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This paper investigates the estimation of the two unknown parameters 

and the reliability function of the weighted exponential distribution. It 

explores Bayesian and non-Bayesian (maximum likelihood) estimation 

methods when the information available is in the form of fuzzy data. 

The Newton-Raphson algorithm is used to obtain the maximum 

likelihood estimates. In Bayes estimation, the symmetric squared error 

loss function is used. This loss function links equal importance to the 

losses due to overestimating and underestimating equal magnitude. 

Lindley approximation procedure in Bayesian estimation theory is used 

to evaluate the ratio of integrals. A comparative analysis using 

simulation is carried out to evaluate the performance of the obtained 

parameters estimators using mean squared error criteria and the 

performance of the obtained reliability estimators using integrated 

mean squared error criteria. The simulation results demonstrate that, 

for different sample sizes, the performance of Bayes estimates 

surpasses the maximum likelihood, and that all estimators perform 

consistently. 

Keywords: 

Weighted Exponential Distribution 

Maximum Likelihood Estimation 

Bayesian Estimation  

Newton-Raphson  Algorithm 

Lindley approximation 

Fuzzy Data 

http://doi.org/10.22401/ANJS.27.2.15  

*Corresponding author: lamyaa.khalid@nahrainuniv.edu.iq    

This work is licensed under a Creative Commons Attribution 4.0 International License 

 

1. Introduction  

The weighted exponential (WE) distribution was 

introduced by Kupta and Kunda (2009) after adding 

a shape parameter to the exponential distribution 

based on the idea of Azzalini [1][2]. Many authors 

have been interested in this distribution. For 

example, Zamani and Ismail (2010) mixed the WE 

distribution with the Poisson distribution to form a 

new distribution called the Poisson-WE distribution 

[3]. Makhdoom and Nasiri (2011) experimentally 

compared the performance of the maximum 

likelihood and moment parameters estimators with 

the existence of outliers [4]. Roy and Adnan (2012) 

presented a class of circular distribution which is 

titled wrapped WE distribution [5]. Abed Al-Kadim 

and Hantoosh (2013) derived the double-weighted 

distribution in addition to the double WE 

distribution and studied several statistical 

properties [6]. Khorram and Farahani (2014) 

discussed the maximum likelihood (ML) and Bayes 

parameters estimators with the censored data [7]. 

Badmus et al. (2015) introduced a new distribution 

called Beta WE distribution [8]. Oguntunde et al. 

(2016) derived the main mathematical properties of 

a new version of WE [9]. Al-Noor and Hussein 

(2018) discussed approximate Bayes estimations of 

WE parameters with fuzzy data [10]. Al-Noor and 

Hussein (2018) proposed a new family called the 

WE-G family of probability distributions also, two 

sub-models, WE-uniform and WE-Kumaraswamy, 

were presented [11]. Abd El-Bar and Ragab (2019) 

used the WE distribution to introduce a new 

distribution called the WE-Gompertz [12]. Al-Noor 

and Hussein (2020) introduced Kumaraswamy WE 

distribution as a new version of WE with four 

parameters [13]. Mallick et al. (2021) discussed the 
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bounded WE Distribution and its applications [14]. 

Tiana and Yang (2022) studied a change-point 

problem of WE distribution, the techniques 

established on the likelihood ratio test, modified 

information criterion, and Schwarz information 

criterion [15]. Niu et al. (2023) considered the 

differentiating between the WE distribution and two 

positively skewed lifetime distributions, generalized 

exponential and Weibull [16]. In this paper, a 

simulation study is conducted to examine the 

behavior of maximum likelihood and Bayes 

parameters and reliability estimators of the WE 

distribution under fuzzy data. 

 

2. Conditional Density of a Random Variable Given 

Fuzzy Event 

Lotfi Zadeh (1965) introduced the concept of fuzzy 

set and fuzzy logic [32][35], but it has not spread 

and it was used in a wide range until (1990). The 

theory of the fuzzy set is a mathematical way to 

represent the uncertain nature of the information. 

This theory is now used to problems widely in 

functional analysis, in engineering, business, 

medical and related health sciences, and the natural 

sciences [33,36]. The fuzzy set theory is a 

generalization of the classical set theory and that 

means the classical set is a special case of fuzzy set. 

A fuzzy set  ̃ in   if   is a collection of objects with 

universal element   is a set of ordered pairs   ̃  

{(    ̃( ))    } , where   ̃( )  is called the 

membership function of   in   ̃ which maps   to the 

membership space    ,   ̃( )    [   ] . (When   

contains only two points 0 and 1,   ̃  is non-fuzzy 

(crisp) and   ̃( ) is identical to the characteristic 

function of a non-fuzzy set) [34]. 

Let (      ) be a probability space. The probability 

of a fuzzy event  ̃  in    according to Zadeh's 

definition is [17] [18]:  

 ( ̃)  ∫  ̃( )                 
       ( ) 

Equation (1) means a fuzzy event  ̃ in    is defined 

as the expectation of   ̃ with respect to  . 

If  ( ̃ ̃)   ( ̃)  ( ̃) where  ̃ ̃ is the fuzzy subset 

of     with membership function,   ̃ ̃( )  
  ̃( )   ̃( )        

  in this case two fuzzy events  ̃ 

and  ̃  are said to be independent. The conditional 

probability of  ̃ given  ̃ is defined by,  

  ( ̃| ̃)  
 (  ̃ ̃)

 ( ̃)
   ( ̃)    

Now, let   is the probability distribution of a 

continuous random variable   with probability 

density function (pdf)  ( ) The conditional 

probability of a crisp subset   given a fuzzy subset  ̃ 

can be defined as,   

 ( | ̃)  
∫  ( )  ̃( )  ( )   

∫  ̃( )  ( )  
 

                 ∫
  ̃( )  ( )

∫  ̃( )  ( )  
 

   

Therefore, the conditional density of   given  ̃ can 

be defined as:  

 (   ̃)  
  ̃( ) ( )

∫   ̃( )  ( )  
   

3. Weighted Exponential Distribution with some 

properties and some special cases 

The pdf of    distribution for              is 

given  by [1]: 

 (     )  {
   

 
       (       )  

                           
      …(2) 

where   denote the shape parameter and   denote 

the scale parameter.  

 

 
Figure 1. graph of the pdf of    distribution 

for       and different values of   . 
 

From equation (2), the random variable   has a    

distribution if and only if       , where   and   

are two independent random variables distributed 

as exponential distribution with parameters (ξ)  and 

(ξ(δ+1)) respectively. The cumulative distribution 

function of    distribution is knowledge of the 

following formula [11]: 

 

 (     )  
 

 
 [(   )(       )      (   )   ] 
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 (     )     
 

 
      (         )            ( ) 

 

 
Figure 2. graph of the cdf of the    distribution for 

      and different values of   . 
 

The reliability function of the    distribution is 

given by the formula: 
 (     )     (     ) 

   
 

 
      (          )      ( ) 

 

 
Figure 3. graph of the reliability function of the     

distribution for       and different values of   . 
 

The      moment about the origin (         ) is 

given by the formula [19]: 

 (  )   
(   )  (   )

    
(  

 

(   )   
)      ( ) 

where, 

 ( )   
    

 (   )
                                  ( ) 

 

 (  )   
 (       )

  (   ) 
                    ( ) 

Then,   
 ( )    (  )  [ ( )]  

    
 

  
 [  

 

(   ) 
]                        ( ) 

With certain values of the parameters, the pdf of 

WE distribution can be found as a special case of the 

following distributions:  
 Jones' model [1] for            when   

 

 
           ; 

 (       )  
 (   )

 ( ) ( )
        (      )    

 Weighted gamma-exponential distribution [20] 

for  
              when     

 (       )  
             (       )

 ( )[  (   )  ]
 

 Weighted generalized exponential-exponential 

distribution [20] for               when    ; 

 (       )  
        (      )

   
 (       )

     (     )
 

where   (   )  ∫     (   )      
 

 
  is the beta        

function. 

 Weighted Weibull distribution [21] for  
             when     ; 

 (       )  
   

 
             

 
(       

 
) 

 Exponentiated WE distribution [22] for   
            when    ; 

    (       )   [
   

 
     (       )] [

   

 
 (  

      
 

   
 (      (   )))]

   

  

 Weighted gamma distribution [23] for  

              when        
 

 
; 

 (       )  

     
 
 
 

   ( )
(   

 
  

 ∑
(
  

 
)
 

  

   
   )

  ∑
   (   )

(   )    ( )  

   
   

  

 Modified double WE distribution [24] for  
             when     ; 

 (       )  
(   )(      )

  
  (   ) (       )  

 Weighted gamma distribution [25] for   
             

      (
 

   
)
 

when     

 

 (       )    
(       )          

 ( )
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4. Non – Bayesian and Bayesian Estimation under 

Fuzzy Data 

4.1  Maximum Likelihood Estimation  

Let a random sample   (             )  drawn 

from a population having a pdf given by equation 

(2). 

The formula of the complete-data likelihood function 

 (     ) is, 

 (     )  ∏ (      )

 

   

 

             (
   

 
)
 

     ∑   
 
   ∏(        )  

 

   

  ( ) 

Now adopt that    is not exactly observed and only 

partial data exists in the form of a fuzzy subset  ̃ 

linked with the membership function   ̃ ( )  So, 

depending on equation (1) the observed data 

likelihood function and its natural log-likelihood 

function can be found, respectively, as [31]:  

 (     ̃)  (
   

 
)
 

    ∏∫    
 

   

(       )                  

    ̃ ( )          (  )

 

 ̃     (     ̃)      (   )              

 ∑   ∫     
 

   

(       )   ̃ ( )     (  ) 

 

The maximum likelihood estimators of  ̂   and  ̂    
can be gotten as the results of the following first 

partial derivative for  the equation  (  ); 
 

  ̃

  
 

  

 (   )
 

 ∑
∫        (   )    ̃ ( )   

∫      (       )   ̃ ( )   
      (  )

 

   

 

  ̃

  
 
 

 
 ∑

∫     ((   )       )  ̃ ( )  

∫     (       )   ̃ ( )  

 

   

                                                   (  ) 
Since the two equations (12) and (13) are non-linear 

equations and cannot be solved directly. So, 

Newton–Raphson's algorithm used to find the 

solution. The Newton-Raphson algorithm is done by 

applying the following iterative process, 

 

[ 
 ̂
 ̂ 
]

(   )

 [
 ̂
  ̂
 ]

( )

   ( )
  

[
 
 
 
 

 

  ̃

  
  ̃

  
  
]
 
 
 
 
( )

                      

where, 

 ( )  

[
 
 
 
 
   ̃

   
   ̃

     

   ̃

     

   ̃

   ]
 
 
 
 
( )

 

So,  

   ̃

   
   

 (    )

  (   ) 
  ∑[

 

   

∫           (   )   ̃ ( )    

∫      (       )   ̃ ( )   
 

 

             (
∫         (   )    ̃ ( )   

∫      (       )   ̃ ( )   
)

 

]                (  ) 

   ̃

   
  
  

  
 

  ∑[
∫        (  (   )       )  ̃ ( )    

∫      (       )   ̃ ( )   

 

   

 (
∫       ((   )        )   ̃ ( )   

∫      (       )   ̃ ( )   
)

 

]       (  ) 

 
   ̃

     
 
   ̃

     

 ∑[
∫     (   )(    (   ))  ̃ ( )   

∫     (       )  ̃ ( )   

 

   

 
∫       (   )   ̃ 

( )   ∫      ((   )       )  ̃ ( )   

(∫     (       )   ̃ ( )   )
 ] 

 (  ) 
 

With      , the initial values say    and   , have 

been selected to be the moment estimators as [30],  

 

 ̂   
     √    

   
 

 ̂   
 ̂    

( ̂    ) ̅
 

where    
 (  )

( ( ))
    

 

 
        

Now, the reliability function of the    distribution 

can be found by changing   and    in equation (4) by 

their     estimators as in the following equation: 

 ̂(     )  
 

 ̂
    ̂  ( ̂        ̂ ̂ )                          (  ) 

4.2  Bayes Estimation  

The unknown parameters in Bayesian estimation 

are supposed to be random variables. This means 

that we need prior distributions for those 

http://www.anjs.edu.iq/
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parameters, which depend on information about the 

parameters and preceding experience with similar 

studies. Next, we obtain the joint posterior density 

function by combining these prior distributions with 

the likelihood function. Let   be the parameter to be 

estimated by  ̂, then Bayes estimation of   is built 

in minimization of a Bayes loss function. The 

squared error loss function (SELF) for   is given by 

the formula [26],  

 
 ( ̂  )  ( ̂   )    

 

such that  ̂  is an estimation of   , so Bayes 

estimator of    created on this loss function is found 

as: 

 ̂   (  | ̃)                               (  ) 

 
That is, the expectation is taken with respect to the 

posterior distribution of  . Now, let the independent 

Gamma  (   )  and Gamma  (   )  correspondingly 

with pdfs as in equation (19) and (20) represent the 

prior distributions of   and     
 

 ( )  
  

 ( )
                                       (  ) 

 ( )  
  

 ( )
                                         (  ) 

The joint prior distribution say  (   ), of unknown 

parameters can be written as: 

 
 (   )   ( )  ( )

 
    

 ( ) ( )
            (     )                                   (  ) 

Now, combining equations (  ) and (  ) to get the 

joint posterior density function of   and   given 

fuzzy data,  

 

 (     ̃)  
 (   | ̃)  (   )

∫ ∫  (   | ̃)  (   )      
  

            (  ) 

where, 

 (   | ̃)  (   )  
    

 ( ) ( )
               

(   )    (     )∏∫    
 

   

(       )   ̃ ( )      

 

So, Bayes estimator of every function say  (   ) , 
built on SELF can be written as: 

 ̂(   )   [ (   )   ̃]

 
∫ ∫  (   )  (   | ̃)  (   )     

 

 

 

 

∫ ∫  (   | ̃)  (   )     
 

 

 

 

       (  ) 

 

Note that, equation (23) cannot be solved, so we 

use Lindley's approximation. Lindley (1980) [27] 

established an approximate technique for evaluating 

the ratio of two integrals that cannot be solved.  
Let  ( ̃) definite as: 

 ( ̃)  
∫ ∫  (   )   ̃  (   )     

 

 

 

 

∫ ∫   ̃  (   )     
 

 

 

 

                     (  ) 

where, 

 (   ): the function of    and  . 

 ̃  represents the natural log-likelihood function 

defined by equation (  ),  (   ) : the natural log-

joint prior density function. Then, for a sufficiently 

large sample size, the ratio of two integrals   ( ̃) can 

be approximated as, (see [28]). 

 

 ( ̃)   ( ̂  ̂)  
 

 
[( ̂     ̂  ̂ ) ̂   

( ̂       ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂   

( ̂      ̂  ̂ ) ̂  ]  
 

 
[( ̂  ̂    ̂  ̂  )( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )  ( ̂  ̂    ̂  ̂  )( ̂    ̂   

 ̂    ̂    ̂    ̂    ̂    ̂  )]    (  )  
 

where,  

 ̂ and  ̂ are the MLE's of   and   correspondingly. 

    is the (   )   elements of matrix [
    ̃

    
]
  

     

    such that sub-scripts (   )  denote to 

    correspondingly.  

 

 ̂            the first partial derivative of the 

function  (   ) with respect to   estimated at  ̂. 

 ̂   represent the second partial derivative of the 

function  (   )  with respect to   estimated at 

 ̂ Further expressions we can deduce in closely the 

same way 

 ̂  
    (   )

  
|
   ̂

   ̂

 
   

 ̂
       

 ̂  
    (   )

  
|
    ̂

   ̂

 
   

 ̂
    

and from (  ) (  ) and  (  ), we can get: 
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 ̂    
   ̃

      
|
   ̂
   ̂

  ̂    
   ̃

      
|
   ̂
   ̂

  ̂    
   ̃

      
|
    ̂
   ̂

 ∑
∫         (   )( (   )   )   ̃ ( )    

∫      (       )   ̃ ( )   

 

   

 ∑
∫         (   )   ̃ ( )   ∫   

   ((   )       )    ̃ ( )    

(∫      (       )   ̃ ( )   )
 

 

   

  ∑
∫       (   )   ̃ ( )   ∫    

   (   )( (   )   )    ̃ ( )    

(∫      (       )   ̃ ( )   )
 

 

   

  ∑
(∫        (   )   ̃ ( )    )

 
∫        ((   )       )   ̃ ( )    

(∫      (       )   ̃ ( )   )
 

 

   

  

 ̂    
   ̃

      
|
    ̂
   ̂

  ̂     
   ̃

      
|
    ̂
   ̂

 

 ∑
∫(   )        (   )(  (   )   )   ̃ ( )    

∫      (       )   ̃ ( )   

 

   

 ∑
∫        (  (   )      )   ̃ ( )   ∫     

   (   )   ̃ ( )    

(∫      (       )   ̃ ( )   )
 

 

   

  ∑
∫       ((   )       )   ̃ ( )    

∫      (       )   ̃ ( )   

 

   

    

[
∫       (   )(   (   ) )   ̃ ( )    

∫      (       )   ̃ ( )   

 
∫        ((   )       )  ̃ ( )     ∫     

   (   )   ̃ ( )    

(∫      (       )   ̃ ( )   )
 ] 

 ̂    
   ̃

   
|
    ̂

   ̂

  
  [ (   )  (    ) ]

  (   ) 
 

 ∑
∫          (   )   ̃ ( )    

∫      (       )   ̃ ( )   

 

   

 

 ∑
∫         (   )   ̃ ( )   ∫      

   (   )    ̃ ( )    

(∫      (       )   ̃ ( )   )
 

 

   

 

  ∑
∫        (   )   ̃ ( )    

∫      (       )   ̃ ( )   

 

   

[ 
∫          (   )   ̃ ( )    

∫      (       )   ̃ ( )   
 

 (
∫         (   )    ̃ ( )   

∫      (       )   ̃ ( )   
)

 

] 

 ̂    
   ̃

   
|
   ̂

   ̂

  
  

  
 

 ∑
∫        ( (   )        (   )         )  ̃ ( )    

∫      (       )   ̃ ( )   

 

   

  ∑
∫        (  (   )       )   ̃ ( )   

∫      (       )   ̃ ( )   

 

   

 

 [∑
∫       ((   )        )  ̃ ( )    

∫      (       )   ̃ ( )   
]

 

   

 

   ∑(
∫       ((   )        )   ̃ ( )   

∫      (       )   ̃ ( )   
)

 

  

 

   

 

The approximate Bayesian estimates under the 

SELF will be: 

 For parameter   :  (   )     then, 

    ,                          

 ̂   (   ̃)   ̂   ̂  ̂    ̂  ̂  

 
 

 
[ ̂  ( ̂    ̂    ̂    ̂    ̂    ̂  

  ̂    ̂  )

  ̂  ( ̂    ̂    ̂    ̂    ̂    ̂  
  ̂    ̂  )]                                      (  ) 

 For parameter   : let  (   )     then, 

    ,                       .  

 ̂   (   ̃)   ̂   ̂  ̂    ̂  ̂             

   
 

 
[ ̂  ( ̂    ̂    ̂    ̂    ̂    ̂    ̂    ̂  )

  ̂  ( ̂    ̂    ̂    ̂    ̂    ̂  
  ̂    ̂  )]                                    (  ) 

 For the reliability function  ( ) :  (   )  
 

 
      (          ) then 

   
 

 
    (        

 

 
 
 

 
     )   

     
   (      

 

 
 
 

 
       )        

    
 

  
    (       )  

  

 
    (   ) (   

 

 
)    

     
     (  

 

 
)        (   ) (  

 

 
  )    

        
 

  
    (       )         (   ) (  

 

 
). 

 ̂( )   ( ( )  ̃)

 
 

 ̂
    ̂  ( ̂        ̂ ̂ )

 
 

 
[( ̂     ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂  

 ( ̂     ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂  
 ( ̂  ̂    ̂  ̂  )( ̂    ̂    ̂    ̂    ̂    ̂  
  ̂    ̂  )

 ( ̂  ̂    ̂  ̂  )( ̂    ̂    ̂    ̂    ̂    ̂  
  ̂    ̂  )]                                                                     (  ) 

 

5. Simulation Algorithm  and  Outcomes   

5.1 Simulation Algorithm   

This section covers a summary of the five basic steps 

of a simulation study. Simulation is done using 

MATLAB (R2010b) 

Step (1):  This step is the most essential one: 

http://www.anjs.edu.iq/
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 Select different sample sizes         and 

   .  

 Select default values for the shape 

parameter to be             and without 

loss of generality the scale parameter   is 

select to be equal to 1.  

 Select the values of hyper parameters, 
          

 Select the times to calculate the reliability 

function estimates:          .  

 Select the number of sample replicated 

     . 

Step (2): Because it is difficult to obtain a clear form 

of the inverse cdf of WE distribution. Random 

samples say x are generated by the summation of 

two independent random variables distributed WE 

with parameters ξ and ξ(δ+1).   

Step (3): Based on the following fuzzy information 

system (Figure (4)), encryption of the simulated data 

such that every observation in the sample will be 

fuzzy constructed on a chosen membership function, 

 
Figure 4: fuzzy information system used to 

encryption the simulated data [29] 

 

   ̃ ( )  {

                            
      

   
                 

                                 

 

   ̃ ( )  {

      

   
                  

     

    
                   

                                   

  

   ̃ ( )  {

      

    
                 

      

    
                 

                                 

 

   ̃ ( )  {

     

    
               

   

    
                

                               

 

   ̃ ( )  {

      

    
                           

     

   
                            

                                      

 

   ̃ ( )  {

   

   
                          

   

   
                       

                      

 

Step (4): Calculate the estimates of the 

unknown parameters and the reliability 

function. The iterative procedure ends when 

the absolute difference among two successive 

iterations reaches less than         . 

Step (5): After repeating the above steps (100) 

times, we compare the different estimates for 

the unknown parameters depending on the 

mean squared error    ( ̂)  and    ( ̂)  and 

compare the different estimators of reliability 

function with different times depending on the 

integrated mean squared error     ( ̂( )) as,  

   ( ̂)  
∑ ( ̂   )

  
   

 
                                      (  ) 

   ( ̂)  
∑ ( ̂   )

  
   

 
                                      (  ) 

    ( ̂( ))  
∑

 

  
 ∑ ( ̂ (  )   (  ))

   
   

 
   

 
 (  ) 

where,  

 ̂   ̂  : Estimate of    and    at the     repeat (run). 

 : Number of samples repeated.  

  : Number of times selected to be (4) 

 ̂ (  ) : Estimates of  ( )  at the     repeat and 

    time. 

5.2 Simulation Outcomes for Estimating the      

Parameters 

Using             and fixed    , so from the 

estimated     values we observed: 

http://www.anjs.edu.iq/
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 The values of     related to all estimations 

decrease when the sample size increases.  

 When the value of the shape parameter,   

increase the values of     related to all 

estimations increasing for total sample sizes with 

maximum likelihood and Bayes estimates. 

 The performance of Bayes estimators is better 

than the maximum likelihood for total sample 

sizes. 

5.3 Simulation Outcomes for Estimating the 

Reliability Function 

Using             and fixed    , so from the 

estimated      values we observed the: 

 The values of      related to all estimations 

decrease when the sample size increases. 

 When the value of the shape parameter, increase 

the values of      associated with all 

estimations decrease for total sample sizes. 

 The performance of obtained Bayes estimators is 

better than the maximum likelihood for total 

sample sizes.    

 

Table 1. MSE Values Related ML Parameters estimates with Different Sample Sizes 

   ,      ( ̂)    ( ̂) 

25 

0.5,1 0.7573368 0.2148409 

1,1 0.8290270 0.2257785 

1.5,1 1.3632167 0.2744387 

50 

0.5,1 0.6878762 0.0458749 

1,1 0.8116826 0.1426626 

1.5,1 0.9961581 0.1595756 

100 

0.5,1 0.2510535 0.0121039 

1,1 0.5295170 0.0468772 

1.5,1 0.8299027 0.0614012 

 

Table 2. MSE Values Related Bayes Parameters Estimates with Different Sample Sizes 

   ,      ( ̂)    ( ̂) 

25 

0.5,1 0.4533799 0.0186437 

1,1 0.4938780 0.0188310 

1.5,1 0.6134889 0.0198231 

50 

0.5,1 0.3273896 0.0123893 

1,1 0.3658930 0.0155298 

1.5,1 0.3996709 0.0193793 

100 

0.5,1 0.0917286 0.0086008 

1,1 0.1686639 0.0091631 

1.5,1 0.1789889 0.0093009 

 

Table 3. IMSE Values Related ML and Bayes Reliability Function Estimates with Different Sample Sizes 

   ,   
ML 

    ( ̂( )) 
Bayes 

    ( ̂( )) 

25 

0.5,1 0.0333747 0.0072386 

1,1 0.0028296 0.0019059 

1.5,1 0.0027134 0.0016223 

50 

0.5,1 0.0052202 0.0038890 

1,1 0.0019512 0.0011085 

1.5,1 0.0006616 0.0004556 

100 

0.5,1 0.0008538 0.0002418 

1,1 0.0002580 0.0002088 

1.5,1 0.0002333 0.0001086 
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6. Conclusions  

1. From estimated mean squared error values 

associated with different estimations of the 

unknown shape and scale parameters of the 

weighted exponential distribution, we have 

observed:  

 For all sample sizes, increase the value of 

the shape parameter, increasing the values 

of mean squared error associated with 

maximum likelihood and Bayes estimates.  

 With all estimators, the values of mean 

squared error decrease as the sample size 

increases.  

 For all sample sizes, the performance of 

obtained Bayes estimators according to 

Lindley's approximation is better than that 

of maximum likelihood estimators. 

2. From estimated integrated mean squared 

error values associated with different estimations of 

the reliability function of weighted exponential 

distribution we have observed: 

 For all sample sizes, increase the value of 

the shape parameter, decreasing the values 

of integrated mean squared error associated 

with all estimations. 

 The values of integrated mean squared 

error associated with all estimations 

decrease as the sample size increases. 

 The performance of obtained Bayes 

estimators according to Lindley's 

approximation is better than that of 

maximum likelihood estimators for all 

sample sizes. 

 

7. Recommendations 

For future studies, some recommendations can be 

given, including:  

 Estimate the unknown parameters and 

reliability function of WE depending on fuzzy 

data with various changes such as estimation 

method, fuzzy information system, membership 

function, and approximation technique. 

 Do similar work with a different continuous 

probability distribution. 
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