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Abstract 

The Liouville equation for the q-deformed 1-D classical harmonic oscillator is derived for two 

definitions of q-deformation. This derivation is achieved by using two different representations for 

the q-deformed Hamiltonian of this oscillator corresponding to undeformed and deformed phase 

spaces. The resulting Liouville equation is solved by using the method of characteristics in order to 

obtain the classical probability distribution function for this system. The 2-D and 3-D behaviors of 

this function are then investigated using a computer visualization method. The results are compared 

with those for the classical anharmonic oscillator. This comparison reveals that there are some 

similarities between these two models, where the results for the q-deformed oscillator exhibit 

similar whorl shapes that evolve with time as for the anharmonic oscillator. It is concluded that 

studying the Liouville dynamics gives more details about the physical nature of q-deformation than 

using the equation of motion method. It is also concluded that this result could have reflections on 

the interpretation of the quantized version of this q-deformed oscillator. 
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Introduction 
The notion of deformation is inherent in 

physics, where quantum mechanics can be 

considered as a deformation of Newtonian 

mechanics with deformation parameter  and, 

hence, in the limit 0 quantum mechanics 

reduces to Newtonian mechanics. Similarly, 

special relativity is the deformation of 

Newtonian mechanics with deformation 

parameter c  such that in the limit 0c   

reduces to Newtonian mechanics [1]. From 

these physical examples, one can give a 

general mathematical definition for q-

deformation in terms of a q-analog theorem  

[2, 3] where the identity expression is a 

generalization involving a new parameter that 

returns the original theorem in the limit 1q 

[2, 3]. 

The q-deformed harmonic oscillator was 

introduced firstly in connection with studying 

quantum groups [4], where one can consider it 

as a deformation of the standard quantum 

harmonic oscillator. There are also different 

approaches to introduce q-deformation for the 

harmonic oscillator on the classical level. One 

approach, is the q-deformation of the Poisson 

bracket via the Jackson derivative [5]. Another 

approach, is the q-deformation of the 

Lagrangian of the harmonic oscillator [6]. 

Also, there is the possibility of q-deforming 

the action integral to obtain the q-deformed 

equation of motion [7]. On the physical 

interpretation side, the problem of  

q-deformation is still an open problem. This is 

true on both the classical and quantum 

mechanical levels. As a first step in tackling, 

this interpretation problem, we deal in this 

work with the classical q-deformed harmonic 

oscillator as a model for applying our 

methodology. Previously, some attempts in 

this direction can be found in the work of 

Man’ko [8] based on the equation of motion 

for this oscillator. In contrast, our 

methodology is based on deriving the 

Liouville equation for this q-deformed 

oscillator. We believe that this gives more 

details about the physical behavior of a system 

in its phase space compared with the equation 

of motion method which has known 

limitations.  

It is also considered as a necessary first step 

before dealing with the problem of the 

quantized version of this oscillator [9].  

The rest of the paper is organized as 

follows. First, the q-deformed classical 

harmonic oscillator this section is discussed 

where its Hamiltonian is introduced for both 

types of q-deformation. Then, the equations of 

motion and the Liouville equations are 

derived. Finally, the solutions for these 
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Liouville equations are obtained by using the 

method of characteristics, then used to 

simulate the behavior in two and three 

dimensions and the conclusions are presented. 

 

The q-Deformed Classical Harmonic 

Oscillator 

The Hamiltonian of the 1-D simple 

harmonic oscillator (SHO) with mass m  and 

angular frequency ω is defined as: 
2 22

2 2

m
H

m
 

ω qp
  ................................ (1) 

Let us also define: 

2 2

im

m
  

ω

ω

p
q

h h
  ....................... (2) 

2 2

im

m
  

ω

ω

p
q

h h
  ...................... (3) 

where the appearance of h  in these 

equations is to provide a convenient scaling 

for various physical quantities [10]. In terms of 

these new complex coordinates  , 
, the 

canonical coordinates  ,q p can be written as 

[8, 10, 11]:  

 

 
2m

  
h

ω
q   ............................. (4) 

 
2

m
i    

h ω
p   ....................... (5) 

 

Then, substituting eqns. (4) and (5) into 

eqn. (1) one obtains [8, 10]: 
 

 ,H     ωh   .............................. (6) 
 

The two complex variables   and 
 can 

be considered as two independent coordinates 

in a complex phase space [11].  

The concept of q-deformation can be 

introduced into this 1-D SHO by transforming 

to q-deformed coordinates q and q
  by a 

non-linear transformation as [8,13]:  

 

 ,fq      ................................... (7) 

 ,fq         ................................ (8) 

where  ,f f    is a non-negative 

function of the two independent complex 

variables   and  . 

Generally, the function  ,f    has the 

following three forms corresponding to the 

deformation types shown in Table (1): 

 

Table (1) 

Forms of the function  , f 
and their 

associated types of deformation. 
 

 ,f  


 type of deformation 

1 undeformed case 

q








 
 

 
q–deformed case 

otherwise general f–deformed case 

 

where  q  is a q-number [8,13,14] 

defined as either: 

1

q q

q q q

 


 




  
  

    
hence, 

   

 

sinh

sinh

q 

  

 

 
   ................... (9) 

or 

1

1

q

qq





  

  
  

hence, 

 

 
1

1

eq

e



 










  ............... (10) 

where, 

q e   .................................................. (11) 
 

The parameter q  represents a real  

q-deformation parameter in the range of values 

0 1q   while   represents the nonlinearity 

parameter in the range of values 0   . 

(i) The Classical Hamiltonian in  

q –Representation. 
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The classical Hamiltonian is defined in 

terms of the  ,q q  coordinates as given by 

Man’ko [8, 13] as 

 ,q q q q q     ωH h   ..................... (12) 

 

(ii) The Classical Hamiltonian in                   

α–Representation. 

Using the definition of the function f given 

by eqns. (9) and (10) in the non-linear 

transformation eqns. (7) and (8), then 

substituting the results into eqn. (12), we 

obtain: 

 

 
 

,

sinh

sinh

f  fq   





  



 

  
 
  

ω

ω

Hf h

h
  ............. (13a) 

and, 

 

 

,

1

1

f  fq

e

e

  





  



 

 
 

 
 

 

ω

ω

Hf h

h
 ............ (13b) 

Respectively, where  ,q  Hf  represents 

the Hamiltonian of the q-deformed oscillator 

defined in terms of the complex undeformed

 , 
 coordinates. Eqn. (13a) was 

previously obtained by Man’ko [8, 13]. 

 

The Equation of Motion 

The equation of motion for the q–deformed 

harmonic oscillator can be obtained in the  

 -representation and q -representation as: 

 

(i)  –Representation: 

The equation of motion in this 

representation is: 

    , ,t q    Hf
,q p

  ................... (14) 

where the notation  ,
,q p  represents the 

Poisson bracket with respect to the canonical 

coordinates  ,q p , where the subscripts 

 ,q p  will be dropped from now and on. 

 

But since, 

  
    

,

, ,

, , ,

q

q

  

    
 



 






H

H

f

f
  

                   (see Appendix-A)  .............. (15) 
 

Then simplifying   
,

, ,q  
 




Hf by 

using the fact that   and 
 are two 

independent complex variables, the result 

becomes 

  
 

,

,
, ,

q
q

 
  

   




 

 
  

 

H
H

f
f   

 .................................. (16) 
 

and substituting  ,q  Hf from eqns. (13) 

into eqns. (16), these equations become: 

 

{𝛼, 𝐻 (𝛼, 𝛼∗
𝑞
𝑓

}
𝛼,𝛼∗ = ℎ𝜔 {

𝜆𝑐𝑜𝑠ℎ(𝜆|𝛼|2)

sinh(𝜆)
}𝛼 

  ................................ (17a) 

and, 

  
 

2

,
, ,

1

e
q

e

 


   
 




 
 

  
 

 

Hf hω   

  ............................... (17b) 

Defining
 
q
ω  

   
 

2

1
cosh

sinhq

  



 
 

  
 
 

ω ω   ................. (18a) 

and, 

 

 

2

2

1

e
q

e

 




 
 

  
 

 

ω ω   ....................... (18b) 

 

eqns. (17) take the form: 

    

,
, , ; 1,2.q q


    

 



 ωHf h   

  ................................. (19) 
 

where 
 
q
ω  can be considered as the 

frequency of the q–deformed classical 

harmonic oscillator in the  –representation. 

Again, it is noticed that eqn. (18a) is the same 

as that introduced by Man’ko [8]. 
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Also, it can be shown that [8, 10, 11]:   

 ,
i

   
  

 h
  ........................................ (20) 

 

Then, substituting eqns. (19) and (20) into 

eqn. (15), and using the result in eqn. (14), 

yields 

   
; 1,2.t i q


    ω   ............. (21) 

It is worth mentioning that, 
2

  represents 

a constant of the motion for the undeformed 

classical oscillator. This is based on the fact 

that the Poisson bracket for the undeformed 

Hamiltonian   
,

, , 0H  
 

 

 , 

where  ,H    is as given by eqn. (6). A 

similar result can be obtained for 

  , , 0
,q  

 

 

fH  and 

  
,

, , 0q q q q q
q q

   
 

 

H .  

 

Eqn. (21) and its complex conjugate 

represent the equations of motion for the  

q-deformed classical harmonic oscillator in the

-representation. 

Solving these equations of motion gives the 

equations of trajectories for the q-deformed 

classical harmonic oscillator in the complex 

 , 


phase space: 

   
 

   
 

0
; 1,2.

0

i tq
t e

i tq
t e





 


  


 




 

ω

ω
  .......... (22) 

 

where,  0  and  0
 are initial 

trajectory points at 0t  .  

 

(ii) q –Representation: 

In this case, the equation of motion is given 

by: 

    , ,tq q q q q    H f   .................... (23) 

 

where, 

  
    

,

, ,

, , ,

q q q q

q q q q q q
q q

  

    
 



 






H f

H f
   

(see Appendix-A)  ............ (24) 

Also, 
 

 {𝛼𝑞,𝐻𝑞𝑓(𝛼𝑞 , 𝛼𝑞
∗)}

𝛼𝑞,𝛼𝑞
∗ =(

𝜕𝐻𝑞,𝑓(𝛼𝑞,𝛼𝑞
∗ )

𝜕𝛼𝑞
∗ )

𝛼𝑞

  

  ............................... (25) 
 

Substituting  ,q q q H f from eqn. (12) 

into eqn. (25), the result is: 
 

  
,

, ,q q q q q
q q

   
 



 ωH f h   ........ (26) 

 

Also, since the Poisson bracket

     
,

, , ,q q q q     
 

  


  for the 

q-deformed oscillator can be written as: 

 

 
 

 

4 21 sinh
,

sinh
  

qi
q q

  
 




 
  

    
   
h

  

  .............................. (27a) 

or, 

 
 

 

2
1 1

,
1

ei q
q q

e

 
 




       
    

    
h

  

  ............................. (27b) 
 

Then substituting the Poisson brackets

  
,

, ,q q q q
q q

  
 




H f and  ,q q 
from 

eqn. (26) and eqns. (27) into eqn. (24), and 

using the result in eqn. (23), one obtains: 

   
; 3, 4.t iq q q


    ω    (28)  

where, 

 
 

 

4 2

3
1 sinh

sinh

q
q

  



 
 

  
 
 

ω ω   ........ (29a) 

and, 

   
 

2

4
1 1

1

eq

q
e

 



        
 
 

ω ω   ......... (29b) 
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It is noticed that eqn. (29a) is the same as 

that introduced by Man’ko [8]. 

Eqn. (28) and its complex conjugate 

represent the equations of motion for the  

q-deformed classical harmonic oscillator in the 

q -representation. 

Again, solving these equations of motion, 

gives the equations of trajectories for the  

q-deformed classical harmonic oscillator in the 

complex  ,q q  phase space: 

   

   

0

0

i tq
t eq q

i tq
t eq q

 

  

 
 




 

ω

ω
  ..................... (30) 

 

where,  0q  and  0q
  are initial 

trajectory points at 0t  .  

 

The Liouville Equation 

In this section, the Liouville equation for 

the q-deformed classical harmonic oscillator in 

the two complex phase space representations is 

derived. In general, the Liouville equation for 

a Hamiltonian system described by a 

Hamiltonian H is given as [12]: 
 

 ,H
t






A
A   ........................................... (31) 

 

where A  represents any dynamical 

variable.  

 

(i) Liouville’s Equation in the  

 –Representation 

In this case, and using the Hamiltonian

 ,q  Hf , the classical Liouville equation 

can be shown to be: 
 

 

    

, ;

, , , ;

CL

CL

q
t

t

q
tq

 

   



 






P

PH f

  

 .............................. (32) 
 

where  , ;CL

q
t P  represents the  

probability distribution function for the  

q-deformed classical oscillator in the  

 -representation, where the subscript CL

indicates the classical system. 

But since, 

    
      

,

, , , ;

, , , , ;

CL

CL

q
tq

q
tq

   

     
 

 

  







H

H

P

P
  

 

(see Appendix-B)  .......................... (33) 

 

then, using the definition of the 

Hamiltonian  ,q  H  in the  

 -representation as in eqns. (13), we obtain: 

 

 
 2

,
2

q
f f f

 
 









 
   
 
 

ω
H

h   

 .............................. (34) 

and, 
 

 
 2

,
2

q
f f f

 
 









 
   
 
 

ω
H

h  

  ............................. (35) 
 

Furthermore, the Poisson bracket 

    
,

, , , ;CL

q
tq    
 

 


H P can be 

written as: 

    
   

   
 

,

, , , ;

, , ;

, ,
6

;
3

CL

CL

CL

q
tq

q
tq

q
tq

   
 

   

 

   

 

 



 



 





    
   

   

    
    

   

H

H

H f

P

P

P

 

  ............................. (36) 
 

Then, substituting eqns. (34) and (35) into 

eqn. (36), this Poisson bracket becomes: 

    

 

     

,

2

2 37

, , , ;

2

2 , ;

CL

CL

q
tq

f f f

q
f f f t

   
 

 


   
 

 







 









 
  

 

ωh

H P

P

 

 .............................. (37) 
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Substituting eqns. (37) and the Poisson 

bracket , 
 from eqn. (20) into eqn. (33), 

we can write: 

    
 

     

2

2

, , , ;

2

2 , ; 38 

CL

CL

q
t iq

f f f

q
f f f t

   

 


   
 

 





 


 


 



 
  

 

ωH P

P
 

 .............................. (38) 
 

Using eqn. (38) in eqn. (32) and  

re-arranging, the result becomes: 

 

 

   

2

2

, ;

2

2 , ;

CL

CL

q
t

t

i f f f

q
f f f t

 

 


   
 







 








 



 
  

 

ω

P

P

 

  ............................. (39) 

But, since f f  


 where 

   
 

 
2

2
cosh1

2 s
40

inh

f f

f
f

  

  




 

  
 

  

a

 

  ............................ (40a) 

and 
 

 
 

 

2

21

2
40

1

f f

e
f

f e

  

 





 

 
 

 
 

 

b
 

 ............................ (40b) 

then, eqn. (39) becomes: 

 

   

, ;

, ;

; 3,4.

CL

CL

q
t

t

q
i tq



 

   






 








  
  

 



P

Pω   

  ............................. (41) 

where 
 
q
ω  is given by eqns. (18). 

 

Eqn. (41) represent the Liouville equation 

for the q-deformed classical harmonic 

oscillator in the  -representation.  
 

(ii) Liouville’s Equation in the  

q –Representation. 

For this case, the Liouville equation is 

given as: 
 

 

      

, ;

4, , , 2;

CL

CL

q
P tq q

t

q
P tq q q q q

 

   



 






H

 

 .............................. (42) 
 

where  , ;CL

q
P tq q   represents the 

probability distribution function for the  

q-deformed classical harmonic oscillator in the 

q -representation. 

But since, 

      

    
,

, , , ; ,

, , , ;

CL

CL

q
P tq q q q q q q

q
P tq q q q q

q q

     

   
 

  

 







H

H
 

(see Appendix-B)  ........................ (43) 

 

and the Poisson bracket  

    
,

, , , ;CL

q
P tq q q q q

q q

   
 

 


H  

is defined as: 

 

    

   

   
 

,

, , , ;

, , ;

, ,
4

;
4

CL

CL

CL

q
P tq q q q q

q q

q
P tq q q q q

q q
q

q
P tq q q q q

qq
q

   
 

   

 


   




 



 




 





   
  
     

   
   
    

H

H

H f

 

  ............................. (44) 

Then, using the definition of the 

Hamiltonian  ,q q q H  in the q -

representation as in eqn. (12) , gives: 
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 ,q q q
q

q
q

 











 
  
 
 

H
ω   .................... (45) 

and, 
 

 ,q q q
q

q
q

 









 
  
 
 

H
ω   .................... (46) 

Substituting eqns. (45) and (46) into eqn. 

(44) and re-arranging, the result takes the 

form: 

    

 

,

, , , ;

, ;

CL

CL

q
P tq q q q q

q q

q
P tq q q q

qq

   
 

   


 



 





 
  

 
 

H

ω

  

  ............................. (47) 
 

Now, substituting eqn. (47) and the Poisson 

bracket  ,q q   from eqns. (27) into eqn. 

(43), we obtain: 

 

    
 

   

, , , ;

, ;   48

CL

CL

q
P tq q q q q

i q q q
qq

q
P tq q



   

 


 

 









 
   

 
 



ω

H

 

 .............................. (48) 
 

Substituting eqn. (48) into eqn. (42), gives:

   

 

, ;

, ;

; 3,4.

CL

CL

q
P tq q

i qt

q
P tq q q q

qq


 

   






 








 
   

 
 



ω

  

  ............................. (49) 
 

where, qω  is given by eqns. (29).  

Eqn. (49) is the required Liouville equation 

for the q-deformed classical oscillator in the

q -representation. 

It is obvious that in the limit 1q  , the 

Liouville eqns. (41) and (49) for the q-

deformed classical harmonic oscillator in the 

 - and q -representations reduce to the 

Liouville equation of the undeformed 

harmonic oscillator with angular frequency ω :  

 

 

 

, ;

, ;

CL

CL

P t

t

i P t

 

   




 








  
  

 
ω

 

  ............................. (50) 
 

where  , ;CLP t 
 represents the 

probability distribution function for this  

oscillator in the  -representation as expected. 

 

Solutions of the Liouville Equations 

Solutions of the Liouville equations of the 

q-deformed harmonic oscillator, (i.e., eqns. 

(41) and (49)) can be obtained by using the 

method of characteristics [10] in the same 

manner as performed by Milburn [10] for the 

anharmonic oscillator. Hence, in the  

 -representation, assuming the following 

initial solution at 0t  : 

 
 

2
0

, ;0CL

q
e

 
   

P   ............... (51) 

 

then, by transforming to the rotating frame 

[10], the time-evolution for each point  , 

in complex phase space can be obtained by 

replacing  by  t  given by [10]: 

 
 

i tq
t e



 



ω

  ................................... (52) 

 

Substituting eqn. (52) into eqn. (51), one 

obtains: 

 

 

 

2

0

, ;CL

i tqe
q

t e



 

 

 





P

ω

  

  ............................. (53) 
 

Similarly, in the q -representation, we 

assume that:  
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2

, ;

0

54

CL

q
P tq q

i tqe
q q

e



 

 










ω  

 .............................. (54) 

 

By direct substitution of the solutions given 

in eqns. (53) and (54) into the classical 

Liouville eqns. (41) and (49), one can verify 

that these solutions satisfy these equations.  

 

Computer Visualizations for the  

q-Deformed Classical Harmonic Oscillator 

The computer visualization method is 

utilized by Milburn [10] to investigate the 

time-evolution of the probability distribution 

function for the anharmonic oscillator in 

phase-space using the Husimi Q -function. 

This function represents a quasiprobability 

distribution function and it is widely used in 

the field of quantum optics. The Q -function is 

a normalizable positive function with values in 

the range 0 1Q  . However, it is noted that 

the frequency of the anhrmonic oscillator 

treated by Milburn [10] is a function of 
2

 . 

Similarly, for the case of the q-deformed 

oscillator the frequency is a function of 
2

 or 

2
q depending on the representation. This 

motivates using the same method used by 

Milburn [10] to investigate the behavior of the 

probability distribution functions 

 , ;CL

q
t P  and  , ;CL

q
P tq q 

. 

 

In the present work, a computer simulation 

program was written in Mathematica® to 

perform the computer visualizations. The 

initial values 
o
q and 

o
p were taken as 1

2
, 0 

measured in units of 2

m

h

ω
 and 2 mh ω  

respectively and, hence, from eqn. (2) 

 0 0.5  . 

To verify the reliability of this simulation 

program, the same results that were obtained 

by Milburn [10], were found to be 

reproducible in the present work by applying 

the computer program to his problem [10]. The 

results obtained are illustrated in Fig. (1). 

Using the dimensionless time t ω . 

In a similar manner, the time evolution of 

the probability distribution function 

 , ;CL

q
t P  can be represented in phase space 

through the behavior of a particular initial 

contour  
1

0
2

    centered at  0  [10]. 

Each point on the initial contour will move 

according to eqns. (23), and the evolution of 

this initial contour within the time interval 

0 2    in the phase space region 

1 1  q  and 1 1  p  was followed.  

The results of such a procedure are depicted 

in Fig. (2) and Fig (3) where the time-

evolution of the 2-D probability distribution is 

shown. The results for the time evolution of 

the probability distribution function 

 , ;CL

q
P tq q 

 have the same values despite 

the fact that they different expressions. For this 

reason, these results will not be presented here. 

These figures exhibit whorl shapes and can be 

contrasted with those obtained by Milburn [10] 

for the anharmonic oscillator as shown in 

Fig.(1), where it is clear that these whorl 

shapes again become finer as t  . 
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(a) 

 

 

 
(c) 

 
(b) 

 

 

 
(d) 

 

Fig. (1): The 2-D time-evolution contours of the classical probability distribution function Q  for 

the anharmonic oscillator in phase space for different values of time ( ):  

(a) 2  , (b)  , (c) 3 2  , and (d) 2  . 
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(a) 

 

 

 
(c) 

 

 

 
(b) 

 

 

 
(d) 

 

 

 

Fig. (2): The 2-D time-evolution contours of the classical probability distribution function 

 , ;CL

q
t P  for the q-deformed harmonic oscillator with frequency 

 1

qω  given by eqn. (18a) 

and 0.5q   in phase space for different values of time ( ): 

(a) 2  , (b)  , (c) 3 2   , and (d) 2  . 
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(a) 

 

 
(c) 

 
(b) 

 

 
(d) 

Fig.(3): The 2-D time-evolution contours of the classical probability distribution function 

 , ;CL

q
t P   for the q-deformed harmonic oscillator with frequency 

 2

qω  given by eqn. (18b) 

and 0.5q   in phase space for different values of time ( ):  

(a) 2  , (b)  , (c) 3 2   , and (d) 2  . 

In Figs.(4)-(6), results of 3-D time-

evolution of the same probability distributions 

are presented. Eqns. (53) and (54) were used to 

calculate the values of the probability 

distributions  , ;CL

q
t P  and  , ;CL

q
P tq q  . 

It is clear from all of these figures that the 

peaks of the q-deformed Gaussians for the 

probability distributions Q  and  , ;CL

q
t P   

do not change with time and equal to the 

maximum value (i.e.,1). These peaks follow 

the trajectories shown in Fig.(1) and Fig.(2) 

for the classical q-deformed oscillator. 

Another noticeable feature is the observation 

that the Gaussian shapes of these distributions 

become more convoluted around themselves 

as t  , which is clear in Figs. (4) - (6). 
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                                   (a)                                                                                    (b) 

 
 

               

                         
 

                                   (c)                                                                                    (d) 

 

Fig. (4): The 3-D time-evolution of the classical probability distribution function Q  for the 

anharmonic oscillator in phase space for different values of time ( ): 

(a) 2  , (b)  , (c) 3 2   , and (d) 2  . 
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                                          (a)                                                                            (b) 

 

 

           

               
 

                                          (c)                                                                            (d) 

Fig (5): The 3-D time-evolution of the classical probability distribution function  , ;CL

q
t P  for 

the q-deformed harmonic oscillator with frequency  1

qω
 given by eqn. (18a) and 0.5q   in phase 

space for different values of time ( ):  

(a) 2  , (b)  , (c) 3 2  , and (d) 2  . 
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                                          (a)                                                                            (b) 

 

         

                  
 

                                          (c)                                                                            (d) 
 

Fig.(6): The 3-D time-evolution of the classical probability distribution function  , ;CL

q
t P

for the q-deformed harmonic oscillator with frequency 
 2

qω  given by eqn. (18b) and 0.5q   in 

phase space for different values of time ( ): 

(a) 2  , (b)  , (c) 3 2  , and (d) 2  . 
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Conclusions 

The investigation of the behavior of the 

Liouville equation derived in the present work 

for the q-deformed 1-D classical harmonic 

oscillator in phase space shows whorl shapes 

evolving with time as in Fig. (2) and Fig. (3). 

These figures show many similarities to the 

results obtained by Milburn [10] for the 1-D 

classical anharmonic oscillator depicted in 

Fig.(1). These similarities, and in particular the 

whorl shapes, result from the fact that the 

anharmonic oscillator itself represents a kind 

of deformation with a frequency which is a 

function of 
2

 . This leads us to conclude that 

the whorl shapes in phase space can be 

considered as a generalized phenomenon 

connected with the deformation of any 

classical system, with q-deformation of the 

classical harmonic oscillator being a special 

case. 

Appendices 

Appendix-A 

Evaluation of the Poisson Brackets 

  , ,H  q
  and   , ,  q q q qH   

 

According to the definition of the Poisson 

bracket [12], and considering qH  as a function 

of the two independent variables   and 

, 

one can write: 

q q

q

















      
     
         

   
   

      

H H
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p p
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Eqn. (A.3) can be simplified to obtain: 

  

        A.

,

4

,q
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Now, since 

  , ,
,

q
q  

  



 

 
 
  

H
H   ..........(A.5) 

 

then, substituting eqn. (A.5) into eqn. (A.4), 

one obtains: 
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Similarly, one can prove that 
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Appendix-B 

Evaluation of the Poisson Brackets 

    , , , ;H    CL

q
tq q q q qP   and 

    , ;, ,H    CL

q
tq

 P  

 

Considering qH  as a function of the two 

independent variables q  and 
q
 , one can 

write: 
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Substituting eqns. (B.1) and (B.2) into the 

definition of the Poisson bracket 

    , , , ;CL

q
tq q q q qP    H , the result 

becomes:  
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After some mathematical manipulations, 

this equation can be simplified to yield: 
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But since the Poisson bracket  
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then, substituting eqn. (B.5)  into eqn. (B.4) 

one gets: 
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Similarly, one can prove that 
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 الخلاصة
للمتذبذب  )ليوفل(تم في العمل الحالي أشتقاق معادلة 

ببعد واحد لحالتين  qالتوافقي الكلاسيكي ذي التشوه من النوع 
من تعريف التشوه، وبأستعمال بعدين مختلفين لدالة هاملتن 
للمتذبذب التوافقي المشوه في فضائي الطور المشوه وغير 
المشوه. تم حل معادلة )ليوفل( الناتجة بأستخدام )طريقة 

للحصول على دالة توزيع الأحتمالية لهذا النظام  الخصائص(
دراسة تصرف هذه الدالة ببعدين وأستخدمت طريقة حاسوبية ل

وثلاثة أبعاد، حيث تم أعداد برنامج حاسوبي لهذا الغرض 
لمقارنة النتائج   Mathematica®بأستخدام حزمة البرمجيات 

 مع حالة المتذبذب اللاتوافقي الكلاسيكي.
أظهرت هذه المقارنة وجود تشابه بين تصرفي هذين 

حتمالية يؤشر وجود النموذجين، حيث ان سلوك دالة توزيع الأ
تصرف دوامي يتغير مع الزمن في فضاء الطور كما هو 

 الحال للمتذبذب اللاتوافقي.
تم الأستنتاج بأن دراسة ديناميكا )ليوفل( تعطي تفاصيل 

مقارنة بما يتم  qأكثر حول المعنى الفيزيائي للتشوه من النوع 
استحصاله عن طريق استخدام معادلة الحركة فقط وأن ذلك 

 يترتب عليه أنعكاسات على الحالة المكممة لهذا المتذبذب. قد

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


