respectively. Let B(t) be the cholera
population at time t with grows logistically.
The state equations, which cover this model,
can be written as follows:
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S=0- —ds
K1+B

- phSB
| p=t— — d)l
A K+ B (ra+d)la

(- p)5SB

=—— +d+ le + ........ 1
S K +B (rs )l (1)

R=yala+7sls —dR

B=rB(1—K£]—nB+§1|A+g2|S
2

Note that all the parameters of system (1)
are assumed to be positive constants and can
describe as following: & birth rate in
susceptible class, assumed that the disease
transmitted from class S to classes 1, and Ig

by contact according to Holling types |II
interaction between S class and B class with
infection rate constant g, with fraction p

such that (0< p<1), d is the natural death
rate in each class while the y,7n are the
disease related death from Ig and B
respectively. ya,ys represents the recovery

rate constant. r and K, are respectively, the
intrinsic growth rate and carrying capacity of
cholera population, finally, ¢; and &, are the
new infected members arriving into the
cholera population in unit time from 1, and
|5 classes. Therefore, at any point of time t the
total number of population becomes

N =S(t)+15(t)+ I5(t) + R(t) + B(t).

Obviously, due to the biological meaning of
the variables S(t),1(t),15(t),R(t) and B(t),
system (1) has the domain

mi:{(s,lA,ls,R,Bemi,szo,lAzo,

Is>0,R>0,B>0}, which is positive
invariant for system (1). Clearly, the
interaction functions on the right hand side of
system (1) are continuously differentiable. In
fact they are Liptschizan function on %> .
Therefore the solution of system (1) exists and

unique. Further, all solutions are uniformly
bounded as shown in the following theorem:
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Theorem (1):
All the solutions of system (1), which are
initiate in R if exists, are uniformly bounded.

Proof:

Let (S(t),14(t),15(t),R(t),B(t)) be any
solution of system (1) with non-negative initial
condition (S(0),14(0),15(0),R(0),B(0)), since
N(t) =S(t) + 1 o(t) + I (t) + R(t) + B(t) , then:

N=S+Iip+Ig+R+B

this gives
N =0-dS—(d-¢)la—(d-¢2)ls —dR
rB2
—-(n-NB—-lqg ———
(n—r)B—uls K,
N<6&-mN,

where m=min.{d,(d - &),(d - &,),(n-r)}
N+mN <6

Now, by using Gronwall lemma [16], it
obtains that:

N(t) < 3(1—e—ﬂ‘)+ N (0)e
U
Therefore, N(t) sg, as t — oo, hence all the
U

solutions of system (1) that initiate in ‘.Ri are
confined in the region:

7

U

Which is complete the proof. ]

r:{(s,lA,ls,R,B)emi:N <

3. The Basic Reproduction Number

For all infectious disease, the basic
reproduction number, sometimes called basic
reproductive ratio, is one of the most useful
threshold  parameters that characterizes
mathematical problems concerning infectious
disease. This metric is useful because it helps
us to determine whether an infectious disease
will spread through a population, we will
calculate the basic reproduction number.

It easy to see that this system always has a
disease free equilibrium point (the absence of
infection, that is, | o =15 =B=0),

Eo =(50,0,0,0), where Sy = g Let
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X =(Ia,15,B,S)" . Then, we get:

X = f(x)-Vv(x)
where
ppSB
K1+B
(L- )SB
f()=| K +B
rB(l—i
K2)
0
(ra+d)la
v(x)=| (rs+d+u)ls
mB—ala—Eals
PSB L 4s_e
K1+B
We can obtain:
00 PPSo
K1
Kq
0 0 r
]/A-i—d 0 0
V= 0 ys+d+u 0,
- -2 n
giving
1 0 0
]/A‘l‘d
4 1
V= 0 — 0
rs+d+u
g1 ¢ 1
nra+d) nlys+d+u) n

FV 1 is the next-generation matrix for model
(3). It then follows that the spectral radius of

matrix FV Lis

Fy L :L( P10 J
Al ) n\ 7K1 (ya +d)

( - p)2So ]

nK1(ys +d + p)

According to theorem 2 in [17], the basic
reproduction number of model (3) is:

R, = reﬂl ( pé/l J[ (1_p)é,2] ........... (2)
3Ky \7a+d \ys+d+u

4. Existence of Equilibrium Points of
System (1)

In this section, we shall discuss the
existence of all possible equilibrium points of
system (1). Now since recovery class R is
related with infected classes 1, and Ig only,

hence knowing the values of 1, and Ig leads

directly to determine the value of R from
solving the fifth equation in system (1). In fact,
if the I; =0,i=AS, then R approaches to

zero asymptotically. However, if 1, =1, and
Is =1, where I, and I, are positive constant,
then R approaches to:

R = J/AIC +7/S|k

d
Consequently, system (1) can be written as
below and then equation (3) can be used to
give the value of R.

§-9-8 s

K1+B
- _ pPSB
A= - +d)l
A=Ky +B (ra+d)la “
A ppSB L[
[o = S PIPSD (o 4 d 4 )l
S K, +B (rs +d +u)ls

B:rB(l—KEJ—nB+§1|A+§2|S
2

Now, system (4) has at most two biologically

feasible points, namely E; =(S;, 1,15, B;).

i=01. The existence conditions for each of

these equilibrium points are discussed in
following:

1) If 1,=0,Ig=0, B=0 and R, <1, then
system (4) has an equilibrium point called
disease free equilibrium point and denoted
by Eg =(S,0,0,0) where:

7

Sp = 5

2) If 1,#0,1g#0,B=0, and R, >1, then

system (4) has an equilibrium point called
endemic equilibrium point and denoted by
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Ei (S, 1 a1, 151, By) where S; 14, 15; and
B, represent the positive solution of
following set of equations:

o- P8 _4s—o

K1+B
PBSB
LLCLE Ix=0
ki1 B (ra+d)lip o
N e
U=pP)AsB _ o dt u)ls =0

Ky+ B (rs +d+)ls
B{r—ﬂ—n}glﬁgﬂs:o

K2

Obviously, from 1%, 2" and 3" equations of
(6) we get:

S =@ ......................................... (7a)

__Pop(K+BYB, (7h)
(K1 +By)(ya+d)G

_ A-p)pOK +BYB (70)

S1=
(Ki+By)(ys +d +4)G
Where G = 4B + d(Kq + By)
Substituting 1,; and Ig;in the 4™ equation of
(6) we get:

B +Q,B} + O3B +Q,B, =0 (7d)

Here:
QO =-r(B+d)(ya+d)(rs +d +)<0
Qy =(ypa+d)(ys +d+ )
[rKo (B +d) = (rKy (B +2d) + 7K (B + d))]
Q3= 08K pa(rs +d + )

+$2(L- p)(ra+d)]+ rKiKo (B +2d)

(ra+d)(rs +d + u) - [7KeK5 -
(Br+2d)(ya+d)(ys +d + )
+ rK12d (ya+ys+2d+ ,u)]

Q4 = KKK [pGi(rs +d + 1) + $o(L- p)
(ra+d)]+ dKFKo (r =77)-
[ya+rs+2d+ 4]

Clearly, equation (7d) by Descartes rule [18]

has a unique positive root given by B; and
then the equilibrium point (E;) exists
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uniquely in Int. %% if and only if the Q, >0

(positive) then we have the following three
Cases:

Case (1):

If the following conditions are hold:
Q,>0
Qs > O}
Case (2):_If the following conditions are hold:
Q, <0
Qs < O}
Case (3):_If the following conditions are hold:

Q, <0
Q3>O

5. Local Stability Analysis of System (4)

In this section, the local stability analysis of
the each equilibrium points E;,i=01 of
system (4) studied as shown in the following
theorems.

Theorem (2):
The asymptomatic and symptomatic
infectious free equilibrium point

Eo =(5¢,0,0,0) of System (4) is locally
asymptotically stable when R, <1 and then
the following conditions are satisfied, butE,
unstable when R, >1:

d> maX{é/l —]/A,é/z — (]/S +ﬂ)} ............... (9a)
77K1 > ZﬂlKlSO + I’Kl ................................ (gb)
Proof:

The Jacobian matrix of system (4) at (E)
that denoted by J(E,) and can be written:

J(Eo) =[aijlaxa

where:
S
a;=-d ; a14:——ﬁ;1<01 ay =—(ya+d);
1
S
a242'0[;1 0 agz =—(ys +d +u);
1
1- S
agy ( p)ﬂlo; agp =41, ap =02,

ayy =r —n and zero otherwise.

Now, according to Gershgorin theorem [19] if
the following condition hold:
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4
[asi| > Z\aij\
i=1
i#]
Then all eigenvalues of J(E,) exists in the
region:

4
~ai< Y Jay
"

Therefore, according to the given conditions
(9a), (9b) all the eigenvalues of J(E,) exists

in the left half plane and hence, (E)is locally

asymptotically stable. [ |
Theorem (3):
The endemic equilibrium point

E; = (51,1 a1, 151, By) of System (4) is locally
asymptotic stable when R, >1 and then the
following conditions are satisfied:

{&%Z}Zﬂ[&m}

(KB~ ] OLKa+B ] (10a)
2B
Lm+aﬁ+"r

opB [ _2[ pB ).

_K1+BJ <3{K1+B_L+d} .......... (10Db)

[ya+d]
a-ppB ] 2 s ]
Ky + By K1+Bl ....... (10c)
[rs +d+ 4]
r 2
PAKIST 2
PARPL L | <Zlya+d]
1K1+Bﬂ2+_1}<<3yA+ ........ (10d)
[i?+ﬂ_r

(- P)BiKsS, } 2

= AL L 5| <Slrs +d+ 4

{ (Ky +By)? 3 (10¢)

{%%+m%
r<%+n ............................................. (10f)
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Proof:
The Jacobian matrix of System (4) at

E; = (Sy, 1 g, 153, By) written by:
J(Eq) =[zjj14x4 , where:

Z11 = ( A8 +dJ = lez;
Ki+B (Ky+By)
Zp1 = K, iBél ; 2 =—(ya+d)
__PAKS ; _(A-p)AB ;
(Ky +By)? Ki+B
__ . _A=-p)BKS
Zgz=—(ys +d+u); 23 (K1+Bl)2
Zpp =81, 243=G2; 244=r—(2r—81+77J and
K2

zero otherwise.
It is easy to verify that the linearization system
of system (4) can be written as:

N=X=J(E)- X

Here, N =(S,1,ls,B)" and

X = (X, Xp, Xz, %4)" , where:

X1 =S =Sy Xo=lpa—lp; Xg=1g —1lgq;
X4 =B—-B;.

Now, consider the following positive definite
function:

Itis clearly that V : Rﬁ' — R and a continuously
differentiable function o) that
V(S 1a1,151,B)) =0 and V(S,l4,1g,B)>0
otherwise. So by differentiating V with respect
to time t, gives:

V=X1-X1+X2-X2+X3-X3+X4-X4

Substituting the values of X, X,,Xgand X,

in the above equation, and after doing some
algebraic manipulation; we get that:



_ 1{ BB gl | AKS
3[Ki+By (Ky +By)?
—E{ﬂwy—r_xﬁ {ﬂlBl +d}
3| K, 1™ 3K +By
+ %}Wr%[ﬂ’ﬁrd]é
_%Jﬁi+ﬂx+r )m&}
3L Ki+B | | Ki+By
1

1
—5[7s+d+u]X§——[7A+d]XE

pﬂ1K151 CLj2rB |2
(1- ) Ky
i (Ky +By)?

1
—5[75 +d+ g+

L
3 K,
Now it is easy to verify that the above set of

conditions  (10a)-(10e)  guarantees the
quadratic terms given below:
2
+77—I‘JX4}

ool
i (K1+Bl+djx W]
—%( Jﬁ ]

12
- 7A+d X + 3 +77 r (X4

2
/ }1
- 7/5+d+/1X3+ 5( +n-r xAl

So, V |sanegat|ve definite, and hence V is a
Lyapunov function. Thus, (E;)is a local
asymptotically stable and the proof is
complete.

6. Global Stability Analysis of System (4)
In this section, the global stability analysis
of the all equilibrium points E;,i=01 of

+§2]X3X4

V <

Ki+B
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system (4) studied as shown in the following
theorems.

Theorem (4):
Assume that, the disease free equilibrium
point E, of System (4) is locally

asymptotically stable. Then the basin of
attraction of (Ey), sayQ(Eg) =R}, it is

globally asymptotically stable if satisfy the
following condition:

d>max{&y +ra,Co+ g+ s (11a)
nK, +rB S r(Ky+B)+B;S (11b)
< KaB

Proof: Consider the following positive definite
function:

Vl=£S—SO—SolnSiJ+IA+IS+B
0

Clearly, V;:R*>R is a
differentiable function
V;1(S¢.,0,0,0) =0, and

Vl(S, IA’ IS ) B) > O,V(S, IA’ ISB) * (SO ,0 ,0,0).
Further we have:

. S-S
V]_:( SO

By simplifying this equation we get:

continuously
such that

JS'+I'A+I'S+B

Vi=-g(s-sof 2550
+Hgi-(ra+d)la+[S2 - (rs +d + )]s
BS \ . 1B
+B[(r+K1+B) (77+K2)}

Obviously,\/'1 <0, for every initial points and
then V; is a Lyapunov function provided that
conditions (11a)-(11b) hold. Thus E, is
globally asymptotically stable in the interior of
Q(Ep), which means that Q(Ep) is the basin
of attraction and that complete the proof. ]

Theorem (5):
Let the endemic equilibrium point E; of

System (4) is locally asymptotically stable.

Then it is globally asymptotically stable

provided that:

rk, <r(B+Bp)+ 7K,
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- 2
pABL | 2| G |
_K1+BJ <3[K1+BJ [a+d] . (12b)
a-ppm | _2[ 6 ],
I Ky + By 3| Ki+By| e (12C)
[}’S +d+y]
AiK1S1 T - ﬂ{L]
| (K1+B)(K1+By) S Ka+B ] (12d)
G
K2
, 2
{ G } <2[7A+d]
(Ky+B)(KetB) | 377 = (12¢)
|G-
K2
| <2 var
(Kp+B)(Ky+By)| 377~ (12f)
G
K2
Where:

G= /By +d(Ky +By)
G'=r(B+By)+(7-NKy

G" = pfiKeSt +¢1(Kg + B)(Ky +By)

G" = (1- ) AiK1Sy +Ca(Ky + B)(Ky +By)

Proof:
Consider the following positive definite
function:

\/2:(5—51)2 La-1mP | (s -1s1)f

2 2 2
L (B=B Y
2
Clearly, V,:R!—>R is a continuously
differentiable function such that
Va(S1ilpg 151, B) =0 and

Va(S,1a,15,B)>0, V(S,1a,15,B)# (S, 1 a1, 151, B1)
Further, we have:

Vo =(S-S)S+(la—Tm)la+(ls—1s1)ls

+(B-B;)B
By simplifying this equation we get:
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Vi =—%(S —51)2 +p2(S—S1)la—1a)

_%UA_ 'Al)z—%(s—sl)2

+p3(S—SiNls - |31)—%(|s ~ls1)

—%(3 51+ pa(S -1 (B-By)

B (g P 2211

+poa(la—1a)B- 51)—%(3— By

~P33 (15— 1)+ pas(ls —1s1)(B-By)

2
P44 2
_ P44 (g _
3 (B-B1)
With:
. phABL | .
p11= P2 = P2 =ya+d ;
11 Kl"'Bl 12 K1+81 22 A
(1-p)AB . .
:—! = d 1
P13 <L+ By P33 =rs +d+u
ArS1Kq . G,
P4 = ; Pag =—:
M (Ke+B)(Ky +B) T Ky
P24 = y P34 =
(Ky+B)(K1+By) (K +B)(Ky +By)

Therefore, according to the conditions (12a)-
(12f) we obtain that:

s %@—sl)—\/%m—m)f
_{ %(S—Sl)ﬂ/%(ls - 131)}2
Bt Bto-ou
{ \/%(.A_WH@(B—BQT
_U%(.S _|31)+\/%(B—Bl)}2

Clearly,V, <0, and then V, is a Lyapunov
function  provided that the  given
conditions(12a)-(12f) hold. Therefore, (E;) is
globally asymptotically stable.



7. Numerical Simulation of System (1)

In this section, system (1) is solved
numerically for different sets of hypothesis
data and different sets of initial conditions, and
then the time series for the trajectories of
system (1) are confirm our obtained analytical
results. By using (0.5, 0.7, 0.3, 0.6, 0.9) and
(50, 40, 25, 30, 0.1) as initial points and the
numerical simulations are carried out in the
following cases:

Case I:

For the disease free equilibrium point E,
we choose the following data:
6=50 ; B =0.0000001; K =0.5
;d=03; p=0;ypo=04;y5=01
y #=0.01;r=01,; Ky=0.001;
n=03;41=04;¢,=01;R,=0<1
Therefore, the disease free equilibrium point
E, of system (1) is globally asymptotically
stable and is identically to (167, 0, 0, 0, 0) for
any time. See Fig.(1).
Case Il:

For the endemic equilibrium pointE;, we
choose the following data:
6=50; $=001;K;=05
;d=01; p=0.1; ypo=0.2; yg =0.001
;u=0.01;r=6;Ky,=50;
n=7:01=4;{p=8;
R, =15.128831>1

e (14)

Therefore, the endemic equilibrium point E;
of system (1) is globally asymptotically stable
and is identically to (255, 148, 36, 297, 23) for
any time. See Fig.(2).

Case IlI:

We fixed all parameters in equation (14)
but we change infection rate value
S, =0.01,0.05,0.1,0.2,0.5 respectively, we get
the trajectories of system (1) still approaches
to endemic equilibrium point but the number
of asymptomatic infectious individuals
decrease while the number of the symptomatic
infectious and cholera population increases.
See Fig.(3a-3c).

Case 1V:
We choose fraction rate 0 =0,0.2,0.5,0.8,1

respectively, keeping other parameters fixed as
given in equation (14), we get the trajectories

Ahmed A. Muhseen

of system (1) still approaches to endemic
equilibrium point but the number of
symptomatic infectious individuals decrease
while the number of the asymptomatic
infectious and cholera population increases.
See Fig.(4a-4c).

Case V:

Now we choose intrinsic growth rate
r=16,1540 respectively, keeping other
parameters fixed as given in equation (14), we
get the trajectories of system (1) still
approaches to endemic equilibrium point but
the number of asymptomatic infectious
individuals and the number of the symptomatic
infectious are smoothly decreases while the
cholera population is decreases too. See
Fig.(5a-5c), and we get inverse above results
from increases of carrying capacity rate (K,).

=)
180 T T
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120 |

100 |-
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Time
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Time



Journal of Al

25

ls

oO.1 §

o

Fig.(1): Time series of the trajectories of
system (1) from different initial points for
data given in Eq. (13) which show that E, is

globally asymptotically stable. (a) For S,
(b) Forl,, (c) Forlg, (d) ForR, (e) ForB.

500

450

400 -

-Nahrain University Vol.19 (1), March, 2016, pp.156-167 Science

(<)

o 1000 2000 3000
Time

<D

3000

o

o 1000 2000 3000
Time

@)

Time

<)
40

ls

Time

()
350 -

300

250 -1

200 -1

100 -1

o SO000 10000
Tirme
=)
S0 T

s0

70

&0

S0 B

ao |

30

20

10

o

o S000 10000
Time

Fig.(2): Time series of the trajectories of
system (1) from different initial points for
data given in Eq. (14) which show that E; is
globally asymptotically stable. (a) For S,
(b) Forl,, (c) Forlg, (d) ForR, (e) ForB.
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Fig.(3): Time series of the trajectories of system (1). (a) For I 5, (b) For g, (c) For B.
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Fig.(4): Time series of the trajectories of system (1). (a) For I, (b) For g, (c) For B.
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Fig. (5): Time series of the trajectories of system (1). (a) For I 5, (b) Forlg, (c) ForB.

7. Conclusion and Discussion

In this paper, we proposed and analyzed an
epidemiological model that described the
dynamical behavior of an epidemic model,
where the infectious disease transmitted
directly from contact between them by Holling
type Il. The model included five non-linear
autonomous  differential  equations that
describe the dynamics of five different
populations, namely susceptible individuals
(S), asymptomatic infectious individuals (I ),

symptomatic  infectious  individuals(lg),
removal individuals from infected classes (R)
and B is cholera population. The boundedness
of system (1) has been discussed. The
conditions for existence, stability for each
equilibrium points are obtained. Further, it is
observed that the disease free equilibrium
point (E,) exists when I, =15 =B =0 and it
locally stable if the conditions (9a-9b) are
hold, and then it is globally stable if and only
if the conditions (11a-11b) are hold. The
endemic equilibrium point (E;) exists if
Q, >0 and one of three conditions is hold (7a

or 7b or 7c) and locally stable if the conditions
(10a-10f) are hold more than it is globally
stable if and only if the conditions (12a-12f)

hold. Finally, to understand the effect of
varying each parameter on the global system
(1) and confirm our above analytical results,
system (1) has been solved numerically for
different sets of initial points and different sets
of parameters given by equation (14), and the
following observations are made:

1) System (1) do not has periodic dynamic,
instead it they approach either to the all
equilibrium point.

2) As the incidence rate of disease (contact
incidence rate(/3,)) increase, the asymptotic
behavior of systems (1) approaching to
endemic equilibrium point. In fact are (5, )
increase it is observed that the number of
(1,) decrease and the number of

(15 and B) increase.
3) As the fraction rate (0< p<1) increase,

the asymptotic behavior of systems (1)
approaching to endemic equilibrium point.
In fact as (p) increase it is observed that

the number of (Ig) decrease and the

number of (I ,and B) increase.

4) As the intrinsic growth rate or carrying
capacity of cholera population rate, are
increases  (r,K,)  respectively  the



asymptotic  behavior of systems (1)
approaching to endemic equilibrium point
with increase it is observed that the
numbers of (I ,,ls,B) are increase.

5) As the recovery rate (y, or yg ) increases,

then increase it is observed that the
numbers of (IA, IS,B) are decrease.
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