Some Models of the Finite Hyperbolic Geometry and the Finite Hyperbolic Plane

Jinan F. Al-Jobory
Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq

Article's Information	Abstract
Received:	In this paper, two important models for the finite hyperbolic plane (finite Bolyai-
12.07 .2022	Lobachevsky plane) $B_{n, m}$ will be given, the first model is when $n=3$ and $m=3$, while
Accepted:	the second model is when $n=3$ and $m=4$.
30.08 .2022	Also, two important models for the finite hyperbolic geometry (finite Bolyai-
Published:	Lobachevsky geometry) are given, the first model is when each line contains either
31.12 .2022	4 or 3 distinct points and each point is on 6 distinct lines, while the second model is
Keywords:	when each line contains either 3 or 2 distinct points and each point is on either 7 or
Axiomatic system	8 lines. All models are represented in a simple form, which help the readers and
Finite hyperbolic plane (finite	researchers to understand the different facts about the finite Bolyai-Lobachevsky
Bolyai-Lobachevsky plane)	plane and the finite Bolyai-Lobachevsky geometry.
Finite hyperbolic geometry (finite	
Bolyai-Lobachevsky geometry)	
The undefined terms (point and	
line)	
Parallel lines	
Incident	
DOI: $10.22401 / A N J S .25 .4 .10$	
Corresponding author: dr.jinan@uomustansiriyah.edu.iq	

1. Introduction

In 1823 a Hungarian mathematician Janos Farakas Bolyai developed a new geometry, which he called it absolute geometry [3], but he didn't published the new geometry until 1832, during this period a Russian mathematician Nikolai Ivanovich Lobachevsky published the same work of Bolyai in 1829, the name of this geometry was changed by Felix Klein in 1871 to hyperbolic geometry. All the models and work of the hyperbolic geometry are infinite [1] till 1962 when L. M. Graves in his paper [4] gave a proposed axiomatic system for finite Bolyai-Lobachevsky plane.

In this paper, the finite Bolyai-Lobachevsky plane and the finite Bolyai-Lobachevsky geometry will be considered.

2. Preliminaries

In this section, basic concepts related to this work are presented, including definitions and axioms in hyperbolic geometry.

Definition 2.1. A finite hyperbolic geometry H consist of a finite collection of points arranged on a finite collection of lines in accordance to the following axioms:

Axiom 1. If ρ_{1} and ρ_{2} are two points, then there is one and only one line on both.

Axiom 3 (Bolyai-Lobachevsky postulate). If ρ is a point not on a line ℓ, then there are at least $m(m \geq 2)$ distinct lines on ρ that do not intersect ℓ.

Axiom 4. There are four points in H no three of them on the same line.

Definition 2.2. A finite hyperbolic plane (or finite BolyaiLobachevsky plane) $B_{n, m}$ consist of a finite collection of points arranged on a finite collection of lines in accordance of the following axioms:

Axiom 1. If ρ_{1} and ρ_{2} are two points, then there is one and only one line on both.

Axiom 2. There are $n(n \geq 2)$ points on each line.
Axiom 3 (Bolyai-Lobachevsky postulate). If ρ is a point not on a line ℓ, then there are $m(m \geq 2)$ distinct lines on ρ that do not intersect ℓ.

Axiom 4. There are four points in $B_{n, m}$ no three of them on the same line.

Axiom 2. There are at least $n(n \geq 2)$ points on each line.

Al-Nahrain Journal of Science

ANJS, Vol. 25 (4), December, 2022, pp. 59-62

Theorem 2.3 ([2], p.40). There are $m+n$ distinct lines on each point in $B_{n, m}$.
Theorem 2.4 ([2], p.40). There are $1+[m+n][n-1]=$ $n^{2}+m n-n-m+1$ distinct points in $B_{n, m}$.

Theorem 2.5 ([2], p.40). There are $\frac{m+n}{n}[1+[m+n]$ [$n-1$]] distinct lines in $B_{n, m}$.
3. Some Models of the Finite Hyperbolic Plane $B_{n, m}$ In the finite hyperbolic plane $B_{n, m}$, some models may be suggested, and among them are those presented next:

Model 3.1. If $\ell_{1}, \ell_{2}, \ldots, \ell_{21}$ are lines and $\rho_{1}, \rho_{2}, \ldots, \rho_{7}$ are points, then the following Table 1 which shows the points on the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{21}$ will be a Model of $B_{2,4}$:

Table 1

ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}
ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{1}
ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{3}

ℓ_{8}	ℓ_{9}	ℓ_{10}	ℓ_{11}	ℓ_{12}	ℓ_{13}	ℓ_{14}
ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{1}	ρ_{2}	ρ_{3}
ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{4}	ρ_{5}	ρ_{6}

ℓ_{15}	ℓ_{16}	ℓ_{17}	ℓ_{18}	ℓ_{19}	ℓ_{20}	ℓ_{21}
ρ_{4}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{1}	ρ_{2}	ρ_{1}
ρ_{7}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{6}	ρ_{7}	ρ_{7}

Model 3.2. If $\ell_{1}, \ell_{2}, \ldots, \ell_{26}$ are lines and $\rho_{1}, \rho_{2}, \ldots, \rho_{13}$ are points, then the following Table 2 which shows the points on the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{26}$ will be a Model of $B_{3,3}$:

Table 2

ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}	ℓ_{8}	ℓ_{9}
ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}
ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}
ρ_{13}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}

ℓ_{10}	ℓ_{11}	ℓ_{12}	ℓ_{13}	ℓ_{14}	ℓ_{15}	ℓ_{16}	ℓ_{17}	ℓ_{18}
ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}
ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}
ρ_{9}	ρ_{10}	ρ_{11}	ρ_{12}	ρ_{9}	ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}

ℓ_{19}	ℓ_{20}	ℓ_{21}	ℓ_{22}	ℓ_{23}	ℓ_{24}	ℓ_{25}	ℓ_{26}
ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}	ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}
ρ_{8}	ρ_{9}	ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}	ρ_{1}	ρ_{2}
ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}

Model 3.3. If $\ell_{1}, \ell_{2}, \ldots, \ell_{35}$ are lines and $\rho_{1}, \rho_{2}, \ldots, \rho_{15}$ are points, then the following table 3 which shows the points on the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{35}$ will be a Model of $B_{3,4}$:

Table 3

ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}	ℓ_{8}	ℓ_{9}
ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}
ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}	ρ_{10}
ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}	ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}

ℓ_{10}	ℓ_{11}	ℓ_{12}	ℓ_{13}	ℓ_{14}	ℓ_{15}	ℓ_{16}	ℓ_{17}	ℓ_{18}
ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}	ρ_{14}	ρ_{15}	ρ_{1}	ρ_{2}	ρ_{3}
ρ_{11}	ρ_{12}	ρ_{13}	ρ_{14}	ρ_{15}	ρ_{1}	ρ_{7}	ρ_{8}	ρ_{9}
ρ_{14}	ρ_{15}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{14}	ρ_{15}	ρ_{1}

ℓ_{19}	ℓ_{20}	ℓ_{21}	ℓ_{22}	ℓ_{23}	ℓ_{24}	ℓ_{25}	ℓ_{26}	ℓ_{27}
ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}	ρ_{10}	ρ_{11}	ρ_{12}
ρ_{10}	ρ_{11}	ρ_{12}	ρ_{13}	ρ_{14}	ρ_{15}	ρ_{1}	ρ_{2}	ρ_{3}
ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}	ρ_{10}

ℓ_{28}	ℓ_{29}	ℓ_{30}	ℓ_{31}	ℓ_{32}	ℓ_{33}	ℓ_{34}	ℓ_{35}
ρ_{13}	ρ_{14}	ρ_{15}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}
ρ_{4}	ρ_{5}	ρ_{6}	ρ_{6}	ρ_{7}	ρ_{8}	ρ_{9}	ρ_{10}
ρ_{11}	ρ_{12}	ρ_{13}	ρ_{11}	ρ_{12}	ρ_{13}	ρ_{14}	ρ_{15}

Al-Nahrain Journal of Science

ANJS, Vol. 25 (4), December, 2022, pp. 59-62

4. Some Models of the Finite Hyperbolic Geometry Similarly, as in section 3, some models related to finite hyperbolic geometry are suggested in the next.

Model 4.1. If $\ell_{1}, \ell_{2}, \ldots, \ell_{28}$ are lines and $\rho_{1}, \rho_{2}, \ldots, \rho_{16}$ are points, then the following table 4 which shows the points on the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{28}$ will be a Model of the Finite Hyperbolic Geometry (finite Bolyai-Lobachevsky geometry):

Table 4

ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}	ℓ_{8}	ℓ_{9}
ρ_{1}	ρ_{5}	ρ_{9}	ρ_{13}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{7}	ρ_{4}
ρ_{2}	ρ_{6}	ρ_{10}	ρ_{14}	ρ_{5}	ρ_{6}	ρ_{10}	ρ_{11}	ρ_{8}
ρ_{3}	ρ_{7}	ρ_{11}	ρ_{15}	ρ_{9}	ρ_{13}	ρ_{14}	ρ_{15}	ρ_{12}
ρ_{4}	ρ_{8}	ρ_{12}	ρ_{16}					ρ_{16}

ℓ_{10}	ℓ_{11}	ℓ_{12}	ℓ_{13}	ℓ_{14}	ℓ_{15}	ℓ_{16}	ℓ_{17}	ℓ_{18}
ρ_{2}	ρ_{3}	ρ_{8}	ρ_{4}	ρ_{1}	ρ_{3}	ρ_{5}	ρ_{4}	ρ_{1}
ρ_{11}	ρ_{7}	ρ_{9}	ρ_{5}	ρ_{6}	ρ_{8}	ρ_{10}	ρ_{6}	ρ_{12}
ρ_{16}	ρ_{12}	ρ_{13}	ρ_{14}	ρ_{10}	ρ_{15}	ρ_{16}	ρ_{11}	ρ_{13}
				ρ_{15}				

ℓ_{19}	ℓ_{20}	ℓ_{21}	ℓ_{22}	ℓ_{23}	ℓ_{24}	ℓ_{25}	ℓ_{26}	ℓ_{27}	ℓ_{28}
ρ_{2}	ρ_{6}	ρ_{4}	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{1}	ρ_{2}	ρ_{3}
ρ_{7}	ρ_{12}	ρ_{9}	ρ_{7}	ρ_{8}	ρ_{5}	ρ_{7}	ρ_{8}	ρ_{5}	ρ_{6}
ρ_{9}	ρ_{14}	ρ_{15}	ρ_{16}	ρ_{10}	ρ_{11}	ρ_{10}	ρ_{11}	ρ_{12}	ρ_{9}
ρ_{14}					ρ_{13}	ρ_{13}	ρ_{14}	ρ_{15}	ρ_{16}

Remark 4.2. In Model 4.1. above there are 6 distinct lines on each point. Thus any point ρ not on line ℓ containing four points, there are 4 distinct lines on ρ that intersect ℓ and 2 distinct lines on ρ parallel to ℓ (not intersecting ℓ). While any point ρ not on line ℓ containing three points, there are 3 distinct lines on ρ that intersect ℓ and 3 distinct lines on ρ parallel to ℓ (not intersecting ℓ).

Model 4.3. If $\ell_{1}, \ell_{2}, \ldots, \ell_{43}$ are lines and $\rho_{1}, \rho_{2}, \ldots, \rho_{15}$ are points, then the following table 5
which shows the points on the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{43}$ will be a Model of the Finite Hyperbolic Geometry (finite Bolyai-Lobachevsky geometry):

Table 5

ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}	ℓ_{8}	ℓ_{9}
ρ_{1}	ρ_{4}	ρ_{7}	ρ_{10}	ρ_{13}	ρ_{1}	ρ_{4}	ρ_{7}	ρ_{10}
ρ_{2}	ρ_{5}	ρ_{8}	ρ_{11}	ρ_{14}	ρ_{5}	ρ_{8}	ρ_{11}	ρ_{14}
ρ_{3}	ρ_{6}	ρ_{9}	ρ_{12}	ρ_{15}	ρ_{9}	ρ_{12}	ρ_{15}	ρ_{3}

ℓ_{10}	ℓ_{11}	ℓ_{12}	ℓ_{13}	ℓ_{14}	ℓ_{15}	ℓ_{16}	ℓ_{17}	ℓ_{18}
ρ_{13}	ρ_{1}	ρ_{4}	ρ_{7}	ρ_{10}	ρ_{13}	ρ_{1}	ρ_{4}	ρ_{7}
ρ_{2}	ρ_{8}	ρ_{11}	ρ_{14}	ρ_{2}	ρ_{5}	ρ_{11}	ρ_{14}	ρ_{2}
ρ_{6}	ρ_{15}	ρ_{3}	ρ_{6}	ρ_{9}	ρ_{12}	ρ_{6}	ρ_{9}	ρ_{12}

ℓ_{19}	ℓ_{20}	ℓ_{21}	ℓ_{22}	ℓ_{23}	ℓ_{24}	ℓ_{25}	ℓ_{26}	ℓ_{27}
ρ_{10}	ρ_{13}	ρ_{1}	ρ_{4}	ρ_{7}	ρ_{10}	ρ_{13}	ρ_{1}	ρ_{1}
ρ_{5}	ρ_{8}	ρ_{14}	ρ_{2}	ρ_{5}	ρ_{8}	ρ_{11}	ρ_{4}	ρ_{10}
ρ_{15}	ρ_{3}	ρ_{12}	ρ_{15}	ρ_{3}	ρ_{6}	ρ_{9}	ρ_{7}	ρ_{13}

ℓ_{28}	ℓ_{29}	ℓ_{30}	ℓ_{31}	ℓ_{32}	ℓ_{33}	ℓ_{34}	ℓ_{35}	ℓ_{36}
ρ_{2}	ρ_{2}	ρ_{3}	ρ_{3}	ρ_{4}	ρ_{4}	ρ_{7}	ρ_{7}	ρ_{8}
ρ_{8}	ρ_{5}	ρ_{12}	ρ_{9}	ρ_{10}	ρ_{13}	ρ_{10}	ρ_{13}	ρ_{5}
ρ_{14}	ρ_{11}	ρ_{6}	ρ_{15}					

ℓ_{37}	ℓ_{38}	ℓ_{39}	ℓ_{40}	ℓ_{41}	ℓ_{42}	ℓ_{43}
ρ_{8}	ρ_{12}	ρ_{12}	ρ_{14}	ρ_{14}	ρ_{6}	ρ_{6}
ρ_{11}	ρ_{9}	ρ_{15}	ρ_{5}	ρ_{11}	ρ_{9}	ρ_{15}

Remark 4.4. In Model 4.3. We have the following:

1. There are exactly 7 distinct lines on each Point $\rho_{1}, \rho_{2}, \rho_{3}$.
2. There are exactly 8 distinct lines on each Point $\rho_{4}, \rho_{5}, \ldots, \rho_{15}$.
3. There are 3 points on each of the lines $\ell_{1}, \ell_{2}, \ldots, \ell_{31}$.
4. There are 2 points on each of the lines $\ell_{32}, \ell_{33}, \ldots, \ell_{43}$.
5. If $\rho \in\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}$ and ρ is not on any of Lines $\ell_{1}, \ell_{2}, \ldots, \ell_{31}$. Then there are 3 distinct lines on ρ that intersect ℓ and exactly 4 distinct lines on ρ parallel to ℓ (not intersecting ℓ).

Al-Nahrain Journal of Science

ANJS, Vol. 25 (4), December, 2022, pp. 59-62

6. If $\rho \in\left\{\rho_{1}, \rho_{2}, \rho_{3}\right\}$ and ρ is not on any of Lines $\ell_{32}, \ell_{33}, \ldots, \ell_{43}$. Then there are exactly 2 distinct lines on ρ that intersect ℓ and exactly 5 distinct lines on ρ parallel to ℓ (not intersecting ℓ).
7. If $\rho \in\left\{\rho_{4}, \rho_{5}, \ldots, \rho_{15}\right\}$ and ρ is not on any of Lines $\ell_{1}, \ell_{2}, \ldots, \ell_{31}$. Then there are 3 distinct lines on ρ that intersect ℓ and 5 distinct lines on ρ parallel to ℓ (not intersecting ℓ).
8. If $\rho \in\left\{\rho_{4}, \rho_{5}, \ldots, \rho_{15}\right\}$ and ρ is not on any of Lines $\ell_{32}, \ell_{33}, \ldots, \ell_{43}$. Then there are 2 distinct lines on ρ that intersect ℓ and 6 distinct lines on ρ parallel to ℓ (not intersecting ℓ).

5. Conclusions

From this work, the following conclusions may be drawn:

1. There is no finite hyperbolic plane $B_{n, m}$, if $\frac{m+n}{n}[1+[m+n][n-1]]$ is not an integer.
2. $\frac{m+n}{n}[1+[m+n][n-1]]$ is an integer doesn't mean that there is a model of $B_{n, m}$, and if there is a model then for $n \geq 3$ and $m \geq 3$ it is so difficult to find.
3. In a model of the finite hyperbolic geometry the number of distinct points on each line is not necessarily the same.
4. In a model of the finite hyperbolic geometry the number of distinct lines on each point is not necessarily the same.
5. In a model of the finite hyperbolic geometry the number of distinct parallel lines on each point not on a line is not necessarily the same.

Acknowledgements

The author would like to express great thanks to Mustansiriyah University, College of Education, and Mathematics Department for providing a suitable environment to do this paper work.

References

[1] Adler C. F.; "Modern geometry", Second Edition, McGraw-Hill, 1967.
[2] Bumcrot R. J.; "Modern projective geometry", Holt, Rinehart and Winston, Inc., 1969.
[3] Coxeter H. S. M., "Introduction to geometry", Second Edition, John Wiley \& Sons, Inc., 1969.
[4] Graves L. M., "A finite Bolyai-Lobachevsky", Amer. Math. Monthly, 69: 130-132, 1962.

