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Ordinary differential equations that includes stochastic processes in their 

vector fields are called random ordinary differential equations, that are 

considered through this work as a Weiner process or also called Brownian motion. 

In this paper, fuzzy random ordinary differential equations are considered, in 

which the fuzziness appears in the initial conditions in terms of triangular fuzzy 

numbers. Such equations are crucial in the theory of random dynamical systems 

and/or modern control theory and therefore the existence of a unique solution of 

such equations is of great importance. The statement and the proof of the 

existence and uniqueness theorem of fuzzy random ordinary differential 

equations is the main objective of this paper, which is proved using Banach 

contraction mapping theorem. 
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1. Introduction 
It is commonly known that Zadeh introduced in 1965 the 

elementary of fuzzy logic through studying several real-life 

examples and then give alternatively its basic set their 

operations, [1]. For that, Congxin Wu and Shiji Song in 

1996 studied the Cauchy problem of fuzzy differential 

equations with fuzzy valued mappings of a real variable by 

using the concept of Hukuhara differentiability (H-

differentiability), [6]. Also, Jon Yeoul Park and Hyo Kun 

Han in 1999 use the method of successive approximations 

to state and prove the existence and uniqueness theorem of 

a solution of fuzzy differential equations, [3]. For the fuzzy 

first-order initial value problem, Buckley and Feuring in 

2000 proposed a new solution approach based on the theory 

of fuzzy logic and fuzzy ordinary differential equations, [2]. 

Again in 2004, Shiji Song and Congxin Whup studied the 

fuzzy Cauchy problem and also proposed the concept of 

level wise continuity to study such equations, [4]. In 2013, 

Cuilian You solved the general linear fuzzy ordinary 

differential equations and reducible fuzzy differential 

equations through performing a substitution of change of 

variables, [5]. Also, Marin H. Suhniem in 2017 provided a 

numerical method for solving fuzzy initial value problem 

based on an artificial neural network for first-order problem 

considered under generalized H-differentiability, subject to 

fuzzy initial conditions, [29]. Fadhel et al. studied an proved 

the in 2021 contraction mapping theorem on partial fuzzy 

metric spaces as a generalization of the crisp partial metric 

spaces, [30]. Eidi et al. in 2022 stated and proved two fixed 

point theorems in fuzzy metric spaces based on different 

fuzzy contraction mappings, [31].  

Fuzzy random ordinary differential equations represent 

reliable model of the dynamical system's related to real-life 

phenomena's, in which two kinds of uncertainty or fuzziness 

appeared and presented in the model; the first one because 

of the randomness and the second due to the vague notions. 

They appear to have a shadow existence in the form of 

stochastic ordinary differential equations with the stochastic 

process of Itô type, which are used in an extremely wide 

variety of well-known applications in real life. Fuzzy 

random ordinary differential equations, in particular, are 

useful in the study of random dynamical systems and/or non 

classical control theory, [13].  
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In 2000, Yuhu Feng [9], discusses the general theory of 

fuzzy stochastic systems of differential equations, as well 

as, the existence and uniqueness of solutions. It is proved in 

2007 by Fei the existence and uniqueness of solutions for 

fuzzy random ordinary differential equations with non-

Lipschitz coefficients and then the dependence of the fuzzy 

ordinary differential equations on initial conditions is 

discussed, [10]. Malinowski in 2009 [11] proved the 

solution's existence and uniqueness of fuzzy random 

ordinary differential equation under Lipschitzean right hand 

side conditions. Again, Malinowski gave two different 

forms of the solution of fuzzy random ordinary differential 

equation and applied the concept of successive 

approximations under a Lipschitzian generalized condition 

to study the existence and uniqueness theorem to the both 

types of solutions of such equations. This work was released 

in 2012. [12].  

Unlike stochastic ordinary differential equations, fuzzy 

random ordinary differential equations may be studied path 

wise using deterministic calculus, which needs more 

advanced analytical approaches than those followed in the 

classical ordinary differential equation theory, [14]. 

Because of the deriving process appeared in the random 

ordinary differential equations, which has at most of Hölder 

continuous sample paths, then the solution is continuously 

differentiable as a sample path, but the sample path 

derivative is no more than Hölder continuous in time, after 

deriving stochastic process, regardless of how smooth the 

vector field in its original variables. Because of this, 

solutions of fuzzy random ordinary differential equations 

are not smooth enough to have Taylor expansions in the 

usual sense, [15].  

Due to the notion of fixed points, there is more than one 

direction for establishing the existence and uniqueness of a 

solution to ordinary differential equations. Banach in 1922 

established the fundamental principle of fixed point theory, 

which is known later as Banach contraction mapping 

principle, [16]. Banach contraction has been refined, 

expanded, and generalized by numerous authors since it is 

widely used and valuable technique for solving several 

mathematical problems (see [17-19]). In this paper, we state 

and prove the existence and uniqueness theorem of fuzzy 

random ordinary differential equations using Banach fixed 

point theorem and based on certain type of stochastic 

sequence convergence known as converges with probability 

one (which is also given and defined for equations and 

inequalities). 

The general form of the fuzzy random ordinary 

differential equation that will be considered in this paper has 

the form: 

𝑥̃′(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑓(𝑡, 𝑥̃(𝑡, 𝜔))  

with fuzzy initial conditions: 

𝑥̃(𝑡0, 𝜔) =
𝑝.1

𝑥̃0  

where 𝑡0 ∈ ℝ, 𝑥0 ∈ 𝐸𝑑, 𝐸𝑑 is the set of all nonempty closed 

and bounded fuzzy subsets of ℝ𝑑, 𝑑 ∈ ℕ, 𝑓: [𝑎, 𝑏] × 𝐸𝑑 ⟶
𝐸𝑑, 𝜔 is the Wiener process and 𝑥̃(𝑡, 𝜔) is a random fuzzy 

process. The symbol =
[𝑎,𝑏].𝑝.1

 means that the probability of 

the set {𝜔 ∈ Ω ∣ 𝑥̃(𝑡, 𝜔) = 𝑦̃(𝑡, 𝜔), ∀ 𝑡 ∈ [𝑎, 𝑏]}  equals 1, 

while =
𝑝.1

 stands for the probability of the set {𝜔 ∈
𝛺|𝑥̃(𝑡0, 𝜔) = 𝑥̃0} also equals 1 at a point 𝑡0. 

 

2. Preliminaries 
To state and prove the existence and uniqueness theorem of 

fuzzy random ordinary differential equations, the following 

definitions and theorems are needed. 

 

Definition 2.1, [20]. If 𝑋 is a nonempty set and 𝑓: 𝑋 ⟶ 𝑋 

be a mapping, then 𝑓 is said to have a fixed point 𝑥∗ ∈ 𝑋, if 

𝑓(𝑥∗) = 𝑥∗. 

 

Definition 2.2, [20]. A mapping 𝑓: 𝑋 ⟶ 𝑋  defined on a 

metric space (𝑋, 𝑑) is said to be Lipschitzian if there exist a 

constant 𝑘 > 0 (called Lipschitzn constant), and: 

𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑘𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋  

and when 𝑘 < 1, then 𝑓 is a contraction. 

 

Theorem 2.1 (Banach fixed pint theorem), [20]. Let 

(𝑋, 𝑑) be complete metric space and suppose 𝑓: 𝑋 ⟶ 𝑋 be 

a contraction mapping with contractivity factor 𝑘 ∈ (0,1), 

then 𝑓  has a unique fixed point 𝑥∗ ∈ 𝑋 . Furthermore, 

lim𝑛→∞𝑓𝑛(𝑥) = 𝑥∗ , for all 𝑥 ∈ 𝑋  with 𝑑(𝑓𝑛(𝑥), 𝑥∗) ⩽
𝑘𝑛

1−𝑘
𝑑(𝑓(𝑥), 𝑥). 

 

Definition 2.3, [21]. A normed space (𝑋, ∥. ∥) is said to be 

complete if every Cauchy sequence in 𝑋 converge to a point 

in 𝑋 . Complete normed spaces are also called a Banach 

spaces.  

 

Every Banach space (𝑋, ∥. ∥) is also a complete metric 

space (𝑋, 𝑑), with metric defined by 𝑑(𝑥, 𝑦) =∥ 𝑥 − 𝑦 ∥. In 

fuzzy set theory, we need the Housdorff distance between 

two nonempty bounded subsets 𝐴  an 𝐵  of ℝ𝑑 , 𝑑 ∈ ℕ , 

which is defined as follows [11]: 

𝑑𝐻(𝐴, 𝐵) = max {sup
𝑥∈𝐴

inf
𝑦∈𝐵

‖𝑥 − 𝑦‖ , sup
𝑥∈𝐵

inf
𝑦∈𝐴

‖𝑥 − 𝑦‖}  

where ∥. ∥ denotes the usual norm in ℝ𝑛. 
 

3. Related Concepts in Fuzzy Sets and Stochastic 

Calculus 
This work needs some additional advanced concepts in 

fuzzy set theory and stochastic calculus. These concepts are 

pointed in this section by starting with the following 

concept; let compconv (ℝ𝑑) be used to represent the family 

of all compact and convex nonempty fuzzy subsets of ℝ𝑑, 

and define the addition and scalar multiplication in 

compconv (ℝ𝑑) using the extension principle followed in 

fuzzy logic, [11]. It is well known that from literatures for 

the set of fuzzy triangular numbers, the compconv (ℝ𝑑, 𝑑𝐻) 

becomes a complete and separable metric space, which may 

be denoted by 𝐸𝑑 = {𝑢̃|𝜇𝑢: ℝ𝑑 ⟶ [0,1]} , where the 
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membership function 𝜇𝑢 of the fuzzy set 𝑢̃ satisfies (i) - (iv) 

below: 

(i) 𝑢̃  is normal, i.e.; there exists 𝑥0 ∈ ℝ𝑑 , such that 

𝜇𝑢(𝑥0) = 1. 

(ii) 𝑢̃  is convex fuzzy set, i.e.; 𝜇𝑢(𝜆x + (1 − 𝜆)𝑦) ≥
min{𝜇𝑢(𝑥), 𝜇𝑢(𝑦)}, for all 𝑥, 𝑦 ∈ ℝ𝑑 and 𝜆 ∈ [0,1]. 

(iii) 𝑢̃ is upper semicontinuous. 

(iv) [𝑢]0 = 𝑐𝑙{𝑥 ∈ ℝ𝑑 ∣ 𝜇𝑢(𝑥) > 0} is compact. 

For 𝛼 ∈ [0,1] , denote [𝑢]𝛼 = {𝑥 ∈ ℝ𝑑 ∣ 𝜇𝑢(𝑥) ≥ 𝛼} . 

This set will be called an 𝛼-cut (or 𝛼-level set) of 𝑢̃. For 𝑢̃ ∈
𝐸𝑑 , then [𝑢]𝛼 ∈ comp conv (ℝ𝑑) , for every 𝛼 ∈ [0,1] . 

Also, it is observed that compact subsets of ℝ𝑑, which are 

nonempty can be included in 𝐸𝑑  by means of their 

membership functions. 

According to Zadeh's extension principle, and if 

𝑔: ℝ𝑑 × ℝ𝑑 ⟶ ℝ𝑑 is a function, then 𝑔 can be extended to 

be defined from 𝐸𝑑 × 𝐸𝑑 onto 𝐸𝑑 by: 

𝑔(𝑢̃, 𝑣̃)(𝑧) = sup
𝑧=𝑔(𝑥,𝑦)

{𝜇𝑢(𝑥), 𝜇𝑣̃(𝑦)}  

Also, if 𝑔  is continuous, then it is well known that 

[𝑔(𝑢, 𝑣)]𝛼 = 𝑔([𝑢]𝛼 , [𝑣]𝛼), for all 𝑢̃, 𝑣̃ ∈ 𝐸𝑑, 𝛼 ∈ [0,1]. In 

particular, for fuzzy number's addition and scalar 

multiplication in the space 𝐸𝑑, are given by: 

[𝑢 + 𝑣]𝛼 = [𝑢]𝛼 + [𝑣]𝛼, [𝑐𝑢]𝛼 = 𝑐[𝑢]𝛼  

where 𝑢̃, 𝑣̃ ∈ 𝐸𝑑, 𝑐 ∈ ℝ and 𝛼 ∈ [0,1]. 
Define 𝐷: 𝐸𝑑 × 𝐸𝑑 ⟶ [0, ∞) by: 

𝐷(𝑢̃, 𝑣̃) = sup
𝛼∈[0,1]

 𝑑𝐻([𝑢]𝛼 , [𝑣]𝛼)  

where 𝑑𝐻  is the Housdorff metric defined on compconv 

(ℝ𝑑). Also, one may prove that 𝐷 is a metric on 𝐸𝑑. In fact, 

(𝐸𝑑, 𝐷)  is a complete metric space, and for every 

𝑢̃, 𝑣̃, 𝑤̃, 𝑧̃ ∈ 𝐸𝑑 and 𝑐 ∈ ℝ, then: 

𝐷(𝑢̃ + 𝑤̃, 𝑣̃ + 𝑤̃) = 𝐷(𝑢̃, 𝑣̃)  

𝐷(𝑢̃ + 𝑣̃, 𝑤̃ + 𝑧̃) ≤ 𝐷(𝑢̃, 𝑤̃) + 𝐷(𝑣̃, 𝑧̃)  

𝐷(𝑐𝑢̃, 𝑐𝑣̃) = |𝑐|𝐷(𝑢̃, 𝑣̃)  

As a second part of this section related to stochastic 

calculus, let (𝛺, 𝐹, 𝑝)  be a complete probability space, 

where 𝛺 is a sample space, which is the set of all possible 

outcomes, an event space F which is a set of events, in 

which the event is a collection of all outcomes in the sample 

space, and a probability measurable function 𝑝 , which 

assigns a value between 0 and 1 to each event in the event 

space F. 

The random variable is a real valued function 𝑥(𝜔), 𝜔 ∈
𝛺 , which is measurable with respect to the probability 

function 𝑝 , [23,24]. A stochastic process is a family of 

random variables 𝑥(𝑡, 𝜔)  of two variables, which are 

assumed to be 𝑡 ∈ [𝑡0, 𝑇] ⊂ [0, ∞)  and 𝜔 ∈ 𝛺  on a 

common probability space, [25,26]. Wiener process or 

Brownian motion, denoted by 𝑊𝑡 , for all 𝑡 ∈ [0, ∞), is a 

stochastic process, that satisfies: 

1. 𝑝({𝜔 ∈ 𝛺 ∣ 𝑊0(𝜔) = 0} = 1. 

2. For 0 < 𝑡0 < 𝑡1 < ⋯ < 𝑡n  the increments 𝑊𝑡1
−

𝑊𝑡0
, 𝑊𝑡2

− 𝑊𝑡1
, . . . ; 𝑊𝑡𝑛

− 𝑊𝑡𝑛−1
 are independent. 

3. For an arbitrary 𝑡 and ℎ > 0, 𝑊𝑡+ℎ − 𝑊𝑡 has the normal 

distribution with mean 0 and variance ℎ. 

The convergence of the sequence of random variable 
{𝑥𝑛(𝑡, 𝜔)} , 𝑛 ∈ ℕ , 𝑡 ∈ [𝑡0, 𝑇]  may be studied using 

different approaches, such as converges with probability 

one (denoted by w. p. 1) to 𝑥(𝑡, 𝜔) if [27]: 

𝑝 ({𝜔 ∈ 𝛺: lim
𝑛→∞

𝑥𝑛(𝑡, 𝜔) = 𝑥(𝑡, 𝜔)}) = 1  

which is also called almost sure convergence. 

 

4. The Existence and Uniqueness Theorem 

In stochastic fuzzy set theory, consider the ball 𝐵𝜌(𝑥̃0) =

{𝑢̃ ∈ 𝐸𝑑 ∣ 𝐷(𝑢̃, 𝑥̃0) ≤ 𝜌}, where 𝜌 > 0 and let us assume 

the mapping 𝑓: [𝑡0, 𝑇] × 𝐵𝜌(𝑥̃0) ⟶ 𝐸𝑑, which satisfies: 

(f1) The mapping 𝑓(𝑡, 𝑢̃) is a fuzzy random variable, for 

every (𝑡, 𝑢̃) ∈ [𝑡0, 𝑇] × 𝐵𝜌(𝑥̃0). 

(f2) The mapping 𝑓(𝑡, 𝑢̃) is continuous function with 𝑝. 1. 

(f3) There exists a constant 𝑀 > 0, such that: 

𝐷(𝑓(𝑡, 𝑢̃), 𝜃̃) ≤
[𝑡0,𝑇]×𝐵𝜌(𝑥0).𝑝.1

𝑀  

In a more explanatory way, we can say that 𝑝({𝜔 ∈
𝛺|𝑥̃(𝑡, 𝜔) = 𝑦̃(𝑡, 𝜔)}) = 1 , where 𝑥̃  and 𝑦̃  are fuzzy 

random elements considered as stochastic processes, we 

will often denote the equality of 𝑥̃  and 𝑦̃  with p.1 as 

𝑥̃(𝑡, 𝜔) =
𝑝.1

 𝑦̃(𝑡, 𝜔) . Also, if 𝑝({𝜔 ∈ Ω ∣ 𝑥̃(𝑡, 𝜔) =
𝑦̃(𝑡, 𝜔), ∀ 𝑡 ∈ 𝐴 ⊂ [𝑡0, 𝑇]}) = 1, then it will be abbreviated 

as 𝑥̃(𝑡, 𝜔) =
𝐴.𝑝.1

𝑦̃(𝑡, 𝜔) . Similarly, proceeding for the 

inequalities and other relations, [12]. 

Now, consider the fuzzy random ordinary differential 

equation: 

𝑥̃′(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑓(𝑡, 𝑥̃(𝑡, 𝜔))

𝑥̃(𝑡, 𝜔) =
𝑝.1

𝑥0                            
}  …(1) 

where 𝑡0 ∈ ℝ, 𝑥0 ∈ 𝐸𝑑 , 𝑓: [𝑎, 𝑏] × 𝐸𝑑 ⟶ 𝐸𝑑 , 𝜔  is the 

Wiener process and 𝑥̃(𝑡, 𝜔) is a fuzzy random process. 

To state the existence and uniqueness theorem, let 

𝑓(𝑡, 𝑥̃) be continuous function defined on a domain 𝐷 ⊆
ℝ2, so that 𝑓 is Lipschitz continuous fuzzy function with 

respect to 𝑥̃  on 𝐷  and hence to prove that there exists a 

unique solution to the initial value problem (1). If: 

𝑀 = max
(𝑡,𝑥)∈ℝ

|𝑓(𝑡, 𝑥̃)|  

𝑅 = {(𝑡, 𝑥̃): |𝑡 − 𝑡0| ≤ 𝑎, |𝑥̃ − 𝑥̃0| ≤ 𝑏 ∣⊂ 𝐷  

If 𝑓  is continuous, then also 𝑓𝑛 , for all 𝑛 ∈ ℕ  are 

continuous on 𝐷 and Lipschitz continuous with respect to 𝑥̃ 

on 𝐷, then there exist a unique solution to the initial value 

problem on an interval |𝑡 − 𝑡0| ⩽ 𝑎, 𝑎 and 𝑏 are parameters 

of rectangle. Furthermore, the unique solution can be 

computed form the successive approximation: 

𝑥̃𝑛+1(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥0 + ∫  
𝑡

0
𝑓(𝑠, 𝑥̃𝑛(𝑡, 𝜔)𝑑𝑠  …(2) 

𝑥̃0(𝑡, 𝜔) = 𝑥̃0  

This is known as the Picard's iterations.  

The proof of this theorem is based on using Banach 

contraction mapping principle. Also, we note that in the 

Banach contraction principle, if 𝑇 is a contraction, then 𝑇 

has a unique fixed point. If 𝑇𝑛 is a contraction for some 𝑛 =
1,2, ⋯ , then also 𝑇  has a unique fixed point and this is 

known as a generalized Banach contraction mapping 
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principle. So, the generalized Banach contraction principle 

will be used to establish the proof of the existence and 

uniqueness theorem of the solution of the fuzzy random 

initial value problem (1). 

 

Lemma 4.1, [11]. Let 𝑥̃: [𝑎, 𝑏] × Ω ⟶ 𝐸𝑛  be a fuzzy 

stochastic process, then 𝑥̃ is the solution of fuzzy random 

initial value problem (1) if and only if 𝑥̃  satisfies the 

following fuzzy random integral equation: 

𝑥̃(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥̃0(𝜔) + ∫  
𝑡

𝑡0
𝑓(𝑠, 𝑥̃(𝑠, 𝜔)) 𝑑𝑠  …(3) 

 

The integral equation (3) will be written in terms of its 

lower and upper solutions 𝑥 and 𝑥 based on the 𝛼-level sets, 

as follows: 

𝑥(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥0(𝜔) + ∫  
𝑡

𝑡0
𝑓(𝑠, 𝑥(𝑠, 𝜔), 𝑥(𝑠, 𝜔)) 𝑑𝑠 

 …(4) 

𝑥(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥0(𝜔) + ∫  
𝑡

𝑡0
𝑓(𝑠, 𝑥(𝑠, 𝜔), 𝑥(𝑠, 𝜔)) 𝑑𝑠 

 …(5) 

Now, let us define the corresponding operator, so define 

at first a function as a fuzzy stochastic process 𝑥̃ϵ𝐶[𝑎, 𝑏] 
with supermum norm defined by ∥ 𝑥̃ ∥= sup|𝑥̃(𝑡, 𝜔)| and 

(𝑋, ∥⋅∥) will be a complete normed space (Banach space). 

Thus equation (2) can be written in operator form as: 

𝑥̃(𝑡, 𝜔) = 𝑥̃0 + ∫
𝑎

𝑡
 𝑓(𝑠, 𝑥̃(𝑠, 𝜔)) 𝑑𝑠  

and define an operator 𝑇 by: 

(𝑇𝑥̃)(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥̃0 + ∫
𝑎

𝑡
 𝑓(𝑠, 𝑥̃(𝑠, 𝜔))𝑑𝑠  …(6) 

If 𝑇 has a fixed point, i.e.; there exists 𝑥̃∗ ∈ 𝑋, such that 

𝑇𝑥̃∗ = 𝑥̃∗ , then the fixed point 𝑥̃∗  of equation (6) is a 

solution of the fuzzy random integral equation (2). 

Therefore, the solution of the fuzzy random integral 

equation (2) is equivalent to the existence of a fixed point 

for the fuzzy operator 𝑇. Therefore, our objective is to show 

that 𝑇  has a fixed point, which means the equivalence 

between the unique solution of the fuzzy RODE (1) and 𝑇 

has a unique fixed point fuzzy the random integral equation 

(2). We will show that 𝑇𝑛 is a contraction for any 𝑛 ∈ ℕ. 

Before we indulge with the proof of the existence and 

uniqueness, we need to recall the Gronwall's inequality 

given in the next lemma: 

 

Lemma 4.2 (Gronwall's inequality), [22]. Suppose that 𝑓 

and 𝑔  are cautiously real valued functions with 𝑓(𝑥) ≥
𝑔(𝑥) ≥ 0 on the interval [𝑎, 𝑏]. If: 

𝑓(𝑥) ≤ 𝐶 + 𝐾∫
𝑎

𝑥
 𝑔(𝑠) 𝑑𝑠, 𝐶, 𝐾 ≥ 0 

Then: 

𝑓(𝑥) ≤ 𝐶𝑒∫𝑎
𝑥

 𝑔(𝑠) 𝑑𝑠  

 

Theorem 4.3. Consider the first order fuzzy random 

ordinary differential equation: 

𝑥̃′(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑓(𝑡, 𝑥̃(𝑡, 𝜔)), 𝑥̃(𝑡0, 𝜔) =
𝑝.1

𝑥̃0 …(7) 

where 𝑓: 𝑓: [𝑎, 𝑏] × 𝐸𝑑 ⟶ 𝐸𝑑  and if 𝑓  satisfies Lipschitz 

condition with respect to 𝑥̃, with constant 𝐾 > 0, such that 

𝐾 ≤ [
𝛼𝑛

𝑒𝛼(𝑏−𝑎)]
1/𝑛

, 𝑛 ∈ ℕ. Then the fuzzy random ordinary 

differential equation (7) has a unique solution as a fuzzy 

random process.  

Proof. Let  𝑥̃1 and 𝑥̃2 be two fuzzy random processes and 

since f satisfies Lipschitz condition, then for 𝐾 > 0: 
‖𝑓(𝑡, 𝑥̃1(𝑡, 𝜔)) − 𝑓(𝑡, 𝑥̃2(𝑡, 𝜔))‖ ≤ 𝐾‖𝑥̃1 − 𝑥̃2‖  

The 𝛼-level intervals of 𝑥̃1  and 𝑥̃2  are 𝑥̃1 = [𝑥1, 𝑥1], 𝑥̃2 =

[𝑥2, 𝑥2] and hence to prove the mapping 𝑓 is a contraction 

mapping 

Since 𝑓 satisfies Lipschitz condition with respect to 𝑥̃, with 

constant 𝐾 > 0 , then in terms of the lower and upper 

solutions, 𝑓 will satisfy: 

‖𝑓(𝑡, 𝑥1(𝑡, 𝜔), 𝑥1(𝑡, 𝜔)) − 𝑓(𝑡, 𝑥2(𝑡, 𝜔), 𝑥2(𝑡, 𝜔))‖ ≤

𝐾[‖𝑥1 − 𝑥2‖ + ‖𝑥1 − 𝑥2‖]  

for all 𝑥1, 𝑥1, 𝑥2, 𝑥2 ∈ 𝐶[𝑎, 𝑏] , and for all 𝑡 ∈ [𝑎, 𝑏] ⊂ ℝ , 

𝑥̃0 ∈ 𝐸𝑑, 𝜔 is the Weiner process 

Since 𝑥1, 𝑥1, 𝑥2, 𝑥2 ∈ 𝐶[𝑎, 𝑏] , then by equation (6), we 

have: 

(𝑇𝑥̃)(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥̃0 + ∫
𝑎

𝑡
 𝑓(𝑠, 𝑥̃(𝑠, 𝜔))𝑑𝑠  

where 𝑥̃(𝑡, 𝜔) = [𝑥(𝑡, 𝜔), 𝑥(𝑡, 𝜔)]. 

Also, equation (6) could be written in terms of its lower and 

upper terms, which are related to the 𝛼-levels of the fuzzy 

function 𝑥̃, as follows: 

(𝑇𝑥)(𝑡, 𝜔) = 𝑥0 + ∫  
𝑡

𝑎
 𝑓𝑠(𝑠, 𝑥(𝑠, 𝜔), 𝑥‾(𝑠, 𝜔)) 𝑑𝑠  

(𝑇𝑥‾)(𝑡, 𝜔) = 𝑥‾0 + ∫  
𝑡

𝑎
 𝑓𝑒(𝑠, 𝑥(𝑠, 𝜔), 𝑥‾(𝑠, 𝜔)) 𝑑𝑠  

Thus, the operator integral equations related to 𝑥1  and 𝑥2 

are: 

(𝑇𝑥1)(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥0 + ∫  
𝑡

𝑎
 𝑓𝑠(𝑠, 𝑥1(𝑠, 𝜔), 𝑥1(𝑠, 𝜔)) 𝑑𝑠 

 …(8) 

(𝑇𝑥2)(𝑡, 𝜔) =
[𝑎,𝑏].𝑝.1

𝑥0 + ∫  
𝑡

𝑎
 𝑓𝑠(𝑠, 𝑥2(𝑠, 𝜔), 𝑥2(𝑠, 𝜔)) 𝑑𝑠 

 …(9) 

Subtracting equation (9) from equation (8) and taking the 

supremum norm, getting: 

∥∥(𝑇𝑥1)(𝑡, 𝜔) − (𝑇𝑥2)(𝑡, 𝜔)∥∥ =
[𝑎,𝑏].𝑝.1

‖𝑥0 − 𝑥0 +

∫  
𝑡

𝑎
 𝑓(𝑠, 𝑥1(𝑠, 𝜔), 𝑥‾1(𝑠, 𝜔))𝑑𝑠 −

∫  
𝑡

𝑎
 𝑓(𝑠, 𝑥2(𝑠, 𝜔), 𝑥‾2(𝑠, 𝜔))𝑑𝑠‖  

≤
[𝑎,𝑏].𝑝.1

∫  
𝑡

𝑎
 ‖𝑓(𝑠, 𝑥1(𝑠, 𝜔), 𝑥‾1(𝑠, 𝜔)) −

𝑓(𝑠, 𝑥2(𝑠, 𝜔), 𝑥‾2(𝑠, 𝜔))‖𝑑𝑠  

≤
[𝑎,𝑏].𝑝.1

𝐾 ∫  
𝑡

𝑎
  [‖𝑥2(𝑠, 𝜔) − 𝑥1(𝑠, 𝜔)‖ +

‖𝑥‾2(𝑠, 𝜔) − 𝑥‾1(𝑠, 𝜔)‖] 𝑑𝑠  

By Gronwall's inequality, getting: 

∥∥(𝑇𝑥1)(𝑡, 𝜔) − (𝑇𝑥2)(𝑡, 𝜔)∥∥ ≤
[𝑎,𝑏].𝑝.1

 

𝐾 ∫  
𝑡

𝑎
  [‖𝑥2(𝑠, 𝜔) − 𝑥1(𝑠, 𝜔)‖𝑒∫ ‖𝑥‾2(𝑡,𝜔)−𝑥‾1(𝑡,𝜔)‖𝑑𝑡

𝑠
𝑎 ] 𝑑𝑠 

Consider ∥∥𝑥‾2(𝑠, 𝜔) − 𝑥‾1(𝑠, 𝜔)∥∥ =
[𝑎,𝑏].𝑝.1

𝛼, then: 

∥∥(𝑇𝑥1)(𝑡, 𝜔) − (𝑇𝑥2)(𝑡, 𝜔)∥∥ ≤
[𝑎,𝑏].𝑝.1

𝐾‖𝑥2(𝑠, 𝜔) −

𝑥1(𝑠, 𝜔)‖ ∫  
𝑡

𝑎
 𝑒𝛼(𝑠−𝑎)𝑑𝑠  
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 ≤
[𝑎,𝑏].𝑝.1

𝐾
𝑒𝛼(𝑡−𝑎)

𝛼
[‖𝑥1(𝑡, 𝜔) − 𝑥2(𝑡, 𝜔)‖]  

To show that 𝑇𝑛  is a contraction if we can bound above 

equation, which will be less than 1. So, putting some 

restriction on the Lipschitz constant 𝐾  by taking the 

composition. Starting with 𝑇2 as follow: 

‖𝑇2𝑥1(𝑡, 𝜔) − 𝑇2𝑥2(𝑡, 𝜔)‖ =
[𝑎,𝑏].𝑝.1

‖𝑇(𝑇𝑥1(𝑡, 𝜔)) −

𝑇(𝑇𝑥2(𝑡, 𝜔))‖  

≤
[𝑎,𝑏].𝑝.1

𝐾2 (∫  
𝑡

𝑎
 
𝑒𝛼(𝑠−𝑎)

𝛼
𝑑𝑠) (‖𝑥1(𝑠, 𝜔) − 𝑥2(𝑠, 𝜔)‖)  

≤
[𝑎,𝑏].𝑝.1

𝐾2 𝑒𝛼(𝑡−𝑎)

𝛼3 ‖(𝑥1(𝑡, 𝜔) − 𝑥2(𝑡, 𝜔))‖  

Continue in this manner to take one more composition, say 

for 𝑇3𝑥1(𝑡, 𝜔) − 𝑇3𝑥2(𝑡, 𝜔), implies to: 

‖𝑇3𝑥1(𝑡, 𝜔) − 𝑇3𝑥2(𝑡, 𝜔)‖ ≤
[𝑎,𝑏].𝑝.1

 

𝐾3 e𝛼(t−a)

α2 (‖𝑥1(𝑠, 𝜔) − 𝑥2(𝑠, 𝜔)‖)  

and so on for 𝑛-compositions of the operator 𝑇, one may 

get: 

‖𝑇𝑛𝑥1(𝑡, 𝜔) − 𝑇𝑛𝑥2(𝑡, 𝜔)‖ ≤
[𝑎,𝑏].𝑝.1

 

𝐾𝑛 𝑒𝛼(𝑡−𝑎)

𝛼𝑛 (‖𝑥1(𝑠, 𝜔) − 𝑥2(𝑠, 𝜔)‖) 

≤
[𝑎,𝑏].𝑝.1

𝐾𝑛 𝑒𝛼(𝑏−𝑎)

𝛼𝑛 (‖𝑥1(𝑠, 𝜔) − 𝑥2(𝑠, 𝜔)‖)  

The value 𝐾𝑛 𝑒𝛼(𝑏−𝑎)

𝛼𝑛 < 1, we must take 𝐾 ≤ [
𝛼𝑛

𝑒𝛼(𝑏−𝑎)]
1/𝑛

 

So 𝑇𝑛  is a contraction mapping for 𝑛  large enough and 

hence 𝑇 has unique fixed point as a fuzzy random process.  

Then by the Banach fixed point theorem. The integral 

operator 𝑇 has a unique solution as a fuzzy random process, 

i.e.; the fuzzy random ordinary differential equation (1) has 

a unique solution. 
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