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Abstract

The Liouville equation for the g-deformed 1-D classical harmonic oscillator is derived for two
definitions of g-deformation. This derivation is achieved by using two different representations for
the g-deformed Hamiltonian of this oscillator corresponding to undeformed and deformed phase
spaces. The resulting Liouville equation is solved by using the method of characteristics in order to
obtain the classical probability distribution function for this system. The 2-D and 3-D behaviors of
this function are then investigated using a computer visualization method. The results are compared
with those for the classical anharmonic oscillator. This comparison reveals that there are some
similarities between these two models, where the results for the g-deformed oscillator exhibit
similar whorl shapes that evolve with time as for the anharmonic oscillator. It is concluded that
studying the Liouville dynamics gives more details about the physical nature of g-deformation than
using the equation of motion method. It is also concluded that this result could have reflections on
the interpretation of the quantized version of this q-deformed oscillator.

Keywords: Classical g-Deformed Oscillator, Liouville Equation, Method of Characteristics.

Introduction the action integral to obtain the g-deformed

The notion of deformation is inherent in equation of motion [7]. On the physical
physics, where quantum mechanics can be interpretation ~ side, the  problem  of
considered as a deformation of Newtonian g-deformation is still an open problem. This is
mechanics with deformation parameter/ and, true on both the classical and quantum
hence, in the limit # — 0quantum mechanics mechanical levels. As a first step in tackling,
reduces to Newtonian mechanics. Similarly, this interpretation problem, we deal in this
special relativity is the deformation of work with the classical g-deformed harmonic
Newtonian mechanics with deformation oscillator as a model for applying our
parameter v/c such that in the limit v/c—0 methodology. Previously, some attempts in

this direction can be found in the work of
Man’ko [8] based on the equation of motion
for this oscillator. In contrast, our
methodology is based on deriving the
Liouville equation for this qg-deformed
oscillator. We believe that this gives more
details about the physical behavior of a system
in its phase space compared with the equation
of motion method which has known
limitations.

It is also considered as a necessary first step
before dealing with the problem of the
quantized version of this oscillator [9].

The rest of the paper is organized as
follows. First, the q-deformed classical
harmonic oscillator this section is discussed
where its Hamiltonian is introduced for both
types of g-deformation. Then, the equations of
motion and the Liouville equations are
derived. Finally, the solutions for these

reduces to Newtonian mechanics [1]. From
these physical examples, one can give a
general mathematical definition for g-
deformation in terms of a g-analog theorem
[2, 3] where the identity expression is a
generalization involving a new parameter that
returns the original theorem in the limit g —>1
[2,3].

The g-deformed harmonic oscillator was
introduced firstly in connection with studying
quantum groups [4], where one can consider it
as a deformation of the standard quantum
harmonic oscillator. There are also different
approaches to introduce g-deformation for the
harmonic oscillator on the classical level. One
approach, is the g-deformation of the Poisson
bracket via the Jackson derivative [5]. Another
approach, is the g-deformation of the
Lagrangian of the harmonic oscillator [6].
Also, there is the possibility of g-deforming
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Liouville equations are obtained by using the
method of characteristics, then wused to
simulate the behavior in two and three
dimensions and the conclusions are presented.
The g-Deformed Classical Harmonic
Oscillator

The Hamiltonian of the 1-D simple
harmonic oscillator (SHO) with mass m and

angular frequency wis defined as:

2 2 2
H=f O 1)
2m 2
Let us also define:
maw i/@
a= + = e, 2
20 77 Phme @
* Mmaw |f’
a = — e 3
2h 7 J2hmw ®)
where the appearance of h in these

equations is to provide a convenient scaling
for various physical quantities [10]. In terms of

these new complex coordinates(a,a”), the
canonical coordinates(¢,z)can be written as
[8, 10, 11]:

g= m(a+a*) ............................. (4)
p=—i hmTw(a—a* ....................... )

Then, substituting egns. (4) and (5) into
eqn. (1) one obtains [8, 10]:

H (a,a*):h Y, 2 A

The two complex variables o and « can
be considered as two independent coordinates
in a complex phase space [11].

The concept of g-deformation can be
introduced into this 1-D SHO by transforming

to g-deformed coordinates aq and aa by a

non-linear transformation as [8,13]:

aq = f(@, &™) @ s (7)
aa =f (a,@") @ e, (8)
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where f=f(a,a") is a non-negative
function of the two independent complex
variables ¢ and ",

Generally, the function f(a,a”) has the

following three forms corresponding to the
deformation types shown in Table (1):

Table (1)
Forms of the function f (a,a” )and their
associated types of deformation.

, * type of deformation

undeformed case

g—deformed case

otherwise general f—deformed case

where [ I is a g-number [8,13,14]

defined as either:

aa”  _-ad*
L
q g-q
hence,
/[aa ]q smh Ao ) ©
— smh G)

real

The parameter ¢

g-deformation parameter in the range of values
0<qg<1 while A4 represents the nonlinearity

parameter in the range of values—oo < 1 < 0.

represents a

(i) The
%

Classical Hamiltonian in

—Representation.
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The classical Hamiltonian is defined in

{a, Ha(a,a* )}:

terms of the (aq,aa)coordinates as given by
Man’ko [8, 13] as {05,05*}‘ {05’ H&(a'“*)}a o
Hq (aq,aa) =h a)aqaa ..................... (12) (see Appendix-A) ______________ (15)
(ii) The Classical Hamiltonian in Then simplifying {a,Ha(a,a*)} by
a—Representation. a,a
Using the definition of the function f given using the fact that o and o are two
by egns. (9) and (10) in the non-linear independent complex variables, the result
transformation egns. (7) and (8), then becomes
substituting the results into egn. (12), we @Ha(a,a*)
obtain: {a,H&(Ofﬂ*)} .= ( " j
Ha(a,a*)=ha)f fraa™ = a.a Ja a
32) e (16)
: Y a
how M and substituting Ha(a,a*)from eqns. (13)
sinh (1)

into egns. (16), these equations become:

and,
Ha(a,a*) —hwf ffaa” = lCOSh(/HOllZ)}

f * —
lwHy(@a}, .= h‘”{ sinh(2)

Ao _1| (I30) s (17a)
hw = and,
(e* - 1) ,
y) Alal
Respectively, where Ha(a,a*) represents {a,Ha(a,a*)} ,=hw ET a
o, —_
the Hamiltonian of the g-deformed oscillator (e 1)

defined in terms of the complex undeformga (17b)
(a,a”)  coordinates. Eqn. (13a) was
previously obtained by Man’ko [8, 13].

Defining w&”)

2
/‘Lcosh()t|a| )
The Equation of Motion ¥ = b (18a)
The equation of motion for the g—deformed d sinh ()
harmonic oscillator can be obtained in the
a -representation and aq -representation as: and, )
(2) Ae}“|a|
(|) a’—Repl‘esentationZ Cl)q =w T ....................... (18b)
The equation of motion in this (e _l)
representation is: e the f
¥ egns. (17) take the form:
d(t):{a,Ha(a,a )} ................... gy oS Unw ()
7. {a,Ha(a,a )}aa* = ha)q a ;u=12.
where the notation |, J  represents the e (19)
Poisson bracket with respect to the canonical
coordinates (4,p), Where the subscripts where w&”) can be considered as the
(4, ) will be dropped from now and on. frequency of the qg-deformed classical
harmonic oscillator in the « -representation.
But since, Again, it is noticed that eqn. (18a) is the same

as that introduced by Man’ko [8].
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Also, it can be shown that [8, 10, 11]:

* [
e} =[5
Then, substituting egns. (19) and (20) into

eqn. (15), and using the result in eqgn. (14),
yields

a(t)=-i w&”)a ;

It is worth mentioning that, |a|2 represents

a constant of the motion for the undeformed
classical oscillator. This is based on the fact
that the Poisson bracket for the undeformed

{aa*,H(a,a*)} =0,

a,x
where H(a,a”) is as given by eqgn. (6). A

£=12 (21)

Hamiltonian

similar result can be obtained for
{aa*,Ha(a,a*)} ,=0 and

oo
{aqaq,Hq (aq,aq )}Olqﬂa =0.

Egn. (21) and its complex conjugate
represent the equations of motion for the
g-deformed classical harmonic oscillator in the
a-representation.

Solving these equations of motion gives the
equations of trajectories for the g-deformed
classical harmonic oscillator in the complex

(a, a*) phase space:

—j a)(ﬂ)'[
a(t) =a(0)e g
[ =12 . 22)
o (t)=a*(0)e

where, «(0) and «"(0) are initial
trajectory pointsat t=0.

(i) aq —Representation:

In this case, the equation of motion is given
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{aq,Hq(aq,aa )} =

{aq,aa} : {aq,Hq faq,aa )}aq,aa

(see Appendix-A) ............ (24)
Also,
. 0Hy.f (ag.ay)
{ag, qu(aq'aq)}a o (%)
q%q q aq
............................... (25)
Substituting H, (aq g )from eqn.  (12)
into eqgn. (25), the result is:
{aq,Hq(aq,aq )}a . = ha)aq ........ (26)
g q
Also, since the Poisson  bracket

{aq ,aq} = {a,a } {aq ’aQ}a,a* for the
g-deformed oscillator can be written as:

. i [ A [L+larg|* sinh? (1)
{“q’“q}:‘(ﬁ) J siqnh(l)
.............................. (27a)
| ) i\ [ A1 lagl? (1-€*)
ot
............................. (27b)

Then substituting the Poisson brackets
{aq,quaq,aq)}aq,aaand {aq,aq}from

eqn. (26) and eqgns. (27) into eqgn. (24), and
using the result in egn. (23), one obtains:

dq(t) = —iwg“)aq . u=34. (28)
where,
A JL+|ag|* sinh? (2)
(3) _ \/ q
Wy’ =w sinh(/l) ........ (29a)
and,
Al1- e [P (1-e?
wg‘):a) [ d ( ﬂ ......... (29b)
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It is noticed that egn. (29a) is the same as
that introduced by Man’ko [8].

Egn. (28) and its complex conjugate
represent the equations of motion for the
g-deformed classical harmonic oscillator in the
2 -representation.

Again, solving these equations of motion,
gives the equations of trajectories for the
g-deformed classical harmonic oscillator in the

complex (aq,aa ) phase space:

—i a)qt
aq (1) = aq (0)e
R S (30)
. I a)qt
aq (t)= g (0)e
where, o (0) and aa (0) are initial

trajectory pointsat t=0.

The Liouville Equation

In this section, the Liouville equation for
the g-deformed classical harmonic oscillator in
the two complex phase space representations is
derived. In general, the Liouville equation for
a Hamiltonian system described by a
Hamiltonian H is given as [12]:

0A

—=1H, A} 31
ot { | (31)
where A represents any dynamical
variable.

(i) Liouville’s Equation in the

o —Representation
In this case, and using the Hamiltonian

Ha(a,a*), the classical Liouville equation

can be shown to be:

8@3_ (a,a*;t)
ot

.............................. (32)

where @C?L (a,a";t)  represents the
probability distribution function for the
g-deformed classical oscillator in the
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« -representation, where the subscript cL
indicates the classical system.
But since,

{Hq (a,a*),@gl_ (a,a*;t)} =

{a,a*}- {Hq (a,a*),(PgL (a,a*;t)}

a.a”
(see AppendixX-B) ......cccccveviiiiennnn, (33)
then, using the definition of the
Hamiltonian Hyg (a,a*) in the

o -representation as in eqns. (13), we obtain:

oH (a,a*)
q _ 2 *
— | =ho(t?+2atf,)a
a*
.............................. (34)
and,
oH  (a,a"
# :hw(f2+2a*ff *)a
oa a
(04
............................. (35)
Furthermore, the Poisson bracket
{Hq (a,a*),@gl_ (a,a*;t)} can be
ao”
written as:
{Hq(a,a*),@g_ (a,a*;t)} =
aa”
Lqu(a,a*)j (a@gl_(a,a*;t)j
oa C(* aa*
) [qu(a,a*)f] (a@&(a,a*;t)}
aa* a oa
............................. (36)

Then, substituting egns. (34) and (35) into
eqn. (36), this Poisson bracket becomes:

Hglea) T (@an)]

0

oa*
a g}@& (a,a*;t)

(24

ha)[(f2+2af o)

—(f2+2a*ff )
o



Substituting eqgns. (37) and the Poisson
bracket{a,a*} from eqgn. (20) into egn. (33),

Wwe can write:
* q * .
{Hq(a,a ),(PCL(a,a ;t)}:—lw

0
A (fPa2af ot
(( Ot) oot
0 q .
a 8_j(PCL (a,a;t)

—(f2+2a*ff )
(04 [04

Using egn. (38) in egn. (32) and

re-arranging, the result becomes:
q *,
0P (a,a™;t)
ot

0

oo™

—ia){(f2+2af fy )’
1

But, since «f, =a"f , where
a

4

f212a%F F
[04

0 q *
) a %} Pe (a,a™;t)

(i){/lcosh(/ﬂaf)

2f sinh(4)

then, egn. (39) becomes:
q x,
G@CL (a,a ,t)
ot

where w{*)

g is given by eqgns. (18).
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Eqgn. (41) represent the Liouville equation

for the g-deformed classical harmonic
oscillator in the « -representation.
(i) Liouville’s Equation in the

aq —Representation.

For this case, the Liouville equation is
given as:

q *
8PC|_ (aq,aq;t)
ot

{Hq (aq,aa), Pgl_ (aq,aa ;t)}

.............................. (42)
where PCqL (aq , aa ;t) represents the
probability distribution function for the

g-deformed classical harmonic oscillator in the
% -representation.

But since,
* q * *
{Hq (aq,aq), PoL (aq,aq;t)}:{aq,aq}

% q %
. {Hq (aq,aq), PCL (aq,aq;t)}a "
q-q

(see Appendix-B)

and the Poisson bracket

{Hq (aq,aq), PCL (aq ,aq ,t)}a i
qq

is defined as:

% q *
{Hq (aq,aq), PeL (aq,aq;t)}a o
q-q
(aq,aa;t)

oo

2 q

aq
0P

oo

B [GHq (a
oa

Then, using the definition of
Hamiltonian Hq(aq,aq) in the

Hy (g 2q)
(aq Zq]

o]

« q %
,aq )VJ P (aq,aq;t)
q

O

representation as in egn. (12) , gives:
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oH, (e, a
Malogea)| 0 (45)
oa g
q ot
and,
oH,la,,a
q( (1 q) Y, (46)
8aq q
%q

Substituting egns. (45) and (46) into eqn.
(44) and re-arranging, the result takes the
form:

* q *
{Hq (aq,aq), PeL (aq,aq;t)}a . =

0 q

@ q aaq

ar— —a
q@aa

Now, substituting egn. (47) and the Poisson
bracket {aq,aa} from eqgns. (27) into eqn.
(43), we obtain:

{Hq (aqﬂa)' PC?L (aq,aa;t)} =

Substituting eqgn. (48) into egn. (42), gives:

q %

0 PeL (aq,aq,t
ot

):—i w&“)

A ak 0 -a 0 Pq (a a*'t)
qaaa Qaaq CL\™q'™q’

where, w,, is given by eqns. (29).

q
Eqgn. (49) is the required Liouville equation
for the g-deformed classical oscillator in the

aq -representation.
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It is obvious that in the limit g—1, the

Liouville egns. (41) and (49) for the g-
deformed classical harmonic oscillator in the

o - and aq-representations reduce to the

Liouville equation of the undeformed
harmonic oscillator with angular frequency w:

GPCL (a,a*;t)

ot
_|a)[a 0 —aijPCL(a,a*,t)
oa” ofe
............................. (50)
where  Po (a,a”;t)  represents  the
probability distribution function for this

oscillator in the ¢ -representation as expected.

Solutions of the Liouville Equations
Solutions of the Liouville equations of the
g-deformed harmonic oscillator, (i.e., eqgns.
(41) and (49)) can be obtained by using the
method of characteristics [10] in the same
manner as performed by Milburn [10] for the
anharmonic  oscillator. Hence, in the
a -representation, assuming the following
initial solution at t=0:
— ‘a—a(O)‘Z

(P(?L (a,a*;O) —e

then, by transforming to the rotating frame
[10], the time-evolution for each point (a,a™)
in complex phase space can be obtained by
replacing a by« (t) given by [10]:
—ia)((q“)t

a(t)=ae

Substituting eqn. (52) into egn. (51), one
obtains:

Q)C?L (a,a*;t) —e

Similarly, in the «a-representation, we

q
assume that:



By direct substitution of the solutions given
in eqns. (53) and (54) into the classical
Liouville egns. (41) and (49), one can verify
that these solutions satisfy these equations.

Computer Visualizations for the
g-Deformed Classical Harmonic Oscillator

The computer visualization method is
utilized by Milburn [10] to investigate the
time-evolution of the probability distribution
function for the anharmonic oscillator in

phase-space using the Husimi Q -function.

This function represents a quasiprobability
distribution function and it is widely used in

the field of quantum optics. The Q -function is
a normalizable positive function with values in
the range 0<Q <1. However, it is noted that
the frequency of the anhrmonic oscillator

treated by Milburn [10] is a function of |a|2.
Similarly, for the case of the g-deformed
oscillator the frequency is a function of |a|2 or

|aq|2depending on the representation. This

motivates using the same method used by
Milburn [10] to investigate the behavior of the

probability distribution functions
Fer (ana"st) and Pa(“q’“q’t)-

In the present work, a computer simulation
program was written in Mathematica® to
perform the computer visualizations. The

initial values 7, and 2 were taken as 10

J2
measured in units of / 2h and [2hmw
m w

respectively and, hence, (2

«(0)=0.5.
To verify the reliability of this simulation

program, the same results that were obtained
by Milburn [10], were found to be

from eqgn.
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reproducible in the present work by applying
the computer program to his problem [10]. The
results obtained are illustrated in Fig. (1).
Using the dimensionless time r=wt.

In a similar manner, the time evolution of
the  probability  distribution  function

Q’gL (a,a";t) can be represented in phase space

through the behavior of a particular initial
contour |or—a(0)| :% centered at «(0) [10].

Each point on the initial contour will move
according to egns. (23), and the evolution of
this initial contour within the time interval

0<7<27 in the phase space region

-1< g <land -1< 7 <1 was followed.

The results of such a procedure are depicted
in Fig. (2) and Fig (3) where the time-
evolution of the 2-D probability distribution is
shown. The results for the time evolution of
the  probability  distribution  function

q * .
PCL(aq,aq;t) have the same values despite

the fact that they different expressions. For this
reason, these results will not be presented here.
These figures exhibit whorl shapes and can be
contrasted with those obtained by Milburn [10]
for the anharmonic oscillator as shown in
Fig.(1), where it is clear that these whorl
shapes again become finer as t —co.
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P P

1
1.

N N
)

—
.

-t -t
(b)
P P

7 iy &\ T 7

1
=1 =1

(©) (d)

Fig. (1): The 2-D time-evolution contours of the classical probability distribution function Q for
the anharmonic oscillator in phase space for different values of time (7 ):
(@)r=x/2,(0)r=7x,()r=37/2,and (d)r=2r.
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e P
1. 1
-1, U_‘f -1. \)1_7

1 1
=1, i

(©) (d)

Fig. (2): The 2-D time-evolution contours of the classical probability distribution function

q
(PCL (a,a*;t) for the g-deformed harmonic oscillator with frequency a)&l) given by eqgn. (18a)

and g =0.5 in phase space for different values of time (7 ):
(@)r=xr/2,0)r=x,(c) 7=37/2 ,and (d) r=2r.
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e 7P
1. | L.
-1 .7 -1 i.7
-1 ~1.
(a) (b)
f}
1‘7& 1.
T 1.7 —t .7
=1
1.(C) (@

Fig.(3): The 2-D time-evolution contours of the classical probability distribution function

(PCL (a,a*;t) for the g-deformed harmonic oscillator with frequency w&z) given by eqgn. (18b)

and q=0.5 in phase space for different values of time (7 ):
(@7=x/2,(0)r=7x,(c) 7=37/2 ,and (d) r=2x.

In Figs.(4)-(6), results of 3-D time- for the classical q-deformed oscillator.
evolution of the same probability distributions Another noticeable feature is the observation
are presented. Eqns. (53) and (54) were used to that the Gaussian shapes of these distributions
calculate the wvalues of the probability become more convoluted around themselves

o q %) q . as t — oo, which is clear in Figs. (4) - (6).
distributions Py, (e,a";t) and PCL(aq,aq,t).
It is clear from all of these figures that the
peaks of the g-deformed Gaussians for the

probability distributions Q and (PCqL(a,a*;t)

do not change with time and equal to the
maximum value (i.e.,1). These peaks follow
the trajectories shown in Fig.(1) and Fig.(2)
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(©) (d)

Fig. (4): The 3-D time-evolution of the classical probability distribution function Q for the
anharmonic oscillator in phase space for different values of time (7):
(@)7=xr/2,0)r=x,(c)r=37/2 ,and (d)7=2x.
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(©) (d)
Fig (5): The 3-D time-evolution of the classical probability distribution function (PCqL (a,a;t) for
the g-deformed harmonic oscillator with frequency wél) given by eqn. (18a) and gq=0.5 in phase

space for different values of time (7 ):
(@)7=x/2,(0)r=x,(c)r=37/2,and (d)r=27.
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@ (b)

(©) (d)

Fig.(6): The 3-D time-evolution of the classical probability distribution function QD(?L (a, ;1)

for the g-deformed harmonic oscillator with frequency a)((f) given by egn. (18b) and g=05 in

phase space for different values of time (7):
(@)r=1/2, (b)T =7, (c)r=3x/2, and (d)7 =2r.
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Conclusions

The investigation of the behavior of the
Liouville equation derived in the present work
for the g-deformed 1-D classical harmonic
oscillator in phase space shows whorl shapes
evolving with time as in Fig. (2) and Fig. (3).
These figures show many similarities to the
results obtained by Milburn [10] for the 1-D
classical anharmonic oscillator depicted in
Fig.(1). These similarities, and in particular the
whorl shapes, result from the fact that the
anharmonic oscillator itself represents a kind
of deformation with a frequency which is a

function of |a|2. This leads us to conclude that

the whorl shapes in phase space can be
considered as a generalized phenomenon
connected with the deformation of any
classical system, with g-deformation of the
classical harmonic oscillator being a special
case.

Appendices

Appendix-A

Evaluation of the Poisson Brackets

{“’Hq(“’“*)} and {“q’Hq(“Q’“a)}

According to the definition of the Poisson

bracket [12], and considering H q &a function

of the two independent variables & and a*,
one can write:

(a“_q] _[Mq (a_a
oa | .\ o0
op , ot NPy
.............. (A1)
+ . —
oa o Op "
and,
(quJ _ [qu] (a_aJ
87 oa | 87
a
r N (A.2)
+ " a—
oa o\ 7 »

Hence,
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{a, Hq (a,a*)}:

Egn. (A.3) can be simplified to obtain:

{a, H.(x,a" )}:

q

&) 5
% ), \ P
IBIE
# g\ % ), oo’

Now, since

{a, Hq (a,a” )}

then, substituting eqn. (A.5) into eqn.
one obtains:

{a, Hq (a,a*)}z

{a,a*} . {a,Hq(a,a*)} .

a,x

Similarly, one can prove that
{aq,Hq (aq,aq )}:

{aq,aa} : {aq Hy (aq,aa )}aq ﬂa



Appendix-B
Evaluation of the Poisson Brackets

**Q(QQ’QG)’FéL(aq,a;;t)}and
H (@.a®) B (aa™0)]

ConsideringH_ as a function of the two

q

independent variables o, and aa, one can

q
write:

(quJ (qu} (aan
1) oo . 15,
e Vg T Jp

.................................. (B.1)
and,
qu _ qu aaq
Op aaq .| Op
7 0 7
. qu aaq
aaa op
aq 7«
.................................. (B.2)

Substituting egns. (B.1) and (B.2) into the
definition  of  the  Poisson  bracket

o\ pd )
{Hq (aq,aq), P (aq,aq : t)}, the result

becomes:

A. S. Mahmood

* q x _
{Hq (aq,aq), PeL (“q’aq ; t)}_
LquJ [éaq]
day | ,| O
oH oo
B Y
Oay, Oz
a »
achL ath
Gaq . op
aq ¥
q *
+ aPCL 8aq
80{3 op
2 7
) [qu] [8aq]
aaq 2 (3;9 ,
q
oH oo
Y
8aq op
2 7

After some mathematical manipulations,
this equation can be simplified to yield:
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{Hq (“q’“a)' P&(aq,aa : t)}:

But since the Poisson bracket

{“q g }=
=)

then, substituting egn. (B.5) into eqgn. (B.4)
one gets:

% B aaq Gaq
P

{Hq (aq,aa ), P(?L (aq,aa ; t)}:{aq ,aa }

% q %
: {Hq (aq,aq ) PeL (aq,aq : t)}a -
g'7q

Similarly, one can prove that
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{Hq (a,a*),q)cql_ (“’“*;t)}: {a,a*}

. {Hq (a,a*),(PgL (a,a*;t)}

*
a,a
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